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Abstract 

         Schizophrenia (SCZ) is a severe mental illness that is associated with an increased 

prevalence of age-related disability and morbidity compared to the general population. An 

accelerated aging process has therefore been hypothesized as a component of the SCZ 

disease trajectory. Here, we investigated differential aging using three DNA methylation 

(DNAm) clocks (i.e. Hannum, Horvath, Levine) in a multi-cohort SCZ whole blood sample 

consisting of 1,100 SCZ cases and 1,200 controls. It is known that all three DNAm clocks 

are highly predictive of chronological age and capture different features of biological aging. 

We found that blood-based DNAm aging is significantly altered in SCZ with age- and sex-

specific effects that differ between clocks and map to distinct chronological age windows. 

Most notably, the predicted phenotypic age (Levine clock) in female cases, starting at age 36 

and beyond, is 3.21 years older compared to matching control subjects (95% CI: 1.92-4.50, 

P=1.3e-06) explaining 7.7% of the variance in disease status. Female cases with high SCZ 

polygenic risk scores present the highest age acceleration in this age group with +7.03 years 

(95% CI: 3.87-10.18, P=1.7E-05). Since increased phenotypic age is associated with 

increased risk of all-cause mortality, our findings suggests that specific and identifiable 

patient groups are at increased mortality risk as measured by the Levine clock. These 

results provide new biological insights into the aging landscape of SCZ with age- and sex-

specific effects and warrant further investigations into the potential of DNAm clocks as 

clinical biomarkers that may help with disease management in schizophrenia.  
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Introduction 

Schizophrenia (SCZ) is a severe psychiatric disorder with significant impact on the 

individual, their family, and society. A substantial proportion of people diagnosed with SCZ 

has chronic symptoms and disability across their lifespan1–3. SCZ is associated with an 

increased mortality4–6 and a 15 year reduced life expectancy compared to the general 

population7. Despite elevated rates of suicide and other unnatural causes of death, most 

morbidity in SCZ is attributed to age-related diseases (e.g., cardiovascular and respiratory 

diseases, and diabetes mellitus8,9,5). The increased prevalence of age-related disabilities and 

morbidities suggests that biological aging may be accelerated in SCZ10,11. 

DNA methylation (DNAm) age predictors, or “epigenetic clocks”, are biomarkers of 

ageing that generate a highly accurate estimate of chronological age, known as DNAm 

age12–14. The  difference between (predicted) DNAm and chronological age (Δage) is 

associated with a wide-range of health and disease outcomes. For example, DNAm age 

acceleration in blood is associated with all-cause mortality15–18, socioeconomic adversity and 

smoking19, metabolic outcomes, such as body mass index and obesity20,21, and brain-related 

phenotypes, such as Parkinson's disease, posttraumatic stress disorder, insomnia, major 

depressive disorder, and bipolar disorder22–24,25,26. 

While different aging biomarkers have been studied, there is no clear demonstration 

of altered aging in SCZ11. More specifically, DNAm age predictors have found limited to no 

evidence for altered epigenetic aging in either brain or blood 27–31. These studies, however, 

(i) consisted of small sample sizes and thus limiting the ability to detect a biological signal, 

(ii) used a single epigenetic clock that may have not been most informative for aging studies 

of psychiatric disorders, and (iii) did not consider aging differences across the life-span of 

patients. As morbidities in the SCZ population differ between older and younger individuals, 

and females and males 5, analyses of both age- and sex-specific effects is warranted and 

could identify differential aging patterns nevertheless.    

 To investigate DNAm aging in SCZ, we used three independent DNAm age 

estimators; the Hannum13, Horvath12,32, and Levine clock14. Each clock is designed using 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 6, 2019. ; https://doi.org/10.1101/727859doi: bioRxiv preprint 

https://doi.org/10.1101/727859
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

different training features and capture distinct characteristics of aging12,32: the Hannum age 

predictor was trained on whole blood adult samples, the Horvath predictor was trained 

across 30 tissues and cell types across developmental stages, and the Levine predictor 

combines DNAm from adult blood samples with clinical blood-based measures. As the 

Levine estimator is trained on chronological age and nine clinical markers, its output is 

referred to as DNAm PhenoAge or “phenotypic age”. The Hannum estimator captures 

measures of cell extrinsic aging in blood, whereas the Horvath clock measures cell intrinsic 

aging as it was trained across multiple tissues and therefore is less dependent on cell type 

composition. All three clocks, in different but complementary ways, capture the pace of 

biological aging that is associated with age-related conditions and diseases, including all-

cause mortality14,32. 

