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ABSTRACT 

Although genomic sequencing has been transformative in the study of rare genetic diseases, 

identifying causal variants remains a considerable challenge that can be addressed in part by 

new gene-specific knowledge. Here, we integrate measures of how essential a gene is to 

supporting life, as inferred from the comprehensive viability and phenotyping screens performed 

on knockout mice by the International Mouse Phenotyping Consortium and from human cell line 

essentiality screens. We propose a novel, cross-species gene classification across the Full 

Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually 

exclusive FUSIL categories have differing characteristics in the biological processes they 

regulate, tissue expression levels and human mutation rates. Most notably, Mendelian disease 

genes, particularly those associated with developmental disorders, are highly overrepresented 

in the developmental lethal category, representing genes not essential for cell survival but 

required for organism development. Exploiting this finding, we have screened developmental 

disorder cases from three independent disease sequencing consortia and identified potentially 

pathogenic, de novo variants shared in different patients for several developmental lethal genes 

that have not previously been associated with rare disease. We therefore propose FUSIL as an 

efficient resource for disease gene discovery. 
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INTRODUCTION 

Discovery of the genetic causes of monogenic disorders has shifted from genetic analysis of 

large cohorts or families with the same phenotype, to a genotype-driven approach that is able to 

identify ultra-rare variants associated with a disorder in one or few individuals. Published studies 

by the Centers for Mendelian Genomics1, Deciphering Developmental Disorders2,3 and the 

Undiagnosed Disease Network4 have successfully used whole-exome or genome sequencing to 

find the causal variant in up to 40% of patients. However, the majority of cases remain unsolved 

and metrics incorporating gene-level information can help to identify candidate variants in 

previously unknown disease genes that are subsequently confirmed as causative in functional in 

vitro and in vivo studies. Measures of genetic intolerance to functional variation, based on whole 

exome and genome sequencing data from broad populations of healthy individuals or cohorts 

affected by non-severe and non-pediatric disease, represent one class of metrics that have 

been used to prioritise candidate disease genes where heterozygous, dominant effects are 

suspected5-7. Use of standardised gene-phenotype associations encoded by the Human 

Phenotype Ontology8 is another successful strategy that has led to the identification of disease 

genes by the phenotypic similarity of patients from different patient cohorts9,10. Phenotype 

similarity analysis between model organisms and human disease patients has also highlighted 

new candidate gene-disease associations11. These successes led us to consider other features 

of genes that could be used to identify human disease genes.  

Gene essentiality, or the requirement of a gene for an organism’s survival, is known to correlate 

with intolerance to variation12 and has been directly assessed in a number of species using 

high-throughput cellular and animal models13-15. In humans, essentiality has been investigated 

at the cellular level using cancer cell line screens based on gene-trap, RNAi or CRISPR-Cas9 

approaches with the findings that ~10% of protein-coding genes are essential for cell 

proliferation and survival16-19. The Broad Institute Project Achilles is extending this approach to 
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characterise 1,000 cancer cell lines and, critically, corrects for copy number in their essentiality 

scoring20,21. In parallel, the International Mouse Phenotyping Consortium (IMPC), a global 

research infrastructure that generates and phenotypes knockout (loss-of-function, LoF) mouse 

lines for protein coding genes, determines viability of homozygotes to assess gene 

essentiality11,22-24. The number of observed homozygous LoF mice generated from an intercross 

between heterozygous parents allows the categorisation of a gene as lethal (0% homozygotes), 

subviable (<12.5% homozygotes) or viable, with ~25%, ~10% and ~65% of genes classified as 

such, respectively23. These findings are consistent with results curated from the scientific 

literature indicating that approximately one-third of protein-coding genes are essential for 

organism survival25.  

Several levels or definitions of essentiality are to be expected from these different model 

approaches14. “Core essential genes” are identified across different model systems, while other 

essential genes are dependent on context such as culture conditions, tissue or organism 

developmental stage26-28. Quantitative definitions of “low” and “high” gene essentiality have been 

proposed to account for the degree of dependency on external factors as well as the likelihood 

of a compensatory mutation rescuing necessary function28. Essential genes have also been 

classified by whether they are known to be associated with human disease, with functional 

mutations in non-disease-associated genes and with a mouse orthologue that is LoF embryonic 

lethal suggested as likely to prevent pregnancy, lead to miscarriage or to early death29. Other 

research has reported that orthologues of embryonic lethal LoF mouse genes are shown to 

have an increased association to diseases with high mortality and neurodevelopmental 

disorders23,30,31.  

