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Abstract 
 

Both genetic and non-genetic factors can predispose individuals to cardiovascular risk. 

Finding ways to alter these predispositions is important for cardiovascular disease 

(CVD) prevention. Here, we use a novel whole-genome framework to estimate genetic 

and non-genetic effects on—hence their predispositions to—cardiovascular risk and 

determine whether they vary with respect to lifestyle factors. We performed analyses 

on the Atherosclerosis Risk in Communities Study (ARIC, N=6,896-7,180) and 

validated findings using the UK Biobank (UKBB, N=14,076-34,538). Cardiovascular 

risk was measured using 23 traits in the ARIC and eight traits in the UKBB, such as 

body mass index (BMI), resting heart rate, white blood cell count and blood pressure; 

and lifestyle factors included information on physical activity, smoking, alcohol 

consumption and dietary intake. Physical activity altered both genetic and non-genetic 

effects on heart rate and BMI, genetic effects on HDL cholesterol level, and non-

genetic effects on waist-to-hip ratio. Alcohol consumption altered both genetic and 

non-genetic effects on BMI, while smoking altered non-genetic effects on heart rate, 

pulse pressure, and white blood cell count. In addition, saturated fat intake modified 

genetic effects on BMI, and total daily energy intake modified non-genetic effects on 

waist-to-hip ratio. These results highlight the relevance of lifestyle changes for CVD 

prevention. We also stratified individuals according to their genetic predispositions and 

showed notable differences in the effects of lifestyle on cardiovascular risk across 

stratified groups, implying the need for individualizing lifestyle changes for CVD 

prevention. Finally, we showed that neglecting lifestyle modulation of genetic and non-

genetic effects will on average reduce SNP heritability estimates of cardiovascular 

traits by a small yet significant amount, primarily owing to overestimation of residual 

variance. Thus, current SNP heritability estimates for cardiovascular traits, which 

commonly do not consider modulating effects of lifestyle covariates, are likely 

underestimated. 
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Introduction 
 

Cardiovascular diseases (CVD) are the world’s number one cause of mortality, 

claiming an estimated total of 17.7 million lives globally in the year 2015 alone—that 

is 31% of total deaths in just a single year1. Managing CVD risk is therefore a top 

public health priority worldwide. It is estimated that between 20% to 60% phenotypic 

variability in CVD related traits such as blood pressure and blood clotting factors are 

due to additive genetic variation (see 2,3-6); and the remaining 40% to 80%, commonly 

referred to as residual variation, could arise from random measurement errors and 

systematic non-genetic variation in the epigenome, transcriptome, metabolome, 

proteome and microbiome, which are involved in or interact with the translation of 

genotype to phenotype. 

 

Given the substantial genetic and non-genetic contributions to CVD risk, identifying 

ways that modify their effects can have important implications for CVD prevention. In 

fact, the idea of Genotype-Environment or Genotype-Covariate (G-C) interaction is 

well established for traits such as BMI7-9. That is, genetic effects vary depending on 

environmental exposure, such as modifiable lifestyle covariates including smoking, 

alcohol intake and physical activity. Much like G-C interaction to genetic variance, we 

recently demonstrated that some non-genetic variance component can exist that 

changes with respect to lifestyle covariates, which we termed Residual-Covariate (R-

C) interaction10, i.e., phenotypic variation with respect to lifestyle covariates that is 

independent of genetic effects. 

 

Understanding G-C and R-C interactions in the context of cardiovascular traits will not 

only translate into empowering public messages but also enable personalized lifestyle 

changes for CVD prevention according to individuals’ genetic and non-genetic 

information, as opposed to a one-fits-all approach that neglects individual differences. 

Aside from its practical implications, studying G-C and R-C interactions is also of 

theoretical value as it may offer some insight into missing heritability11,12. 

 

To date, G-C interaction estimates for cardiovascular traits are based on a limited 

number of genetic variants13-20; therefore they are likely underestimated. R-C 

interaction has been largely neglected, leading to potential confounding between G-C 

and R-C interactions, in the presence of genuine R-C interaction10. Here, using a novel 

whole-genome approach10, we extend the current understanding of G-C and R-C 

interactions on cardiovascular health. Instead of focusing on genetic variants with 

large phenotypic effects, our approach uses all common Single Nucleotide 

Polymorphisms (SNPs) capturing variation across the entire genome, thereby 

providing genome-wide estimates of G-C interaction. Further, our approach allows 

residual variance to vary with respect to a chosen covariate, thereby providing 

estimates of R-C interaction. By examining G-C and R-C interactions, we aim to 

identify lifestyle factors that modify genetic and/or non-genetic effects on traits that are 

indicative of CVD risk. 
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Results 
 

Method Overview 
 
We used Multivariate Reaction Norm Models (MRNMs)10 to estimate genetic and 
residual variance components of cardiovascular traits that vary with respect to lifestyle 
covariates, which we termed G-C and R-C interactions, respectively (see Methods for 
details). To detect these two types of interactions, we fitted two MRNMs—one 
assumes no G-C and R-C interactions (i.e., a null model) and the other assumes both 
G-C and R-C interactions (i.e., a full model)—and declared the presence of one or 
more interaction terms when the full model had a better fit than the null (see 
Supplementary Note 2 for justification). After careful calibration of our model 
comparison method using simulations, we performed primary analyses on the 
Atherosclerosis Risk in Communities (ARIC) study, which contains dense 
cardiovascular health related variables and lifestyle covariates. We chose 23 CVD 
related traits, including coagulation factors, blood pressure, heart rate, and BMI etc.; 
and 22 lifestyle covariates that cover physical activity, alcohol intake, cigarette 
smoking and dietary composition (see Methods for details). Signals emerging from the 
ARIC dataset were subsequently validated in the UK Biobank (UKBB) dataset, if 
related data are available. 
 

Simulation 
 
To calibrate the null versus full model comparison method, we simulated phenotypic 
data with no G-C and R-C interactions, data with G-C and/or R-C interactions of small 
and large magnitudes, data that conform to the normality assumption held by MRNMs, 
and data that do not (see Supplementary Table 1 for details). In each scenario, we 
repeated the simulation 100 times, resulting in 100 replicates of simulated data. Using 
these data, we tested the extent to which the true data generating models can be 
recovered by our model comparison method. 
 
When the model assumption of normality was met, the type I error rate of the null 
versus full model comparison method was controlled (0.04; see Supplementary Table 
2). Small and large phenotypic deviations from the normality inflated the type I error 
rate to 0.2 and 0.65, respectively. However, after a rank-based inverse normal 
transformation (RINT) of phenotypic data, the type I error rate was approximately 
controlled (0.05 and 0.07 for large and small phenotypic deviations from normality, 
respectively; Supplementary Table 2), indicating that an RINT can effectively reduce 
false positive findings in face of violations of the normality assumption. 
 