Here, we used these clocks to investigate DNAm aging in SCZ using four European 

case-control cohorts. Analysis are performed across the full sample and stratified by age and 

sex. SCZ polygenic risk scores (PRS), age at onset, duration of illness, DNAm smoking 

scores, and blood cell type proportions were used to gain further insights into differential 

aging patterns. This study overall reports an in-depth investigation of the DNAm aging 

landscape in schizophrenia.  
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Material and Methods 

Cohort and sample description 

Details of samples included in this study can be found in the Supplementary 

Information. Briefly, unrelated individuals diagnosed with SCZ and ancestry-matched non-

psychiatric controls from four cohorts of European ancestry were included; the Netherlands 

(N=1,116), Scotland (N=847), Sweden (N=96), and the United Kingdom (N=675). Cases 

were selected on the basis of a clinical diagnosis of SCZ using the Diagnostic and Statistical 

Manual for Mental Disorders (DSM-IV), Research Diagnostic Criteria (RDC), or the 

International Classification of Diseases 10 (ICD10). Controls were unaffected subjects 

without a history of any major psychiatric disorder. Whole blood DNAm data was available 

for a total of 2,707 samples (1,399 cases and 1,308 controls;  (Table S1). 

       

Genome-wide DNA methylation profiling and data processing 

To quantify DNA methylation, DNA was extracted from whole blood and bisulfite 

converted for hybridization to the Illumina Infinium Human Methylation Beadchip. Samples 

were assayed with either the 27K or 450K beadchip, which contain 27,578 and 485,512 

probes that interrogate CpG sites across the genome, respectively. For each platform, data 

processing pipelines were implemented, which includes background correction, color 

channel and probe type correction, and normalization of the data, to minimize the effect of 

technical variation on the final beta values. Samples with more than 5% of probes detected 

at P > 0.05 were excluded from further analyses (n=13). Full details are described in the 

supplementary methods. 

  

DNAm-based estimation of biological age 

To compute blood-based DNAm age estimates, processed beta values were used as 

input to the Hannum13, Horvath12, and Levine14 DNAm clock. These DNAm age estimators 

use a set of CpGs that are selected via an optimization algorithm to collectively minimize the 

error associated with estimating chronological age (Supplementary Information). Horvath 
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DNAm age estimates were calculated using R scripts from the Horvath DNA Methylation 

Calculator (https://dnamage.genetics.ucla.edu)12. Hannum and Levine estimates were 

obtained by using the reported set of probes with corresponding regression weights. We 

define Δage by subtracting chronological age at the time of the blood draw from the 

predicted DNAm age. 

  

Statistical analyses 

To investigate epigenetic aging differences in SCZ, we first removed samples with 

discrepant phenotypic sex and predicted sex based on DNAm data (n=9),  as well as 

samples with missing chronological age data (n=237), bipolar disorder diagnosis (n=26), and 

duplicate samples (n=126). For each epigenetic clock, we regressed Δage on technical 

principal components (PCs), using the first components that cumulatively explain >90% of 

variation in intensity values of control probes, and added the residuals to mean(Δage) to 

generate a measure in the same units as Δage that is adjusted for technical variation (Δage-

adjusted). We used the adjusted value for subsequent analyses and refer to it as Δage. 

To avoid skewing of chronological age distribution between groups33, we removed 

any case older than the oldest control subject in each cohort (n = 5 for NLD, 16 for SCT, 4 

for SWD, and 1 for UK). Chronological age was furthermore included as a covariate in all 

analyses. To minimize the effect of outlying samples, we excluded samples >3SD from 

mean Δage across cohorts (ranging from n=13 to 16 for the three clocks). These are 

samples for which DNAm age diverged substantially from chronological age, which are likely 

artifacts. 

For each clock and each cohort, we implemented a multivariable regression model 

predicting Δage as a function of schizophrenia status, sex, and age. For the Dutch cohort, 

batch and array platform were also included as covariates, as this cohort consists of multiple 

datasets. For each clock, regression coefficients with corresponding standard errors for each 

of the four cohorts were then supplied to the rma() function of the metafor package34 in R to 

fit a meta-analytic fixed-effect model with inverse-variance weights and obtain an overall 
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effect size and test statistic. To quantify the significance of age- and sex-specific effects, we 

determined the contribution of interaction effects on top of the main disease effect. We first 

combined all cohorts to maintain necessary sample sizes across age and sex groups. Age 

groups were defined by grouping samples by decades with ages 18 and 19 included in the 

first decade (18-30, 31-40, etc.). To quantify the gain in variance explained in Δage, models 

with the interaction term were compared to a baseline model without the interaction term. 

For each analysis, statistical significance was determined using Bonferroni correction, i.e. P 

< 0.05 / number of tests.  

