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16 Abstract

17 Cancer affects millions of individuals worldwide. One shortcoming of traditional cancer 

18 classification systems is that, even for tumors affecting a single organ, there is significant 

19 molecular heterogeneity. Precise molecular classification of tumors could be beneficial in 

20 personalizing patients’ therapy and predicting prognosis. To this end, here we propose to 

21 use molecular signatures to further refine cancer classification.  Molecular signatures are 

22 collections of genes characterizing particular cell types, tissues or disease. Signatures can 

23 be used to interpret expression profiles from heterogeneous samples. Large collections of 

24 gene signatures have previously been cataloged in the MSigDB database. We have 

25 developed a web-based Signature Visualization Tool (SaVanT) to display signature 

26 scores in user-generated expression data. Here we have undertaken a systematic analysis 

27 of correlations between inflammatory signatures and cancer samples, to test whether 

28 inflammation can differentiate cancer types. Inflammatory response signatures were 

29 obtained from MsigDB and SaVanT and a signature score was computed for samples 

30 associated with 7 different cancer types.  We first identified types of cancers that had 

31 high inflammation levels as measured by these signatures.  The correlation between 

32 signature scores and metadata of these patients (gender, age at initial cancer diagnosis, 

33 cancer stage, and vital status) was then computed. We sought to evaluate correlations 

34 between inflammation with other clinical parameters and identified four cancer types that 

35 had statistically significant association (p-value < 0.05) with at least one clinical 

36 characteristic: pancreas adenocarcinoma (PAAD), cholangiocarcinoma (CHOL), kidney 

37 chromophobe (KICH), and uveal melanoma (UVM). These results may allow future 
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38 studies to use these approaches to further refine cancer subtyping and ultimately 

39 treatment.

40

41 Introduction

42 Cancer is a major public health problem with high mortality rates in the United States and 

43 worldwide and poses an enormous burden to individuals and society. Over 1.7 million 

44 newly diagnosed cancer cases and over 600,000 cancer deaths were estimated in the 

45 United States in 2018 (1).  Screening for some cancers can lead to early detection 

46 (mammography for breast cancer and colonoscopy for colon cancer, for example), when 

47 local resection or definitive treatment may still be feasible (2).  However, many cancers 

48 are found when there is already local invasion or even distant metastatic disease.  In those 

49 cases, common treatment options include chemotherapy, locoregional therapies and 

50 radiation treatment (3).  Among the issues complicating treatment options are the fact that 

51 there are many tumor types, whose response to therapy may differ depending on site of 

52 origin and cellular composition (4). Furthermore, even within the same organ, there are 

53 heterogeneous tumor types with different responses to therapies.  

54

55 As a result, precise tumor classification is crucial; depending on the categorization of a 

56 tumor, the clinical course, prognosis, and treatment can vary dramatically (5).  In general, 

57 there are two ways to classify cancer: the traditional histology-based method and 

58 molecular methods.  The traditional method is based on observing the site of origin, 

59 degree of spread and cellular morphology, while the molecular method identifies gene 

60 expression and genetic profiles (6-8).  Because tumors are heterogeneous and frequently 
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61 contain abundant somatic mutations, traditional approaches for classifying tumor 

62 subtypes are often insufficient.  Conventional histopathological evaluation of cancer 

63 utilizes surgical or image-guided biopsies of the primary tumor, often requiring serial 

64 samples throughout treatment course.  Different parameters such as tumor size, grade, 

65 and degree of invasion along with other features such as tumor markers, atypical 

66 morphology, and regional lymph node drainage pattern are evaluated to predict tumor 

67 prognosis (9). Although this traditional approach to tumor categorization is valuable in 

68 many cases, it does not always accurately stratify patients into different treatment 

69 regimens or account for the molecular variability of cancer (10).

70

71 By contrast, molecular classification is based on the analysis of tumor genomes as well as 

72 gene expression (11).  Successful molecular subdivision of tumors originating from the 

73 same tissue may result in different treatments targeting a specific tumor type, as is found 

74 in the case of ERBB2-amplified breast cancer and EGFR mutant lung carcinoma (12, 13).  