The statistical power of the null versus full model comparison was estimated using 
data simulated under scenarios other than the null, i.e., G-C only, R-C only and both 
G-C and R-C interactions. We found that whether the normality assumption is met or 
not, the proportion of replicates for which the full model had a better fit than the null 
was at least 0.88 (Supplementary Table 2), giving an estimated power above 88%. 
Applying an RINT did not affect the power in any scenario. 
 
For each simulation scenario, we compared parameter estimates from the full model 
with their corresponding true values. Supplementary Figure 1 shows sampling 
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distributions of full-model parameter estimates based on 100 replicates for both large 
and small effects settings (in terms of heritability, G-C and R-C interactions; 
Supplementary Table 1) when the model assumption of normality was met, and it 
indicates that the full model produced unbiased estimates of model parameters under 
all simulation scenarios. This observation holds even when the normality assumption 
was violated (Supplementary Figures 2 & 3). In contrast, after applying an RINT, full-
model estimates were biased for some model parameters (Supplementary Figures 2 
& 3). 
 
In summary, our simulation results indicate that when the model assumption of 
normality is met, the likelihood ratio test that compares the full model with the null can 
detect G-C and/or R-C interaction at an acceptable type I error rate with a reasonable 
level of power. When the normality assumption is violated, however, type I error rate 
would be inflated, in which case an RINT of the phenotype data is an effective remedy 
without compromising statistical power. In situations where the normality assumption 
is not violated, a rank-based inverse normal transformation of the phenotype data 
would not adversely affect type I error rate and statistical power. In terms of parameter 
estimates, full-model estimates of heritability, G-C and R-C interactions are unbiased, 
regardless of whether the normality assumption is violated or not. Full-model estimates 
would however become biased after an RINT. Therefore, for analysis of real data, if 
the model assumption of normality is in doubt, rank-based inverse transformation 
should be applied to control type I error rate; and once a significant finding is declared, 
full model estimates of parameters from data without the transformation should be 
reported and interpreted. 
 

G-C & R-C Interactions 
 
For analysis of real data, we had a total of 23 CVD traits, and for each trait, we 
screened 22 available lifestyle covariates for G-C and R-C interactions. Out of the 506 
pairs of cardiovascular trait and lifestyle covariate, 214 yielded significant results at 
the 0.05 level, where the full model had a better fit than the null; and after Bonferroni 
correction 68 pairs remained significant (Figure 1). Of these, 34 survived the sensitivity 
analysis, where we applied an RINT to all traits. In a further investigation, we noted 
that a large majority of the signals that were lost after the RINT were from traits that 
have large skewness and kurtosis (Supplementary Figure 4). Given that RINT can 
control type I error rate when the normality assumption of MRNM is violated, as shown 
by simulation results, the lost signals are likely to be spurious. Hence, in the following 
we will focus on signals remained after the RINT. 
 
Out of the 34 significant pairs remaining after the RINT, 17 were covered by the UKBB, 
allowing replication of the analyses conducted in the ARIC. The majority of these 
signals, 14 out of 17, were present in both datasets (Figure 1 right). The three signals 
lost in the replication were the modulating effects of physical activity on white blood 
cell count and of polyunsaturated fatty acid intake on apolipoprotein a1. In addition, 
among the replicated signals, results for physical activity varied slightly when METs 
were broken down into walking, moderate and vigorous activities, indicating that 
modulating effects of physical activity may be conditional on the type of activity. The 
variance estimates from the full model for all signals from the ARIC and UKBB datasets 
are listed in Supplementary Tables 5 and 6, respectively. In summary, our results 
indicate that lifestyle factors that include alcohol intake, smoking, physical activity, and 
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dietary composition are highly relevant to inter-individual variability in cardiovascular 
health and hence CVD risk. 
 
========================= 
INSERT FIGURE 1 HERE 
========================= 
 
For the 34 signals emerged from the ARIC, magnitudes of full-model variance 
estimates of G-C and R-C interactions were further examined, as proportions of 

estimated 𝜎𝛼1
2  and 𝜎𝜏1

2  out of total phenotypic variance, respectively, as shown in 
Figure 2. Four major observations emerged. First, G-C and R-C interactions are 
sizeable, which can account for up to 20% of phenotypic variance, highlighting the 
importance of lifestyle modulation to inter-individual variability in cardiovascular health. 
Second, variance estimates of R-C interactions are in general larger than G-C 
interactions, indicating that lifestyle covariates play a greater role in modulating non-
genetic effects on cardiovascular health than genetic effects. Third, some variance 
estimates can be zero or even below zero. This is not totally unexpected though and 
is within the observed range of sampling errors from analyses of simulated data 
(Supplementary Figure 1). Lastly, we noted a strong inverse correlation between 
variance estimates of R-C and G-C interactions (Pearson r=-0.81). Such collinearity is 
likely due to the same covariate being used for estimating G-C and R-C interactions. 
Similar observations were noted in each replicate of simulated data, yet both variance 
estimates of G-C and R-C interactions were unbiased (Supplementary Figure 1). Thus, 
despite collinearity between variance estimates, estimation accuracy did not appear 
to be adversely affected. It is noted that the statistical power to separate G-C and R-
C interactions can be low, and parameter estimates from models including only G-C 
or R-C interaction (referred to as ‘G-C only’ and ‘R-C only’ models) can be biased as 
shown in simulations (see Supplementary Note 2). Consequently, only the null versus 
full model comparison was chosen to indicate lifestyle modulation. Nonetheless, we 
compared nested models, i.e., a G-C only model and a R-C only model, with the full 
model to assess R-C interaction that is orthogonal to G-C interaction and G-C 
interaction that is orthogonal to R-C interaction, respectively (Supplementary Table 5 
for ARIC & 6 for UKBB). 
 
======================== 
INSERT FIGURE 2 HERE 
======================== 
 
For the 14 signals that were first discovered in ARIC and replicated in UKBB, we 
compared variance estimates of G-C and R-C interactions across the two datasets 
(Supplementary Tables 3 & 4) and noted some similarities. Physical activity altered 
both genetic and non-genetic effects on heart rate and BMI. It also altered genetic 
effects on HDL cholesterol level, and non-genetic effects on waist-to-hip ratio. Alcohol 
consumption altered both genetic and non-genetic effects on BMI, while smoking 
altered non-genetic effects on heart rate, pulse pressure, and white blood cell count. 
In addition, saturated fat intake modified genetic effects on BMI, and total daily energy 
intake modified non-genetic effects on waist-to-hip ratio. 
 