  

SCZ polygenic risk quantification 

     Polygenic risk scores (PRS) were obtained from analyses of the SCZ GWAS 

conducted by Psychiatric Genomics Consortium (PGC)35. Using a leave one out approach, 

weights were generated in a training dataset based on all samples minus the target cohort in 

which the PRS were calculated. For each individual, weighted single nucleotide 

polymorphisms (SNPs) were summed to a genetic risk score that represents a quantitative 

and normally distributed measure of SNP-based SCZ genetic risk. To reduce between 

cohort-variation and maximize statistical power, we used a previously developed analytical 

strategy that uses principal component analysis (PCA) to concentrate disease risk across 

PRSs of ten GWAS p-value thresholds into the first principal component (PRS1)36 

(Supplementary Information). PRS1 explains 70.7% of the variance in risk scores and 19.9% 

of the variance in SCZ status; the remaining PCs had no explanatory value in disease status 

(mean R2 = 0.0%), indicating that PRS1 captures the majority of SNP-based SCZ polygenic 

risk. PRS1 was generated for 1,933 individuals, 853 cases and 1080 controls, and modeled 

as both a quantitative and categorical variable to predict Δage. 

  

Defining age at onset and illness duration 

Age at onset is defined as the earliest reported age of psychotic symptoms or by the 

Operational Criteria Checklist (OPCRIT), depending on the cohort. This data is available for 
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a subset of cases (N = 710) across the Dutch, Scottish, and UK cohorts. Illness duration is 

defined as the time between age at onset and blood collection. A more detailed description 

of each cohort’s definition is available in the Supplementary Information. 

  

DNA methylation-based smoking scores and blood cell type proportions 

Smoking scores and blood cell type proportions were estimated from the data (see 

Supplementary Methods) and used as a proxy to further decompose differential aging 

effects. 

  

Estimating the contribution of differential aging in schizophrenia 

     Using a multivariable logistic regression model for disease status, we fitted batch, 

cohort, DNAm smoking score, DNAm blood cell type proportions, and Δage as explanatory 

variables. We first performed a variable reduction step to select the most contributing 

variables to disease status by use of a regularized logistic regression using the glmnet() 

function in R (“glmnet” package, v2.13)37. Alpha was set to “1” (Lasso) and the lambda 

parameter estimated at the optimal value that minimizes the cross-validation prediction error 

rate using the cv.glmnet() function. For each selected variable, we then report the variance 

explained in SCZ status (glm, family = ”binomial”) for both the individual variable as well as 

adjusted for all other selected variables using the NagelkerkeR2() function in the “fmsb” 

package (v 0.6.3). The significance of each variable their contribution was computed by 

comparing the model with and without the variable of interest using the likelihood ratio test of 

the anova() function. 

 

 Availability of data and materials 

     The datasets used are available on the NCBI Gene Expression Omnibus (GEO) data 

repository, the European Genome-phenome Archive (EGA), or via the principal investigator 

of each cohort. See Table S2 and S3 for an overview and corresponding accession series 

numbers. See Table S4 for sample information, including DNAm age estimates. 
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Results 

         Figure 1 shows a schematic overview of the study design and analysis framework 

used to investigate DNAm aging in SCZ. After data preprocessing and quality control, 1,090 

SCZ cases and 1,206 controls (2,296 subjects of 2,707 initial samples) were included in our 

analysis. The overall sample has a mean age of 40.3 years (SD=14.4) and consists of 

34.5% women (Table S1 and Figure S1). 

  

[FIGURE 1 ABOUT HERE -  SCHEMATIC OVERVIEW OF STUDY DESIGN] 

  

Across cohorts, all three clocks produce a high correlation with chronological age 

(Pearson’s r = 0.92-0.94; Figure 2A and S2). Using duplicates in the Dutch cohort, we 

assessed consistency between pairs of technical replicates, i.e. samples for which blood 

was collected at the same time but DNA processed at different times and DNAm data 

obtained on different arrays. Comparing Δage estimates between these pairs, we find a 

significant correlation for each clock (Figure S3); Hannum (rho = 0.79, n = 10), Horvath (rho 

= 0.53, n=118),  Levine (rho = 0.67, n=118). Δage directionality (i.e. age deceleration or 

acceleration) is concordant in 90%, 73%, and 86% of pairs for Hannum, Horvath, and 

Levine, respectively, highlighting that the obtained estimates of DNAm age are reproducible 

for all three clocks. Comparing Δage estimates between clocks using all samples, we find a 

moderate concordance (Pearson’s r = 0.39-0.43; Figure S4), demonstrating that a significant 

proportion of the variation in Δage is clock-specific. This indicates that these estimators 

capture different features of biological aging and that investigating all three epigenetic clocks 

simultaneously may thus yield broader insights into differential aging. 