75 Furthermore, techniques such as RNA sequencing (RNAseq) can be used to obtain a 

76 profile of tumor RNA levels to study mutations, alternative splicing, and gene expression 

77 levels (14).  Molecular signatures may also be utilized to inform biological 

78 interpretations.  Molecular signatures are collections of genes with associated biological 

79 processes that can identify genes upregulated in specific sample subsets when compared 

80 to broader groups (15).  Signatures can be composed of genes associated with specific 

81 diseases; for instance, breast cancer molecular signatures have identified subphenotypes 

82 indistinguishable by traditional histologic analysis (15, 16).  

83
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84 Mutations resulting in cancer may come about by a variety of sources, including 

85 inflammation.  Chronic inflammation has been shown to increase cancer risk (17, 18) by 

86 causing tumor initiation, promotion, and metastatic progression (19). Many 

87 environmental causes of cancer are related to chronic inflammation.  As many as 20% of 

88 cancers are associated with chronic infection, 30% with tobacco smoking and inhaled 

89 pollutants such as asbestos, and 35% with dietary factors (20-23).  Chronic disease 

90 exposing patients to inflammation are also associated with increased cancer risk. 

91 Inflammatory bowel disease (i.e. ulcerative colitis and Crohn’s disease) is associated with 

92 an increased risk of colon adenocarcinoma (24), chronic pancreatitis is a significant risk 

93 factor for pancreatic cancer (25), and chronic gastritis secondary to Helicobacter pylori 

94 infection is associated with the majority of gastric cancer cases (26).  

95

96 Several large consortia, such as The Cancer Genome Atlas (TCGA), provide tools and 

97 data to study the molecular basis of cancer (11, 27).  The purpose of our study is to 

98 understand molecular patterns related to inflammation.  Although TCGA started out by 

99 collecting only three cancer types – glioblastoma multiforme, lung, and ovarian cancers – 

100 it expanded rapidly; by 2014, genomic characterization and sequence analysis had been 

101 completed for 33 cancer types with data for over 12,000 individuals (27).  

102

103 Signature visualization of individual samples allows identification of patient 

104 subcategories a priori on the basis of well-defined molecular signatures (15).  As such, 

105 data from TCGA could potentially be utilized to obtain and evaluate molecular 

106 signatures.  To overcome limitations of existing tools to evaluate molecular signatures, 
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107 the Signature Visualization Tool (SaVanT) was previously developed as a web-based tool 

108 to visualize signatures in user-generated expression profiles (15).  SaVanT has been 

109 utilized to distinguish signature scores in patients with various conditions such as 

110 infections and leukemia, providing insight into immune response of various skin diseases 

111 (15).  By visualizing molecular signatures, SaVanT allows users to efficiently leverage 

112 pre-existing biological knowledge (such as from sources like TCGA) to interpret 

113 transcriptomic experiments (15). 

114

115 To our knowledge, no systematic study utilizing gene signatures to evaluate tumor 

116 inflammation in TCGA has been carried out. Therefore, in this study, we aimed to use 

117 SaVanT to evaluate molecular signatures obtained from TCGA to evaluate the 

118 relationship between clinical status and inflammatory responses across multiple cancer 

119 types. 

120
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121 Materials and Methods

122 Data collection 

123 In order to examine the role of inflammation in different cancer types, we sought to 

124 utilize a large-scale, systematically-processed dataset.  We chose to analyze data from 

125 TCGA.  All of the data has been processed with a uniform analysis pipeline, allowing for 

126 robust comparison across samples and tumor types. Gene expression data was retrieved 

127 from TCGA using their web-accessible data portal.  In order to ensure that the data was 

128 normalized, we used their Harmonized Data Portal to access the data and did not include 

129 any datasets processed independently from the harmonized data.  For all TCGA projects, 

130 we downloaded RNAseq data as normalized counts for all patients.  Individual files (one 

131 per patient) were combined into a single matrix per primary site. In order to focus the 

132 evaluation of our methods, seven different tumor primary types were chosen to be 

133 utilized for analysis with clinical metadata – pancreatic adenocarcinoma (PAAD), 

134 glioblastoma multiforme (GBM), cholangiocarcinoma (CHOL), kidney renal papillary 

135 cell carcinoma (KIRP), kidney chromophobe (KICH), adrenocortical carcinoma (ACC), 

136 and uveal melanoma (UVM). We chose these seven out of the thirty-four tumor primary 

137 sites on TCGA, to obtain a range of inflammatory states estimated based on our analyses 

138 described below. Four types of data were retrieved for each sample: gender, age at initial 

139 cancer diagnosis, cancer stage, and vital status. 