The presence of G-C and R-C interactions indicates heterogeneity of genetic and 
residual variance-covariance structures with respect to lifestyle covariates21, which are 
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depicted in Supplementary Figure 5 for G-C interactions and in Supplementary Figure 
6 for R-C interactions. To more explicitly illustrate G-C interactions, for each of the 
eight traits with the largest variance estimates of G-C interaction, we stratified 
observations into three groups—top, middle, and bottom—according to per-individual 
estimate of 𝛼1(via BLUP22,23). It is important to note that 𝛂1 in our model indicates the 
direction and effect size of G-C interaction for each individual, and it is assumed to 
follow a normal distribution with mean zero. For each trait, we defined the three groups 
as having an 𝜶̂𝟏  below the 20th percentile (bottom), between the 40th and 60th 
percentiles (middle), and above the 80th percentile (top), respectively, and plotted their 
estimated genetic effects, i.e., 𝛂̂0 + 𝐜 · 𝛂̂1 , given their standardized values on the 

relevant lifestyle covariate 𝐜 (Figure 3). Regardless of specific traits, the three groups 
show distinct trajectories of genetic effects with increasing lifestyle covariate values. 
Specifically, estimated genetic effects become amplified for the top group, remain 
stable for the middle group, and become attenuated for the bottom group. Thus, the 
G-C interactions detected by our models indicate that there exist subpopulations 
whose genetic effects on cardiovascular traits are modified by lifestyle changes in 
drastically different ways. 
 
===================== 
INSERT FIGURE 3 HERE 
===================== 
 
Importantly, the per-individual estimate of 𝛼1that we used for group stratification is an 
aggregate of G-C interactions over SNPs for the entire genome, hence a genome-
wide estimate of G-C interaction. Therefore, individual differences in 𝛼̂1 would reflect 
systematic genetic variation, which would be the most pronounced between the two 
extreme groups, i.e., top and bottom. A further exploration on pairwise genomic 
relationship for individuals within and between the two extreme groups revealed that 
the average genomic relationship within each group is greater than the grand average 
relationship of the entire dataset, but the average between-group relationship is less 
than the grand average (Supplementary Table 7). That is, compared to two randomly 
chosen individuals, a pair of within-group individuals is on average more genetically 
similar, but a pair of between-group individuals is on average more genetically distant. 
This observation holds for all eight analyses with the largest variance estimates of G-
C interaction (Supplementary Table 7). Thus, the two extreme groups for these 
analyses in fact have systematic genetic differences. 
 
To explicitly illustrate R-C interactions, for each of the eight traits with the largest 
variance estimates of R-C interaction, we stratified participants into top, middle and 
bottom groups according to per-individual estimate of 𝜏1 in the same way as for G-C 
interaction. Figure 4 shows estimated residual effects, i.e., 𝝉̂𝟎 + 𝒄 · 𝝉̂𝟏 , given 

standardized values on the relevant lifestyle covariate 𝑐 for the three groups. Like for 
G-C interaction, the three groups show different trajectories with increasing lifestyle 
covariate values. Thus, as found for genetic variance heterogeneity, residual variance 
heterogeneity detected as a R-C interaction by MRNMs indicates the presence of 
subpopulations whose residual effects on cardiovascular traits are modified by lifestyle 
changes in different ways. Although a genuine R-C interaction can be unbiasedly 
estimated as shown in the simulation (Supplementary Figure 1), the models used in 
this study do not inform how individual differences in 𝜏̂1  arise, because the fitted 
variance-covariance structure for residual effects is an identity matrix (see Methods). 
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This problem will no longer exist in a repeated-measures design or if a non-identity 
matrix is fitted for the variance-covariance structure of residual effects10. 
 
======================= 
INSERT FIGURE 4 HERE 
======================= 
 

Heritability 
 

We showed above that lifestyle modulation of genetic and non-genetic effects, in forms 
of G-C and R-C interactions, is ubiquitous and sizable for cardiovascular traits. To 
highlight the importance of incorporating lifestyle modulation when estimating trait 
heritability, we compared SNP heritability estimates from two univariate reaction norm 
models (URNMs; see Methods for details), one without any interaction terms (i.e., a 
null model) and the other with one or more interaction terms (i.e., an interaction model) 
based on results from the multivariate reaction norm models shown above (Figure 1). 
Null model estimates are essentially equivalent to conventional univariate GREML 
estimates; hence they are referred to as GREML estimates thereafter. As a contrast, 
interaction model estimates are thereafter referred to as RNM estimates. Figure 5 is a 
scatter plot of estimates from both ARIC and UKBB datasets. If GREML and RNM 
estimates are identical, they are expected to align perfectly along the diagonal line. 
We found that estimates from the interaction model were, on average, slightly yet 
systematically larger than estimates from the null model (single-sided paired t = 2.35, 
df = 17, p = 0.015). Thus, our results support the idea that phenotypic plasticity21 can 
explain some missing heritability (e.g.24). 
 
===================== 
INSERT FIGURE 5 HERE 
===================== 
 
Given that heritability is a function of genetic and residual variance, we further 

investigated the reason behind larger RNM heritability estimates by comparing 

GREML and RNM estimates of genetic and residual variance from both ARIC and 

UKBB datasets (Figure 6). On average, GREML and RNM estimates of genetic 

variance were not significantly different, but GREML estimates of residual variance 

were significantly larger than RNM estimates (see mean & 95% CI in Figure 6; two-

sided one-sample t = 4.15, df = 17, p = 6.7 x 10-4). However, the results from the ARIC 

and UKBB data sets are somewhat different. In particular, some GREML estimates of 

genetic variance tend to be underestimated for the ARIC data, which is not evident for 

the UKBB data. This is likely due to the much smaller sample size of the ARIC data 

than the UKBB data, which inevitably results in larger sampling errors for the estimates 

from ARIC. Nonetheless, our results indicate that G-C and R-C interactions are 

primarily hidden in residual variance estimates in the null model; when they are 

explicitly estimated in an interaction model, residual variance estimates can be 

substantially reduced, thereby yielding higher SNP heritability compared to when 

these components are neglected. This is in line with our previous observation that 

residual variance is overestimated when fitting a null model to simulated data with 

genuine G-C or R-C interaction10. 
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===================== 
INSERT FIGURE 6 HERE 
===================== 
 

Discussion 
 

In this study, we used a novel linear mixed model to detect and estimate components 

of genetic and non-genetic variance that change with respect to modifiable lifestyle 

covariates, termed as G-C and R-C interactions, in the context of cardiovascular 

health. Using simulations, we showed that for a sample size of ~7,500 observations, 

our method has sufficient statistical power to detect genuine G-C and R-C interactions, 

while keeping the false positive rate controlled. Applying our method to real data, for 

each of 23 cardiovascular traits selected from the ARIC dataset, we screened for G-C 

and R-C interactions using 22 available lifestyle covariates that covered smoking, 

alcohol intake, physical activity and dietary composition. G-C and R-C interactions 

were found to be ubiquitous among cardiovascular health related traits, and for some 

traits, estimates were relatively large, accounting for up to 20% of total phenotypic 

variance. 