  

[FIGURE 2 ABOUT HERE] 

  

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 6, 2019. ; https://doi.org/10.1101/727859doi: bioRxiv preprint 

https://doi.org/10.1101/727859
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

DNA methylation age is altered in an age-dependent manner 

Across the full sample, SCZ cases are on average 1.53 years older in phenotypic 

Δage (Levine clock) compared to controls (Pmeta= 3.45E-08) (Figure 2B). The intrinsic cellular 

age (Horvath) predictor revealed an opposite pattern, with SCZ cases appearing 0.47 years 

younger compared to controls (Pmeta= 0.06). No differences were observed between cases 

and controls when applying the blood-based Hannum DNAm age predictor. No evidence of 

heterogeneity between the four cohorts was observed for any of the DNAm age analyses 

(Phet > 0.05, Tables S5-S8). 

Modeling the interaction effect between disease status and chronological age on 

Δage reveals a differential rate of aging between cases and controls (Figure 2C). That is, the 

slope of Δage across chronological age is 0.05 and 0.06 years steeper in cases compared to 

controls for the Horvath (Pmeta=2.3E-03) and Levine clocks (Pmeta=7.1E-03), respectively 

(Figure S5 and Table S6). As no significant effects were observed for the Hannum Δage, we 

decided to focus our downstream analysis on the phenotypic (Levine) age and intrinsic 

cellular (Horvath) age only. To further disentangle the relationship between Δage in SCZ 

conditional on chronological age, we estimated differential aging by 10 year intervals, with 

years 18 and 19 included in the first age group. We observe significant DNAm age 

deceleration in early adulthood (18-30 years) with cases estimated at -1.23 years younger 

(Pmeta=3.9E-03) in intrinsic cellular age with no significant difference at later ages (Figure 3). 

In phenotypic age, SCZ cases displayed significant DNAm age acceleration from 30 years 

and older, with the most pronounced age acceleration between 50-60 years (2.29 years, 

Pmeta=9.0E-03). We find no evidence of heterogeneity between cohorts (Figure S6 and Table 

S7-8).   

  

[ FIGURE 3 ABOUT HERE ] 
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Age- and sex-specific effects contribute independently to DNAm aging 

         To quantify the contribution of age- and also sex-specific effects, we estimated the 

gain in variance explained of Δage by adding the interaction terms of age and sex with 

disease status to a baseline model and assesed the gain in model performance (Table 1 and 

S9). For intrinsic cellular aging, the baseline model explains 4.0% of the variance of Horvath 

Δage. The variance explained increases significantly to 5.5% and 5.9% when a two-way 

interaction between status and (categorical) age and a three-way interaction between status, 

age, and sex is added, respectively. For phenotypic age, the baseline model explains 3.2% 

of the variance of Levine Δage. Similarly, the variance-explained of the Levine Δage 

signifcantly increases to 3.9% and 4.7%, respectively, with the interaction terms added to the 

model. For both measures of aging, inclusion of interaction terms presented a significantly 

better fit, especially with the three-way interaction model (i.e. disease status, categorical age 

and biological sex). We do observe a larger gain in model fit for the three-way interaction for 

phenotypic aging (P=0.01) than for intrinsic cellular aging (P=0.24), suggesting that sex-

specific effects may be less pronounced for Horvath Δage.  

  

[ TABLE 1 ABOUT HERE ] 

  

Estimating and mapping windows of differential aging in schizophrenia 

In order to refine the age-dependent aging effects and decompose its effect to more 

specific age windows, we implemented a sliding window approach across chronological age, 

both in the full sample and within each sex separately. Using 5-year bins and sliding steps of 

1 year, we tested cases versus age-matched controls and constructed a more precise 

picture of differential aging across chronological age in SCZ (Figure 4). We mapped changes 

in Δage to specific ages with different patterns between men and women. For intrinsic 

cellular age, we observe a deceleration effect during early adulthood from 29 years and 

younger across all samples, with the shift in differential aging occurring earlier in women 

(<25) (Figure 4B). While we previously did not observe differences in intrinsic cellular aging 
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across other categorical age groups (Figure 3 and S7), the higher resolution, sliding window 

analysis reveals additional disease effects. For both men and women, we observe age 

deceleration in mid-forties and for women we also find age acceleration between 50-56 

years (Figure 4A-C). 

For phenotypic age, we mapped the age acceleration effect to 27 years and older 

across the whole sample with male / female differences (Figure 4D-F). In women, we 

observe age acceleration between 25-29 years and from 36 years and older (Figure 4E). In 

men, we see age acceleration between 27-39 and 49-59 years (Figure 4F). More details on 

each age window and corresponding effect sizes are shown in Table S10. Thus far, our 

results show that DNAm aging, measured through the Horvath and Levine clock, is 

significantly different in SCZ and that this overall effect is characterized by age-specific 

effects with some distinctions between the sexes, particularly for Levine Δage. 