140

141 Quality control

142 All data retrieved from TCGA was inspected for consistency by making sure that all 

143 profiles contained the same number of genes and that patient data was not redundant or 
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144 duplicated.  Furthermore, the distribution of normalized counts was analyzed at both the 

145 patient level as well as primary tumor site to identify any outliers or issues with 

146 normalization.  Patient-level data was averaged to determine a single value for all genes 

147 per primary site.

148

149 Comparison to molecular signatures

150 Molecular signatures were taken from the repository MSigDB (28) and SaVanT (15).  

151 Several studies and efforts have sought to identify genes involved in inflammatory 

152 pathways (28-31).  Many of these projects have produced inflammatory signatures, which 

153 catalog the genes most important in several inflammatory states.  In order to determine 

154 the role of inflammation across the 7 cancer types in our analysis, we utilized the 

155 ‘hallmark inflammation’ signature from MSigDB (28), a repository of molecular 

156 signatures.  This signature includes 200 genes associated with acute and chronic 

157 inflammation responses, as well as elements of the TGF-β signaling cascade. 

158

159 Data and Statistical Analysis

160 Patient metadata was compared with the corresponding hallmark inflammatory response.  

161 Metadata and corresponding statistical tests were utilized as follows – Age (Pearson 

162 correlation), Stage (Anova Single Value), Sex (Anova Single Value), and Vital Status 

163 (Anova Single Value). Statistical significance was set at p < 0.05.  Utilizing this data, 

164 box-whisker plots were created for metadata and inflammatory response correlations that 

165 had significant P-values. 

166
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167 Results

168 Tumor Types

169 Hierarchical clustering was performed to group cancer subtypes by inflammatory 

170 signature scores, and the three subgroups were determined by the dendrogram structure 

171 resulting from the hierarchical clustering (Figure 1).  Of the tumor types evaluated in our 

172 study, we found that tumors in areas exposed to airways or gastrointestinal tracts, 

173 including pancreatic, lung and esophageal cancer, tended to be more inflammatory.  

174 Based on these results we selected seven tumor types with varying levels of inflammation 

175 for further analysis (Figure 2).  Of the 7 tumors chosen for analysis, the levels of 

176 inflammation in descending order are summarized in table 3. 

177

178 Figure 1: Using 6 inflammation signatures, we clustered cancer types into low, high and 

179 mixed inflammatory response. 

180 Figure 2: The seven chosen cancer types display heterogeneity in hallmark inflammatory 

181 response signatures.

182

183 Correlation of Metadata with Hallmark Inflammatory Response Signature Correlation 

184 Based on a statistical analysis of the metadata and its association with the hallmark 

185 inflammatory signature score, we were able to determine significant associations between 

186 inflammation and other clinical characteristics across specific primary cancers. Out of the 

187 7 primary cancers, 4 had statistically significant association (p-value < 0.05) with at least 

188 one of the clinical values that we tested (sex, vital status, age at initial diagnosis, and 
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189 tumor stage) as follows: pancreatic adenocarcinoma (PAAD), cholangiocarcinoma 

190 (CHOL), kidney chromophobe (KICH), and uveal melanoma (UVM). 

191

192 Pancreas Adenocarcinoma (PAAD) 

193 After associating the metadata of 182 patients with the hallmark inflammatory response 

194 signature in pancreatic adenocarcinoma samples, we found a significant association of the 

195 hallmark inflammatory response signature with sex (p = 0.0313) and tumor stage (p = 

196 0.0054) (Figure 3). Of all tumor stages, stage II showed the highest level of the Hallmark 

197 Inflammatory Response, and stage I the lowest.  There was a slightly higher level of 

198 inflammation in females than males. 