 

Among the 14 signals replicated in the UK Biobank, physical activity was found to alter 

both genetic and non-genetic effects on heart rate and BMI; genetic effects on HDL 

cholesterol level and non-genetic effects on waist-to-hip ratio. Alcohol consumption 

altered both genetic and non-genetic effects on BMI, while smoking altered non-

genetic effects on heart rate, pulse pressure, and white blood cell count. In addition, 

saturated fat intake modified genetic effects on BMI, and total daily energy intake 

modified non-genetic effects on waist-to-hip ratio. To explicitly illustrate G-C and R-C 

interactions, we stratified individuals according to per-individual estimate of G-C and 

R-C interactions and showed that genetic and residual effects could take on different 

directions across groups. While we did not identify any literature in the context of 

cardiovascular traits that examined R-C interaction, the evidence of G-C interaction in 

our studies is consistent with the previous literature (e.g.7,9,13,16-20), although our study 

is novel in that G-C interactions were estimated using common SNPs of the entire 

genome, which are in contrast to estimates based on a single or a limited number of 

SNPs with large phenotypic effects in past studies. 

 

Given the prevalence of lifestyle modulating effects, we also examined any potential 

consequence of neglecting these effects on SNP heritability estimates. Such 

negligence reduced SNP heritability estimates by a small yet significant amount. This 

reduction is primarily due to overestimation of residual variance. Yet genetic variance 

estimates are relatively robust to the negligence of significant lifestyle modulation. Our 

results suggest that current SNP heritability estimates for cardiovascular health related 

outcomes, which commonly do not take into account modulating effects of lifestyle 

covariates, are likely underestimated. 

 

Currently, several other approaches to G-C interaction exist in the literature, and our 

approach is unique in several important ways. Compared to a fixed-effects model 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 14, 2019. ; https://doi.org/10.1101/700617doi: bioRxiv preprint 

https://doi.org/10.1101/700617
http://creativecommons.org/licenses/by/4.0/


approach (e.g.25), a mixed-model approach like ours could account for genetic 

covariance among individuals. Compared to StructLMM8, which is a linear mixed-

model approach that examines G-C interaction for one SNP at a time, our approach 

estimates the G-C interaction aggregated over SNPs for the entire genome, thereby 

providing genome-wide estimates of of G-C interaction. The whole-genome approach 

to G-C interaction also sets this study apart from G-C interaction studies using a 

candidate gene approach which only focused on genetic variants with large phenotypic 

effects (e.g.13-15). In these studies, variants might be missed if they contribute to GxE 

interaction and their effects depend on lifestyle factors. In addition, our approach 

extends other whole-genome approaches7,26,27 by allowing continuous, as opposed to 

categorical, lifestyle covariates to be modelled; and by simultaneously modelling G-C 

and R-C interactions. 

 

The prevalence of sizable G-C and R-C interaction effects shown in our study not only 

reinforces the relevance of existing lifestyle-focused prevention programs for CVD 

prevention but also suggests that promoting lifestyle changes in a single direction may 

be ineffective or even inappropriate for some subpopulations. Instead, to most 

effectively reduce genetic and non-genetic predispositions to unfavourable 

cardiovascular phenotypes, lifestyle-focused interventions should be tailored to the 

individual on the basis of his or her relevant genetic and non-genetic information, 

supporting the rise of precision medicine in cardiovascular disease to individualise 

treatments and preventions rather than assuming all individuals share a common 

pathophenotype28,29. 

 

Of note, the variance-covariate structure fitted for the genetic effect in our MRNMs is 

a non-identity matrix constructed using genetic information, i.e., a genomic relationship 

matrix. In effect, SNP BLUPs derived from MRNMs can be used to predict how a 

person’s genetic risk would change with respect to a chosen lifestyle covariate, given 

his or her genetic information. In contrast, the variance-covariance structure fitted for 

the residual effect in our MRNMs is an identity matrix. Consequently, R-C interactions 

estimated by our models have little use in the prediction of phenotypes. Further 

development of MRNMs that incorporate a relationship matrix based on factors 

underlying residual variations, i.e., a non-identity matrix analogous to a genomic 

relationship matrix, would be useful for the prediction, and it is currently under way. 

 

As for other approaches to G-C interaction for observational studies, modulating 

effects of lifestyle covariates found in this study do not imply causality. While 

randomized controlled trials are the gold standard, further studies using genetic 

methods such as Mendelian randomization can help determine causal influences. 

Further, the MRNMs used in this paper are a specific case of the more general MRNMs 

(see10), where genetic and residual effects are expanded to the first order of the 

chosen lifestyle covariate. Higher order expansions may be necessary and could be 

employed in future studies where the variance-covariance structure for residual effects 

is a non-identity matrix. However, increasing model complexity also increases notably 

the sample size requirement for robust estimation of model parameters. It should also 

be noted that the sample size in ARIC for our primary analyses is relatively small 
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(6,896–7,180 participants), leading to less precise parameter estimation compared to 

the UKBB validation analyses. This may explain some discrepancies observed in 

model estimates between the two datasets. Smoking, for example, was shown to 

modulate cardiovascular health in both datasets, but the modulations manifested 

primarily as R-C interactions in ARIC analyses but as G-C interactions in UKBB 

analyses (see Supplementary Tables 3 & 4). Independent datasets are required to 

determine the nature of the modulation effects of smoking on cardiovascular traits. 

Finally, in this paper we only considered intermediate cardiovascular traits that are 

continuous in nature. Development of valid MRNMs for binary outcome is currently 

under way. Future applications of these MRNMs would help identify modulating 

lifestyle covariates that are directly relevant to cardiovascular disease outcomes. 