  

[ FIGURE 4 ABOUT HERE ] 

  

Age deceleration by multi-tissue Horvath clock is not present in brain 

         In order to examine whether the blood DNAm age findings are also observed in the 

brain, we investigated DNAm aging in frontal cortex postmortem brain samples of 221 SCZ 

cases and 278 controls. The multi-tissue Horvath clock accurately predicts DNAm age in 

brain as well (r=0.94, P < 2.2e-16). We however find no difference in DNAm aging between 

cases and controls (ß=-0.29, P=0.46) and no evidence of age-dependent aging either. More 

details are shown in the Supplementary Results (S2.1). 

 

Phenotypic age acceleration is associated with SCZ polygenic risk in women 

     To further decipher the factors underlying the signal of differential aging in SCZ, we 

examined the possible role of SCZ polygenic risk (PRS1), age at onset, and illness duration 

(Figure S8). We first focus on the phenotypic age acceleration in female cases of age 36 

years and older, the age range which we identified as showing the most consistent and 
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significant aging effect. We find stronger age acceleration in cases with both low and high 

SCZ genetic risk (Table 2). Cases in the highest PRS1 tertile are predicted to be 4.30 years 

older in phenotypic age compared to controls (P=1.3E-05), cases with median range PRS 

are 1.89 years older (P=4.5E-02), and cases in the lowest quartile are 2.89 years older 

(P=2.8E-03). By permutation of PRS1 groups, we find that the observed effect in female 

cases in the highest PRS1 group is unlikely to occur by chance (P=0.024). For the 

association between Levine Δage and PRS1 to be most pronounced in the low and high 

group, is even less likely to happen by chance (P=0.006). At maximum, this group of women 

carrying high SCZ genetic risk have on average 7.03 higher phenotypic Δage (95% CI: 3.87-

10.18; P=1.7E-05) (Figure 5A). We do not observe such an association in women age < 36 

years, men with age > 36 years, nor across the whole dataset (Figure S9). For age at onset 

and illness duration, we did not find significant association with Δage across partitioned bins 

(after permutation, P > 0.05) (Table 2). This is further confirmed when we integrated these 

two variables across PRS1 tertiles, demonstrating that the most pronounced differences in 

Δage are observed across PRS1 bins and not across the distribution of age at onset and 

illness duration (Figure 5B-C). 

  

[ TABLE 2 ABOUT HERE ] 

  

We conducted a similar investigation on the observed intrinsic cellular age 

deceleration in all SCZ cases age 29 years and younger but found no significant 

associations between Horvath Δage and PRS1, age at onset, or illness duration (Table S11 

and Figure S10). While we did observe the strongest Horvath age deceleration in the high 

PRS1 tertile (β=-1.58, P=3.0E-03), this was not significant after permutation analysis 

(P>0.05). We did not analyze other identified age windows of differential aging as these 

either had too few individuals with genetic or phenotypic information available or more 

modest disease effects limiting any further stratification. 
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[ FIGURE 5 ABOUT HERE ] 

  

DNAm aging affects SCZ above and beyond smoking and blood cell types 

People suffering from SCZ smoke more than the general population38 (Figure 5A) 

and blood cell type composition changes across the lifespan39 (Figure 5B). To investigate 

the effect of these factors, we use DNAm-based smoking and cell type estimations (see 

Methods) as a proxy to evaluate their contribution to DNAm aging in SCZ. While DNAm 

clocks, by design, will encapsulate such effects, quantifying the contributions of each factor 

increases interpretability and helps understand the factors contributing to the differential 

aging findings. In women age 36 and older, the patient group in which we observed the most 

profound aging effects, a regularized logistic regression selected dataset/ethnicity, smoking, 

5 cell types, and Levine Δage to explain a total of 23.6% of the variance in SCZ disease 

status (P=2.2E-08) (Table S12). Levine Δage explains 7.7% individually and 2.8% (P=3.3E-

03) when adjusted for other selected variables (Figure 6C).  

In individuals 29 years and younger, the group with the significant deceleration aging 

effects, the lasso regression selected batch/ethnicity, age, sex, smoking, 7 cell types, and 

Horvath Δage, which together explain 49.8% of the variance in disease status (Table S12). A 

large proportion of this effect is driven by smoking, which explains 28.8%. Horvath Δage 

explains 3.1% of the variance in SCZ individually and 0.6% adjusted for other select 

variables (P=0.14). A significant proportion of the Horvath Δage effect on disease status is 

reduced by adjusting for smoking. However, smoking has no association with Horvath Δage 

in controls (Pearson r=0.01, P=0.95) nor in cases (Pearson r=-0.08, P=0.28) (Figure S12). 