199

200 Figure 3: Pancreatic adenocarcinoma correlation of cancer stage with hallmark 

201 inflammatory response, p-value of 0.0054. Pancreatic adenocarcinoma correlation of sex 

202 with hallmark inflammatory response, p-value of 0.0313.

203

204 Cholangiocarcinoma (CHOL) 

205 We found a significant p-value of 0.0496 (Figure 4) for the association of 

206 cholangiocarcinoma inflammatory score in 45 patients with the vital status of patients, a 

207 clinical data element categorized under diagnosis on TCGA.  Patients who were alive at 

208 the time of diagnosis had higher levels of inflammation than patients whose biopsy was 

209 collected post mortem. 

210
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211  Figure 4: Cholangiocarcinoma correlation of vital status with hallmark inflammatory 

212 response, p-value of 0.0496.

213

214 Kidney Chromophobe (KICH) 

215 Using the signatures and metadata of 89 patients, we found a significant p-value = 0.0172 

216 (Figure 5) between tumor stage and the hallmark inflammatory response. Stage IV 

217 tumors showed the highest levels of inflammation, compared to the other 3 stages.  

218

219 Figure 5: Kidney chromophobe correlation of cancer stage with hallmark inflammatory 

220 response, p-value of 0.0172.

221

222 Uveal Melanoma (UVM) 

223 After associating the vital status with the hallmark inflammatory response signature 

224 correlation of 80 patients, we found a significant p-value of 0.0033 (Figure 6).  Overall, 

225 samples collected post mortem had higher levels of inflammation compared to those 

226 collected from living patients. 

227

228 Figure 6: Uveal melanoma correlation of vital status with hallmark inflammatory 

229 response, p-value of 0.0033.

230

231

232

233
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234 Discussion

235 Utilizing the TCGA database allows us to leverage the systematic profiling of thousands 

236 of tumors from individuals with different types of cancer.  The first aim in our study was 

237 to evaluate levels of inflammation across tumor types utilizing appropriate signature 

238 scores.  We used inflammation signatures to analyze the gene expression data ( “hallmark 

239 inflammation” (28-31).  These signatures allow us to classify the cancer subtypes at an 

240 immunological level, which is not possible with traditional classification schemes relying 

241 on histological data.  Such a classification technique allows us to examine individual 

242 pathways and signaling cascades, particularly those important in inflammatory responses.  

243

244 Once we compared the patient data to the inflammatory signatures, we found three 

245 distinct groups of cancers: (1) those with high inflammation, (2) those with low 

246 inflammation, and (3) those with both high and low levels of inflammation.  We found 

247 PAAD to be a member of the high inflammation group.  This grouping is supported by 

248 multiple studies associating pancreatic inflammation (pancreatitis) with the development 

249 of pancreatic cancer (25, 32).  One of the cancers we found to be in the low inflammation 

250 group was UVM.  Melanomas are associated with environmental insults, such as 

251 exposure to ultraviolet light.  As such, we expect that inflammation is not necessarily 

252 involved in the mechanism responsible for the development of skin cancer.  

253

254 We believe that the gene expression data for these tumor types is heterogeneous across 

255 individuals, with multiple subgroups of patients per type.  As such, the inflammatory 

256 signature presented in this first analysis is averaged across individuals, and that within 
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257 these broad categories there may be subgroups of patients with high inflammation and 

258 others with low inflammation.  This suggests that patients with these cancers could 

259 potentially benefit from further molecular subclassification.

260

261 In addition to correlating levels of inflammation with specific cancer types, we utilized 

262 clinical metadata from individuals with 7 different types of distinct tumors and associated 

263 this with molecular signatures derived from the web-based tool SaVanT.  Molecular 

264 signatures are gene collections with associated biological interpretations that can identify 

265 genes upregulated in specific sample subsets compared to broader groups (15).  

266 Signatures can be composed of genes associated with specific diseases.  By performing a 

267 comparison of metadata with molecular signatures, we sought to evaluate if there was 

268 significant correlation between these values. 