 

In summary, we found strong modulations from lifestyle covariates, including smoking, 

alcohol intake, physical activity and dietary composition, for genetic and residual 

effects on phenotypes that are known to associate with cardiovascular diseases. To 

illustrate these interactions, we showed that genetic and residuals effects—which may 

be interpreted as genetic and non-genetic predisposition to CVD health risk, 

respectively—could change with respect to lifestyle change in different directions for 

different individuals. Our findings, therefore, reinforce the relevance of lifestyle 

changes to cardiovascular health and highlight the need for individual considerations 

when designing lifestyle intervention programs to effectively reduce genetic and non-

genetic predisposition to unfavourable cardiovascular phenotypes. Future 

investigations into specific genetic and non-genetic factors that give arise to individual 

differences in CVD health risk trajectories with respect to lifestyle changes are well 

warranted. 
 

Methods 
 

Our analyses were based on two datasets, the Atherosclerosis Risk in Communities 
(ARIC) study and the UK Biobank (UKBB). The former was chosen for our primary 
analyses, because it covers a wider range of cardiovascular traits than the latter. The 
UKBB, which has a larger sample size than the ARIC study, was chosen as the 
validation set. Sample size for our analyses depended on availability of phenotype and 
genotype data, which varied between studies and cross traits. For ARIC, sample sizes 
were between 6,896 and 7,180. For UKBB, sample sizes were between 14,076 and 
34,538. 
 

ARIC 

 

The ARIC study is a prospective study on the aetiology of atherosclerosis, with data 

collected from up to five visits over fifteen years from participants of four U.S. 

communities (Forsyth County, North Carolina; Jackson, Mississippi; suburbs of 

Minneapolis, Minnesota; and Washington County, Maryland), who were aged between 

45 and 64 years in 1987-8930. To maximize the sample size for our analyses, we only 

used data from visit one that occurred in 1987-89.  The following phenotypic traits 

were selected for analyses: plasma concentration/activity of four coagulation factors, 
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namely factor VIII, factor VII, Von Willebrand's factor and fibrinogen; four 

electrocardiography-derived variables, namely P-R interval, Q-T interval, QRS 

interval, and Cornell voltage; three blood pressure measures, namely systolic and 

diastolic blood pressure and pulse pressure; resting heart rate, total cholesterol and 

total triglycerides levels and white blood cell count. In addition, we also included two 

anthropomorphic measures: body mass index (BMI) and waist-to-hip ratio.  All 

available lifestyle covariates that had sufficient data were chosen for our analyses. 

This included smoking, alcohol intake, dietary composition, and physical activity. 

Detailed descriptions of the selected traits and lifestyle factors are listed below. 

 

Cardiovascular Traits 

 

A total of 23 cardiovascular health related traits were selected. Coagulation factors 

were determined in the ARIC Central Hemostasis Laboratory using previously 

published procedures31. Plasma concentration of fibrinogen was measured by the 

thrombin-titration method, factor VII and factor VIII activity by clotting assays, and Von 

Willebrand’s factor antigen with an ELISA technique 32,33. P-R interval, Q-T interval, 

QRS interval, and Cornell voltage were derived from standard 12-lead 

electrocardiography34,35. Sitting blood pressure (systolic and diastolic) was measured 

three times from the right arm and calculated based on the average of the last two 

readings. Pulse pressure was computed as the difference between systolic and 

diastolic blood pressure.  

 

Lifestyle Covariates 

 

A total of 22 lifestyle covariates were selected. Smoking was indexed by ‘cigarettes 

per year’, derived by multiplying the average number of cigarettes per day with the 

number of years smoked. Alcohol intake was indexed by usual ethanol intake from 

wine, beer and hard liquor in grams per week. Diet was assessed using a 66-item 

food-frequency questionnaire based on the Willett 61-item questionnaire36. 

Summary measures derived included dietary lipid content, as indexed by the keys 

score37,38, daily dietary intake of fibre, monounsaturated, polyunsaturated, and 

saturated fatty acids, total fat, carbohydrate, protein, potassium, calcium, and 

magnesium; total daily energy intake; and percentages of daily total energy intake from 

monounsaturated, polyunsaturated, and saturated fatty acids, total fat, carbohydrate, 

and protein.  Physical activity was assessed in work, sports and leisure domains using 

a modified Baecke questionnaire39,40. Only summary scores from sports and leisure 

questions were used. The score for sports is a summary of 1) the frequency, duration, 

and an assigned intensity of the sports reported by participants and 2) three additional 

questions on frequency of sweating, general frequency of playing sports, and a self-

rating of the amount of leisure time physical activity compared with others of the same 

age[s]41. The score for leisure is a summary of frequency of watching television 

(scored inversely), walking, bicycling, and walking/biking to work or shopping41. 

 

Genotyping Data 
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The ARIC genotype dataset contains 609,441 single nucleotide polymorphisms 

(SNPs) from 8,291 participants. We first selected autosomes from white participants 

then applied standard quality control procedures to the selected dataset. This involved 

1) excluding SNPs that do not have a location; ones that have a genotyping rate less 

than 95%; ones that failed the Hardy-Weinberg test at the 0.0001 level; and ones that 

had a frequency less than 0.01; 2) excluding individuals who were missing 5% of 

genotype data; and 3) removing related individuals by excluding one person, at 

random using a Bernoulli distribution with a selection probability of 0.5, from each pair 

that had an estimated genomic relationship26 greater than 0.05. Eventually, 586,257 

SNPs from 7,513 individuals remained. Among these individuals, 6,896 to 7,180 have 

phenotype data available for analysis. 

 

UKBB 

 

The UKBB contains health-related data from ~ 500,000 participants aged between 40 

and 69, who were recruited throughout the UK between 2006 and 201042. For 

validation purposes, we only selected phenotypes and lifestyle covariates that overlap 

with the ARIC dataset, which included BMI, waist-to-hip ratio, heart rate, white blood 

cell count, diastolic and systolic blood pressure, pulse pressure, HDL cholesterol level, 

apolipoprotein a1 level, smoking (pack years of smoking as proportion of life span 

exposed to smoking), alcohol intake (average weekly intake of all types) and physical 

activity (metabolic equivalent or MET minutes for walking, moderate activity, vigorous 

activity, and all types43), and dietary composition (polyunsaturated fatty acid, saturated 

fatty acid, and total energy intake). 

 

Genotyping Data 

 

The second release of the UKBB genotyping dataset was used. Before quality control, 

the data set contains 92,693,895 imputed autosomal SNPs from 488,377 individuals. 