As smoking is confounded with SCZ disease status, it is difficult to distinguish these signals. 

In relation to SCZ genetic risk, smoking and blood cell types demonstrate limited effects on 

the observed pattern of differential aging across PRS1 (Figure S13). 

  

[ FIGURE 6 ABOUT HERE ] 
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Discussion 

We performed one of the largest aging and epigenetic studies in schizophrenia to 

date using multiple epigenetic clocks based on whole blood DNA methylation data. We 

observe significant patterns of sex-specific and age-dependent DNAm aging in SCZ, a 

finding consistent across four European cohorts. The most significant differential aging 

pattern that we observe is in females ages 36 years and older in which we detect advanced 

phenotypic age acceleration, as measured by the Levine clock, explaining 7.7% of the 

variance in disease status. We also observe intrinsic cellular age deceleration in SCZ during 

early adulthood, as measured by the Horvath clock, explaining 3.1% of the variance in 

disease status. The phenotypic age acceleration in females diagnosed with SCZ is 

associated with a high burden of SCZ polygenic risk. This high SCZ risk group displays 

accelerated aging of an average of 7 years compared to age-matched female controls. Our 

findings suggests that specific and identifiable patient groups are at increased mortality risk 

as measured by the Levine clock. 

The Levine estimator was constructed by predicting a surrogate measure of 

phenotypic age, which is a weighted average of 10 clinical markers, including chronological 

age, albumin, creatinine, glucose and C-reactive protein levels, alkaline phosphatase and 

various blood cell related measures14. By design, the Levine estimator is a composite 

biomarker that strongly predicts mortality, in particular that of cardiovascular-related 

phenotypes. A 1-year increase in Levine DNAm age is associated with a 9% increased risk 

of all-cause mortality and a 10% and 20% increase of cardiovascular disease and diabetes 

mortality risk, respectively14,40. Our findings of multiple year increase in Levine DNAm age in 

SCZ could thus imply an increased mortality in these individuals that is linked to disease, a 

previously well-established epidemiological observation4–6. A recent study however found 

that DNAm age acceleration only predicts mortality in SCZ cases without pre-existing cancer 

using the Hannum clock41. They did not find such evidence using the Levine clock. The 

smaller sample size and predominantly male cohort may have reduced the predictive power 

of the study. Our findings warrant a more focused and larger study of DNAm aging in 
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females in later adulthood, preferably stratified by SCZ genetic risk. Our results align well 

with the observation that people diagnosed with SCZ, particularly women, are reported to be 

at high mortality risk due to cardiovascular disease and diabetes5,42,43. Assuming that 

cardiovascular risk is modifiable in SCZ44, Levine DNAm age could serve as a potential 

biomarker to identify at-risk individuals and in this way help with disease management and 

improvement of life expectancy. 

In contrast to age acceleration in Levine DNAm age, we observe age deceleration in 

intrinsic cellular age (i.e. the Horvath DNAm age), an effect that is most pronounced in cases 

age 29 and younger. Unlike the association in females, we did not observe clear patterns 

with genetic and phenotypic variables that could help deconstruct the signal. Horvath Δage 

furthermore showed strong age-specific effects but less clear sex-specific effects. We did not 

observe age deceleration in postmortem brain samples of the human cortex, indicating the 

the observe signal may be blood-specific. Horvath DNAm aging has been shown to 

associate with molecular processes of development and cell differentiation12,32, including 

human (neuro)developmental phenotypes45,46. Our findings may indicate that individuals 

diagnosed with SCZ in this age group show evidence of delayed or deficient development 

and that this is detectable in blood through the multi-tissue Horvath clock. This however 

remains speculative and future work is needed to further dissect how blood-based Horvath 

age deceleration is associated with SCZ. 

While we did observe aging effects with the Horvath and Levine clock, we did not 

with the Hannum clock. The Hannum clock is less predictive of age acceleration effects on 

mortality risk than the Levine clock14, which could explain the lack of findings in our 

analyses. The Hannum estimator furthermore cannot be used on first generation 27K DNA 

methylation arrays which reduced the sample size of this study with 30% and may have 

impacted the statistical power of these specific analyses. This highlights the benefits of 

designing methods that are inclusive to all platforms, so all data, both old and new, can be 

leveraged. 
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Previous studies that investigated DNAm aging in SCZ did not observe significant 

differential aging 27–31, highlighting that sample size and/or explicit modeling of age- and sex-

dependent effects are crucial factors when investigating aging in SCZ. Our findings also 

demonstrate that analyzing these clocks simultaneously can reveal new insights that may 

otherwise be missed. A systematic review of aging biomarkers found that less than a quarter 

of studies explored an interaction effect or statistically compared the regression slope 

between groups in SCZ11. Our findings support their recommendations to specifically 

examine age-specific effects in aging studies but also more general in epigenetic studies of 

SCZ, such as epigenome-wide association studies. Future work should also be extended to 

integrate nonlinear models to fully capture the complex relationship between DNAm aging 

and clinically relevant variables across the lifespan. These models will help validate and 

further refine the most relevant age intervals. 