269

270 We found that four of the cancer types we evaluated (PAAD, CHOL, KICH, and UVM) 

271 had statistically significant associations between hallmark inflammatory response and at 

272 least one clinical variable. PAAD and KICH had a significant association with the 

273 patients’ stage of cancer at diagnosis, and CHOL and UVM had an association with vital 

274 status. Additionally, PAAD was significantly associated with sex. On average, females 

275 and individuals with stage II PAAD had the highest correlation between the clinical 

276 variable and hallmark inflammatory response. While for KICH, the highest average 

277 correlation was for individuals with stage IV cancer. Within each cancer type, alive 

278 individuals with CHOL and dead patients with UVM had the highest average correlation 
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279 with hallmark inflammatory response. However, the correlation for both alive and dead 

280 vital status individuals was higher for CHOL than UVM. 

281

282 Our results suggest that the use of molecular signatures in patients with cancer can 

283 provide valuable information.  The signatures provided by SaVanT supplement MSigDB 

284 while utilizing the depth and specificity of large expression studies to describe the 

285 biology pertaining to various cancers and cell types. Having this information available for 

286 patients with cancer diagnoses could provide a deeper understanding of a patient’s 

287 clinical status.  Furthermore, as there is marked heterogeneity even amongst specific 

288 organ-based tumors (Figure 2), molecular signatures could provide valuable information 

289 regarding the patient’s specific subtype of tumor.  

290

291 In future studies we aim to further evaluate inflammation in cancer.  Future studies could 

292 evaluate the relationship between additional tumor types with an expanded set of clinical 

293 variables.  While we have shown three distinct groups of cancer types relative to 

294 inflammation levels, we also believe these results can be improved and expanded.  For 

295 example, limiting the number of genes in the signatures or creating a cancer-specific 

296 inflammatory response panel of genes would produce a more cost-effective diagnostic 

297 test that could potentially be translated to the clinical setting.

298

299 In addition, although many cancer types fall into the high or low inflammation 

300 classifications, there are others with a mixed inflammation signal.  The ambiguity in this 

301 group of cancer subtypes could arise from several sources and correcting for these 
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302 sources may allow us to place these cancers into either the high- or low-inflammation 

303 group.  For example, the mixed signal could be due to the need to subclassify patients 

304 even further for a particular cancer type.  It is possible that some primary sites contain 

305 several populations of samples – such as those from a different biopsy type (i.e., blood or 

306 tumor sample).  Determining these subgroups within the primary types would allow them 

307 to be treated independently.

308

309 Finally, gene expression data is one of many biological layers potentially contributing to 

310 cancer.  Leveraging other levels of data, such as genome information, to identify 

311 mutations within tumors and patients would greatly assist in determining and developing 

312 therapies in a more personalized fashion for patients with different disease subtypes.

313

314 In summary, our study evaluated the association between inflammation signatures for 

315 different tumor types.  We found associations between levels of inflammation and tumor 

316 types, and also found statistically significant relationships between patient metadata and 

317 inflammation for four tumor types. We believe our results demonstrate potential clinical 

318 utility in the continued establishment of personalized medicine and care for cancer 

319 patients, while further establishing the utility of SaVanT as a clinical tool.
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445 Figures

446 Figure 1: Using 6 inflammation signatures, we clustered cancer types into low, high and 

447 mixed inflammatory response. 

448 Figure 2: The seven chosen cancer types display heterogeneity in hallmark inflammatory 

449 response signatures. 

450 Figure 3: Pancreatic adenocarcinoma correlation of cancer stage with hallmark 

451 inflammatory response, p-value of 0.0054. Pancreatic adenocarcinoma correlation of sex 

452 with hallmark inflammatory response, p-value of 0.0313.

453 Figure 4: Cholangiocarcinoma correlation of vital status with hallmark inflammatory 

454 response, p-value of 0.0496.

455 Figure 5: Kidney chromophobe correlation of cancer stage with hallmark inflammatory 

456 response, p-value of 0.0172.

457 Figure 6: Uveal melanoma correlation of vital status with hallmark inflammatory 

458 response, p-value of 0.0033.
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