We selected HapMap3 SNPs from individuals of white British ancestry only and 

applied the same quality control procedures as for the ARIC genotyping dataset (see 

above). Only HapMap3 SNPs were selected because they were shown to yield reliable 

and robust estimates of SNP-based heritability and genetic correlation44-46. In addition, 

ambiguous and duplicated SNPs and SNPs with an information score (used to index 

the quality of genotype imputation) less than 0.6 were excluded. We computed the 

genomic relationship matrix of all observations and excluded population outliers, 

defined as individuals who have a score outside three standard deviations on either 

the first or second principal component of the genomic relationship matrix. From 

remaining participants, only those who were part of the first release of the UKBB 

genotyping data (~150,000 individuals) were selected for the purpose of reducing 

computational burden. This subset of participants therefore has two versions of 

imputed genotyping records, one from each release, which enabled computation of 

discordance rates between the two versions for each SNP across individuals and for 

each individual across SNPs. SNPs and individuals who have a discordance rate > 

0.05 were excluded.  Eventually, 1,130,918 SNPs from 66,281 participants remained. 
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Among these participants, only 14,076 to 34,538 have phenotype data available for 

analysis. 

 

Statistical Analyses 

 

Statistical Models 
 

We used a novel whole-genome modelling framework, Multivariate Reaction Norm 
Models (MRNMs10), to detect G-C and R-C interactions. MRNM is an extension of 
bivariate linear mixed models. In the simplest form of a bivariate linear mixed model, 
the main trait, y, and the covariate, c, for individual i, after adjusting for their respective 
fixed effects, 𝜇𝑦 and 𝜇𝑐, are simultaneously expressed as 

 

( 
𝑦𝑖 − 𝜇𝑦 
𝑐𝑖 − 𝜇𝑐

) = (
𝑔𝑖

𝛽𝑖
) + (

𝑒𝑖

𝜀𝑖
),                                                                       Equation 1 

 

Where 𝑔𝑖 ~ N(0, 𝜎𝑔
2) and 𝛽𝑖 ~ N(0, 𝜎𝛽

2) are genetic effects, which are aggregates of 

random effects of genome-wide SNPs on the main trait and on the covariate, 
respectively; 𝑒𝑖 ~ N(0, 𝜎𝑒

2) and 𝜀𝑖 ~ N(0, 𝜎𝜀
2) are residual effects, and both 𝑔𝑖 and 𝛽𝑖 

are independent from 𝑒𝑖 and 𝜀𝑖.  
 
MRNM extends Equation 1 by introducing random regression coefficients of the 
covariate, which can be written as  
 

( 
𝑦𝑖 − 𝜇𝑦 
𝑐𝑖 − 𝜇𝑐

) = (
𝑔𝑖

𝛽𝑖
) + (

𝑒𝑖

𝜀𝑖
) = (

𝛼0𝑖 + 𝑐𝑖 · 𝛼1𝑖

𝛽𝑖
) + (

𝜏0𝑖 + 𝑐𝑖 · 𝜏1𝑖

𝜀𝑖
)           Equation 2  

 

Where 𝑔𝑖  breaks into 𝛼0𝑖 + 𝑐𝑖 · 𝛼1𝑖 , 𝑒𝑖  into 𝜏0𝑖 + 𝑐𝑖 · 𝜏1𝑖  , 𝛼0𝑖  ~ N(0, 𝜎𝛼0
2 ), 𝛼1𝑖  ~ 

N(0, 𝜎𝛼1
2 ), 𝜏0𝑖 ~ N(0, 𝜎𝜏0

2 ) and 𝜏1𝑖 ~ N(0, 𝜎𝜏1
2 ).  

 
As shown in both equations, variance of the main trait and of the covariate are 

partitioned into two general sources, one of genetics (i.e., 𝜎𝑔
2 & 𝜎𝛽

2) and one of non-

genetics or residuals (i.e., 𝜎𝑒
2 & 𝜎𝜀

2). By modelling the main trait and the covariate 
simultaneously, the covariance between the main trait and the covariate, in forms of 
𝑐𝑜𝑣 (𝑔𝑖 , 𝛽𝑖) and 𝑐𝑜𝑣 (𝑒𝑖 , 𝜀𝑖), is accounted for in a MRNM10. This is important given that 
the covariance between the main trait and covariate can sometimes be nontrivial and 
would have been neglected in univariate random regression models. More importantly 
though, the 𝑔𝑖 and 𝑒𝑖 terms are expanded in terms of 𝑐𝑖 in Equation 2, which offers 
opportunities to model the genetic and residual variances of the main trait as a function 
of the covariate. With this expansion, it is immediately clear that genetic variance 𝜎𝑔

2 

breaks into var(𝛼0 + 𝑐 · 𝛼1) and residual variance 𝜎𝑒
2 into var(𝜏0 + 𝑐 · 𝜏1), both of 

which vary with respect to the covariate. As such, MRNMs can estimate and detect 
genetic and residual variance heterogeneity due to the chosen covariate. A G-C 

interaction that underlies genetic variance heterogeneity is indicated by significant 𝜎𝛼1
2  

and cov(𝛼0, 𝛼1), and a R-C interaction that underlies residual variance heterogeneity 

is indicated by significant 𝜎𝜏1
2  and cov (𝜏0, 𝜏1). 
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The MRNM shown in Equation 2 is referred to as the full model, which assumes and 
detects both genetic and residual variance heterogeneity with respect to the covariate. 
The full model can be simplified into other three major forms. Specifically, by setting 

both var(𝑐 · 𝛼1) and var(𝑐 · 𝜏1) to 0, the null model assumes no heterogeneity in either 

the genetic or the residual variance of the main trait with respect to the covariate. By 

setting var(𝑐 · 𝜏1) to 0, the G-C model assumes no R-C interaction and estimates the 

extent of genetic heterogeneity with respect to the covariate. Finally, by setting var(𝑐 ·
𝛼1) to 0, the R-C model assumes no G-C interaction and estimates the extent of 

residual heterogeneity with respect to the covariate. Detailed descriptions on the 
variance-covariance structure assumed by MRNMs are included in Supplementary 
Notes and can also be found elsewhere 10. 
 
Prior to model fitting, we attempted to simplify the general MRNMs outlined above by 
reducing the number of free parameters for estimation. We estimated heritability of 
each lifestyle covariate in the ARIC dataset via univariate Genomic Restricted 
Maximum Likelihood (GREML), and found that all estimates were close to zero. Daily 
potassium intake was the only covariate with an estimate marginally different from 

zero (h2 = 0.08 ± 0.04). Subsequently, we simplified MRNMs by setting 𝜎𝛽
2  (i.e., 

genetic variance of the covariate) and its associated covariance terms, i.e., 𝑐𝑜𝑣 (𝛼0 , 𝛽) 
and 𝑐𝑜𝑣 (𝛼1 , 𝛽), to 0.  Unless specified otherwise, all MRNMs fitted to ARIC data in 
this paper are simplified MRNMs. 
 