A limitation of the study is the cross-sectional design of the cohorts used. While we 

do find an association with SCZ polygenic risk, dissecting cause-and-effect relationships 

remains challenging. Large-scale longitudinal prospective cohorts with detailed clinical and 

genomic information are needed to further examine differential aging in SCZ and assess its 

clinical relevance above and beyond other known health risk factors and disease 

biomarkers, such as medication use. In addition, improvement of existing and/or 

development of new DNAm age biomarkers may help to better study differential aging in 

SCZ and related disorders with increased mortality. Combining blood-based DNAm age with 

that of other aging profiles, such as MRI-based brain age47, may further advance our 

understanding of aging and SCZ disease progression, including the increased mortality48. 

Schizophrenia is a debilitating disorder that is associated with severe and oftentimes 

chronic disability. While health and life expectancy of the general population continues to 

improve, the mortality disparity between people suffering from schizophrenia and those 

unaffected continues to increase in the United States and the UK8,9,42. This highlights the 

importance of studies on improving the health and longevity of people with schizophrenia 

and other severe mental illnesses. Molecular biomarkers of aging, such as DNAm clocks, 
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are emerging as candidate tools for screening and intervention. Our findings provide 

evidence of its potential in clinical care of SCZ. This study strengthens the need for future 

large-scale epidemiological studies of DNA methylation aging in SCZ, a population 

vulnerable to age-related diseases and excess mortality. 
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Figure 1. Overview of study design and analysis framework. DNA methylation (DNAm) data was 
available for a total of 2,735 samples across four European cohorts. See Table S2 for more details on 
samples. DNAm age estimates were generated using three DNAm clocks, each designed to capture 
different features of aging (box 2). To investigate differences in aging between cases and controls, Δage 
was computed (box 3) and analyzed according to the step-wise framework shown in box 4. SCZ = 
schizophrenia, NLD=Netherlands, SCT=Scotland, SWD=Sweden, UK=United Kingdom, PRS=polygenic 
risk scores.
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Figure 2. DNA methylation aging is altered in schizophrenia and conditional on chronological age. Presented are 
results visualizing DNAm aging in SCZ for each clock; Hannum (left), Horvath (middle), Levine (right). Cases are shown in 
blue and controls in black. (A) The correlation between DNAm age and chronological age. The Pearson’s correlation 
estimate and corresponding p-value are shown in the bottom corner. (B) Boxplots of Δage between cases and controls 
with the meta-analytic effect size and p-value across cohorts shown. β represents the mean change in Δage in cases 
compared to controls. (C) Δage is visualized across chronological age with a regression line fitted separately for cases and 
controls and the meta-analytic interaction effect and p-value shown. β represents the change in Δage in cases per year of 
chronological age compared to controls. P-values are adjusted for multiple testing across clocks (n=3).
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Levine clock

Figure 3. Differential DNAm aging rates across age groups. Shown are 
Δage differences between cases and controls across age groups for the 
Horvath (top) and Levine clock (bottom). For each age group, number of 
cases and controls, and meta-analytic effect size (β) and p-value (P) are 
presented. P-values are corrected for multiple testing (2 clocks x 5 groups 
= 10 tests). See Table S5 for more details on results and corresponding 
statistics.
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Figure 4. Differential aging in schizophrenia maps to specific age windows. Sliding age-windows, using 
5-year bins with steps of 1-year, were used to estimate differential aging (β) at finer resolution across the 
range of chronological age. Significant shifts in Δage between cases and controls, defined by the standard 
error of β deviating from zero for at least 3 steps, are highlighted by the dotted vertical lines at their 
respective ages. Identified age intervals for the Horvath and Levine clock are shown in A-C and D-F, 
respectively. Results for women (middle) and men (right) are presented in blue and red, respectively. The 
effects in the total sample are displayed in black (left).
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Figure 5. Integration of DNAm aging with PRS, age of presentation, and illness duration across 
identified age intervals in women >36. (A) Using a sliding-window approach, Levine Δage difference 
between cases and controls are shown across bins of ranked PRS1. Each bin contains 20 cases and slides 
from low to high PRS1 per shifts of one sample. The estimated Δage difference compared to all female 
controls >36 years is shown for each sliding bin in blue with the standard error in shaded blue. The most 
significant bin is highlighted by the grey vertical bar. (B ) DNAm aging effects stratified by PRS1 and age of 
onset. (C) DNAm aging effects stratified by PRS1 and illness duration.
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A B