For each pair of main trait and covariate, the null and full models were fitted and 
compared using a likelihood ratio test. For the simplified MRNMs, the test statistic, i.e., 
-2 log likelihood ratio, is assumed to have a chi-square distribution with five degrees 
of freedom. The alpha level was set at 0.05.  A significant p-value indicates the full 
model has a better fit than the null, hence the presence of a G-C, R-C interaction, or 
both. Since the full model does not separate G-C and R-C interactions, we considered 
a model comparison strategy to separate the two. However, we show in the 
Supplementary Notes that this strategy can suffer from weak statistical power and 
biased estimation, which makes it an overall inferior method to the null versus full 
model comparison method for detecting G-C and R-C interactions. Therefore, our 
results are based on the latter.  All model fitting for this paper was performed using 
MTG2 47. 
 

Adjustments for Main Traits & Lifestyle Covariates 

 

Before fitting MRNMs, all main traits were adjusted for demographics and lifestyle 

factors using fixed-effects linear models. In effect, changes in the variance-covariance 

structure of the main trait with respect to a given covariate were not confounded by 

adjustment factors or by any unobserved variables that linearly covary with adjustment 

factors. The demographic variables for main trait adjustments included age, sex, 

education level, marital status, field centre ID, and population structure, as measured 

using the first fifteen principal components of the estimated genomic relationship 

matrix. All lifestyle factors described in the previous section were used for main trait 

adjustment. Some additional adjustment factors were also included, depending on the 

main trait. For heart rate, blood pressure measures, electrocardiography variables and 

coagulation factors, additional adjustment factors included hypertension, defined as 
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systolic blood pressure >=140 or diastolic blood pressure >= 90, and hypertension 

lowering medication use. For total cholesterol and triglycerides levels, additional 

adjustment factors were hypertension, hypertension lowering medication use, 

cholesterol-lowering medication within two weeks, and medications that secondarily 

affect cholesterol. As the second trait in the multivariate reaction normal model (see 

the second part of Equation 1), lifestyle covariates were pre-adjusted in the same way 

as the main trait in the first part of Equation 1. 

 

Heritability 

 
We considered the consequence of neglecting G-C and R-C interactions on heritability 
estimates.  Specifically, we estimated heritability of each trait using two models, one 
that includes no interaction term at all, i.e., null model (also known as GREML), and 
the other that includes one or more interaction terms, i.e., interaction model, and 
compared estimates of the two models. To reduce computational burden, we used 
univariate reaction norm models (URNMs), as opposed to MRNMs. The null model in 
the univariate framework is essentially Equation 1 without the part that involves the 

covariate, 𝑐𝑖. Using the same notation as Equation 1, the main trait for individual i, in 

a URNM can be written as: 
 

Null model:                       𝑦𝑖 − 𝜇𝑦 = 𝑔𝑖 + 𝑒𝑖 
 
The interaction model in the univariate framework expands 𝑔𝑖 and 𝑒𝑖 as functions of 
m1 and m2 covariates, respectively, where m1 + m2 ≥ 1. Using j to index covariate, the 
main trait for individual i in a URNM with interaction terms can be written as: 
 

Interaction model:           𝑦𝑖 − 𝜇𝑦 = 𝛼0𝑖 + ∑ 𝑐𝑖𝑗𝛼𝑖𝑗
𝑚1
𝑗=1 + 𝜏0𝑖 + ∑ 𝑐𝑖𝑘𝜏𝑖𝑘

𝑚2
𝑘=1  

 

Simulation 
 

To facilitate data interpretation, we simulated phenotypic data with and without G-C 

and/or R-C interactions and assessed, using simulated data, whether MRNMs can 

produce unbiased parameter estimates, type I error rate and power of detecting G-C 

and R-C interactions. We purposely chose two sets of model parameter configurations 

that varied primarily in effect size for heritability, G-C and R-C interactions. One setting 

had large effect sizes, referred to as the ‘large-effects setting’, with a heritability of 0.5 

for both the main trait and the covariate and both 𝜎𝛼1
2  and 𝜎𝜏1

2 , which are indicative of 

G-C and R-C interactions, were set at 0.5. In contrast, the other setting had smaller 

effect sizes, referred to as the ‘small-effects setting’, with a heritability of 0.15 for the 

main trait, 0 for the covariate, and both 𝜎𝛼1
2  and 𝜎𝜏1

2  were set at 0.05. It is noted that 

the small-effects setting resembled more closely parameter estimates from real data 

analyses than the large-effects setting.  Thus, results of the former setting would be 

more informative about how well our models and the likelihood test for model 

comparisons perform for analysis of real data. 
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Each parameter setting covered four scenarios—no G-C and R-C interactions (or the 

null), R-C interaction only, G-C interaction only, and both R-C and G-C interactions—

where the true data generating models were the four models described above.  Under 

each scenario, we simulated 100 replicates of phenotypic data (n = 7,513) of a main 

trait and a covariate, each based on 10,000 randomly chosen causal variants from the 

ARIC genotype data (see Supplementary Table 1 for an overview). For every replicate, 

we fitted the full and null models and compared the fit of the two models using the 

abovementioned likelihood ratio test. For every scenario, we computed the proportion 

of replicates, out of 100, for which the full model has a better fit than the null. This 

proportion takes on different interpretations depending on the simulation scenario. It 

is an estimate of type I error rate when the true model is the null, whereas it is an 

estimate of statistical power in scenarios where the true model is other than the null. 

 

It is important to note that all simulating models above assume normally distributed 

random effects (e.g., genetic and residual effects). In effect, for any given covariate 

value, the main trait follows a normal distribution. This normality assumption however, 

is likely violated for many traits of the ARIC and UKBB datasets, which are 

characterised by substantially larger kurtosis and skewness than would be expected 

from data simulated under normality (Supplementary Figure 7). Therefore, in addition 

to the large and small effects settings described above, we also simulated data with 

non-normal residuals drawn from Gamma distributions. We purposefully chose two 

sets of shape and scale parameters of Gamma distributions to represent large and 

small deviations from normality. For each of the non-normal settings, we had two 

scenarios: no G-C and R-C interaction (i.e., the null model is true) and G-C and R-C 

interactions (i.e., the full model is true), each with 100 replicates. We fitted the null and 

full models, which by definition all assume normality of random effects, to each 

replicate and subsequently assessed our model comparison method, in terms of type 

I error, power, and parameter estimates. In the event of an inflated type I error rate, 

we applied a rank-based inverse normal transformation to the simulated data and 

refitted the models. We then assessed the effectiveness of the transformation on 

reducing false positive findings and its potential consequences on statistical power of 

the model comparison method and model parameter estimates.  

 

It is important to emphasize that our interaction models do not assume absolute 

normality of phenotype data, rather their conditional normality on the covariate. Thus, 

unless the true underlying model is the null, when phenotypic observations are 

collapsed across covariate values, the distribution of the collapsed data is not 

necessarily normal. In fact, in the presence of genuine G-C and/or R-C interactions, 

even when the model normality assumption is met, the simulated phenotype can have 

larger skewness and kurtosis than data simulated under the null model (see 

Supplementary Figure 7). Thus, deviations from normality of a given set of phenotype 

data could arise from genuine G-C or R-C interaction. If they are mistaken as signs of 

violation of the model normality assumption, what would be the consequences of 

applying a rank-based inverse normal transformation for type I error rate, statistical 

power and model estimates? To answer these questions, we also applied the 

transformation to phenotype data simulated under normality (i.e., large & small effect 
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parameter settings) and assessed its impact on type I error rate, statistical power and 

model estimates. 

 

Validation 
 
To validate significant results found in the ARIC dataset, we repeated analyses using 
the UKBB for variables where the two datasets overlap. Since the UKBB has a larger 
sample size, hence greater statistical power, we explicitly estimated the genetic 
variance of the covariate when fitting a MRNM, rather than fixing this parameter at 
zero as for the ARIC dataset. Subsequently, the degree of freedom used for the 
likelihood ratio test that compares the full model with the null model was seven as 
opposed to five. Same as for the ARIC dataset, we estimated heritability of each UKBB 
trait using two URNMS (i.e., null and interaction models) and the inclusion of a 
covariate was based on MRNM results. 
 

URLs 

ARIC study: https://www2.cscc.unc.edu/aric/ 

UK Biobank: http://www.ukbiobank.ac.uk/ 

MTG2 for fitting reaction norm models: 

https://sites.google.com/site/honglee0707/mtg2 

 

Data Availability 

 

Simulated data used in this paper can be obtained from the authors upon request. 

Our access to the ARIC data was under the code phs000090, and access to the UK 

biobank data was approved by the UK biobank research ethics committee under the 

reference number 14575. 
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Figure 1. Bubble plot of p values that identify lifestyle modulation of genetic and non-genetic effects on cardiovascular traits. Left: 

for each of the twenty-three cardiovascular traits (along the y axis) from the ARIC dataset, twenty-two lifestyle covariates (along the 

x axis) were screened separately for Genotype-Covariate (G-C) and Residual-Covariate (R-C) interactions, by comparing a 

multivariate reaction norm model that allows G-C and R-C interactions (i.e., a full model) with a null model that assumes no G-C 

and R-C interactions. The 506 null versus full model comparisons were repeated after a rank-based inverse normal transformation 

was applied to all traits for a sensitivity analysis. Signals (after Bonferroni correction) for data before and after the transformation 

are color coded, as detailed in the Venn diagram. Thirty-four signals (in orange) remained after the sensitivity analysis. Seventeen 

of these remaining signals were subject to validation using the UK biobank, and their corresponding traits and lifestyle covariates 

are highlighted in blue. Top right: results of the UK biobank validation. For both datasets, bubbles are proportional to p-values 

based on data after the rank-based inverse normal transformation. Note exceptions to the sample size displayed for BMI vs. sfat1 

(N=16,257) and for waist-to-hip ratio vs. enrg (N=16,254) in the UK biobank due to limited availability of dietary intake data among 

the selected participants. 
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Figure 2. Variance estimates of G-C and R-C interactions as percentages of total 

phenotypic variance. Estimates were derived by fitting a multivariate reaction norm 

model that included both G-C and R-C interactions (i.e., a full model) to data without 

a rank-based inverse normal transformation. Dot plots on the top show distributions 

of estimates relative to the phenotypic variance of respective traits. Estimates are 

included only for signals that remained after a sensitivity analysis, where the full 

model was better than the null after Bonferroni correction on data after a rank-based 

inverse normal transformation. Top ten estimates are shown in bar charts below. 
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Figure 3. Estimated genetic effects with respect of lifestyle covariate for groups stratified according to per-individual estimate of G-C 

interaction (i.e., 𝜶𝟏). Histograms on the left show distributions of per-individual estimates of G-C interaction. Only first four traits with 

the largest variance estimate of G-C interaction are shown. Lifestyle covariates are standardized and are shown in each plot within 

3 standard deviations from the mean. 
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Figure 4. Estimated residual effects with respect to lifestyle covariate for groups stratified according to per-individual estimate of R-

C interaction (i.e., 𝝉𝟏). Histograms on the left show distributions of per-individual estimates of R-C interaction. Only first four traits 

with the largest variance estimate of R-C interaction are shown. Lifestyle covariates are standardized and are shown in each plot 

within 3 standard deviations from the mean. 
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Figure 5. GREML versus RNM SNP heritability estimates. GREML and RNM 

estimates were derived by fitting a univariate reaction norm model including no 

interaction term (i.e., null model) and one including one or more interaction terms 

(i.e., interaction model), respectively. The diagonal is included to highlight the impact 

of neglecting interaction terms on SNP heritability estimates. Deviations above the 

diagonal indicate larger RNM estimates relative to GREML estimates. Note HDL2 

cholesterol is excluded due to negative variance estimates. 
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Figure 6. GREML versus RNM estimates of genetic and residual variance. GREML and RNM estimates were derived by fitting a 

univariate reaction norm model that included no interaction term (i.e., null model) and one that included one or more interaction 

terms (i.e., interaction model), respectively. The left panel specifies lifestyle covariate(s) included in the interaction model. Changes 

in genetic and residual variance estimates from the interaction model (i.e., RNM estimates) relative to their respective estimates 

from the null model (i.e., GREML estimates) are shown on the right to highlight the impact of neglecting interaction terms. 

Deviations below zero indicate underestimation by GREML, whereas deviations above zero indicate overestimation by GREML. 

Traits are presented in the decreasing order of deviations for residual variance. Note changes in genetic variance estimates for 

pulse pressure and waist-to-hip ratio in ARIC and for HDL cholesterol in UK biobank are obscured in the plot by data points for 

residual variance. HDL2 cholesterol in ARIC was excluded due to negative heritability estimates. 
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