C Levine Δage: women > 36 years

Figure 6. Smoking and blood cell type composition contribute in part to DNAm aging. Presented are 
the results of a sensitivity analysis of DNAm-based estimated smoking score and blood cell type 
proportions in the 450K subsample of the cohort. (A) A box plot of the estimated smoking scores 
between cases and controls. (B) The mean of standardized blood cell type proportions plotted across 
chronological age in controls only (n=906). (C and D) The proportion of schizophrenia variance explained 
by Δage after adjustment of various variables that are significantly associated with disease status. The 
“All” model presents the variance explained by Δage independent from all other variables. The baseline 
model represents the effect of Δage adjusted for batch, ethnicity and chronological age. Results are 
shown for Levine Δage women > 36 years, 99 cases and 181 controls (C) and Horvath Δage all samples < 
29 years, 141 cases and 238 controls (D) separately. 

Horvath Δage: all samples <29 yearsD
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Horvath Δage Levine Δage

Model variables Model comparison Δage  R² P-value Δage  R² P-value

Model 0: baseline - 3.6% - 2.1% -

Model 1: + status Model 0 vs 1 4.0% 6.6E-03 3.2% 4.4E-06

Model 2: + status*age.continuous Model 1 vs 2 4.3% 0.08 3.7% 3.5E-03

Model 3: + status*age.groups Model 1 vs 3 5.5% 1.4E-05 3.9% 0.02

Model 4: + status*age.groups*sex Model 3 vs 4 5.9% 0.24 4.7% 0.01

Table 1. Age- and sex-specific effects significantly contribute to DNAm aging in schizophrenia. Shown are the contributions 
of interaction effects between disease status and age and sex on Δage. The baseline model corresponds to Δage ~ dataset + 
ethnicity + platform + age.continuous + sex. For other models, the variable(s) in addition to the baseline variables are shown with 
the corresponding variance explained (R²) in Δage. Interaction terms with chronological age are modeled as a continuous variable 
(age.continuous) or a categorical variable (age.groups). The latter uses previously defined decades. Model comparison is 
performed to assess if the contribution of an interaction term is significant compared to a model without that term. The chi-square 
test is used to test two models with corresponding p-value presented. The results of these analysis are shown for both the 
Horvath and Levine clock. P-values are corrected for the number of tests performed (2 clocks x 4 comparisons = 8).
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Women: >36 Controls Cases Mean value  
in cases

β  
(Levine Δage) 95% CI P

Polygenic risk

All - no stratification 227 149 0.35 3.02 1.76 — 4.27 3.1E-06

PRS1 - continuous - 149 0.35 0.42 -0.37 — 1.21 3E-01

PRS1 - low 227 50 -0.68 2.89 1.00 — 4.77 2.8E-03

PRS1 - mid 227 50 0.34 1.89 0.05 — 3.73 4.5E-02

PRS1 - high 227 49 1.40 4.30 2.40— 6.20 1.3E-05*

Age of onset

All - no stratification 227 111 26.50 3.73 2.34 — 5.12 2.3E-07

AOO - continuous - 111 26.5 -0.08 -0.21 — 0.05 2.2E-01

AOO - early 227 37 17.43 3.26 1.11 — 5.41 3.1E-03

AOO - mid 227 37 25.43 3.70 1.58 — 5.81 6.7E-04

AOO - late 227 37 36.62 4.24 2.09 — 6.40 1.3E-04

Illness duration

All - no stratification 227 111 23.37 3.73 2.34 — 5.12 2.3E-07

DUR - continuous - 111 23.37 0.03 -0.07 — 0.13 6.1E-01

DUR - short 227 37 10.76 3.90 1.76 — 6.03 3.9E-04

DUR - mid 227 37 23.33 2.91 0.78 — 5.05 7.7E-03

DUR - long 227 37 36.01 4.39 2.25 — 6.53 7.3E-05

Table 2. Integration of Levine Δage with PRS, age of onset, and illness duration in women in later adulthod. Analyses were 
performed using women >36 years of age. Only cases with available information were included in the analyses. Each phenotype was 
analyzed as both a continuous variable and as a categorical variable using equal tertiles from low to high bins. Mean values in cases 
for each phenotype are presented along with the association with Δage (β) and corresponding 95% confidence intervals and p-values. 
PRS1 = polygenic risk score PC1 (see Supplementary Information) scaled to mean zero with standard deviation of 1, AOO = age of 
onset, DUR = illness duration. Asterisk* indicates that significance (P < 0.05) by permutation analyses. 
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