Here we provide a new Full Spectrum of Intolerance to Loss-of-function (FUSIL) categorisation 

that functionally bins human genes by taking advantage of the comprehensive organismal 

viability screen performed by the IMPC and the cellular viability studies conducted by the Broad 
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Institute Project Achilles. By exploring the FUSIL categories that span genes from those 

necessary for cellular survival all the way to those genes where loss of function has no detected 

phenotypic impact on complex organisms, we demonstrate a strong correlation of genes 

necessary for mammalian development with genes associated with human disease, especially 

early onset, multi-system, autosomal dominant disorders. Finally, we describe novel candidate 

genes for involvement in autosomal dominant, developmental disorders where potentially 

pathogenic variants had been identified in unsolved cases from three large-scale exome and 

genome datasets: Deciphering Development Disorders (DDD), 100,000 Genomes Project 

(100KGP) and the Centers for Mendelian Genomics (CMG) projects.   

 

RESULTS 

Cross-species comparisons divide genes into functional bins of essentiality/ 

viability 

Previously, human cell-essential genes have been analysed16-18 in conjunction with lethal genes 

identified in the mouse23 by either characterising a core set of essential genes at the 

intersection14 or studying the union of the two32. In these studies, cellular essential genes were 

shown to have a nearly complete concordance with mouse lethal genes19,23. Here, we have 

taken the human orthologue genes for which the IMPC has viability assessments and integrate 

the gene essentiality characterisation based on the cell proliferation scores determined by the 

Project Achilles Avana CRISPR-Cas9 screening performed on over 400 cell lines. This identified 

two sets of lethal genes: a set of cellular lethal genes essential for both a cell and an organism 

to survive (cellular lethal, CL), and a set of developmental lethal genes (DL) that are not 

essential at the cellular level but where LoF is lethal at the organism level. The IMPC viability 

pipeline also defines distinct sets of subviable (SV) and viable genes in LoF mice. The latter are 
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further split into those with an abnormal phenotype (VP, viable with significant phenotype/s), or 

those with a normal phenotype (VN, viable with no significant phenotypes detected). As a result, 

we obtained 5 mutually exclusive phenotype categories reflecting the Full Spectrum of 

Intolerance to Loss of function (FUSIL; Table 1). The correspondence between viable and SV 

genes in the mouse and non-essential genes in human cell lines was very strong (Table 1, Fig. 

1a). An almost complete correspondence was also found between the mouse genes that are 

lethal in LoF strains and their human orthologues being essential in human cell lines. However, 

while 35% of genes lethal in the mouse were essential in human cell lines (CL bin), the 

remaining 65% have not been identified as cell essential and were classified as essential for 

organism development (DL bin). A near identical pattern was observed when other cellular 

essentiality datasets were used from previously published studies16-18, with most genes ending 

up in the same category (96% overlap; Supplementary Fig. 1c, Supplementary Table 1).    

 

Genes essential for organism viability are involved in tissue development and 

morphogenesis 

An enrichment analysis of Gene Ontology biological processes showed that the two lethal 

FUSIL categories (CL and DL) were clearly involved in different biological processes (Fig. 1b, 

Supplementary Table 2). Whereas the set of CL genes was enriched for nuclear processes 

(DNA repair, RNA processing, regulation of nuclear division, among other cellular processes), 

the DL genes were enriched in morphogenesis and development functions (such as embryo 

development, appendage development, tissue morphogenesis and specification of symmetry). 

In contrast, genes in the SV and viable categories (VP, VN) were not significantly enriched in 

any biological process despite reasonable sample sizes, probably reflecting diverse roles for 

these genes. These results provide additional evidence to make a distinction between the two 

sets of lethal genes in terms of their biological function.  
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Early lethal genes in the mouse correlate with cellular essential genes 

For those genes found to be lethal, the IMPC performed a secondary viability assessment of 

null homozygous embryos to determine the time of embryonic death. Three windows of lethality 

were classified for 400 lethal genes: early gestation (49.25%), mid-gestation (12.50%) and late 

gestation lethal genes (38.25%), confirming previous findings that nearly half of embryonic lethal 

mouse embryos die prior to embryonic day E9.523. When this information was combined with 

the human cell dataset, we observed a strong concordance between the stage of embryo 

lethality and essentiality at the cellular level: 65% of early gestation lethal genes are essential in 

human cell lines, whereas only 10% of mid-gestation lethal genes and less than 5% of late 

gestation lethal genes fall into this category (Fig. 1c, Supplementary Table 3).  

 

Functional binning by viability and associated gene features  

Essential genes have been shown to be located in regions with lower recombination rates33,34 

and we observe an increasing trend of recombination rates of the regions containing the genes 

across the FUSIL gene categories from most to least essential, with CL genes representing a 

clearly distinct category and still significant differences between bins for most pairwise 

comparisons (Fig. 2a, Supplementary Table 4). Higher expression values have also been 

previously associated with essential genes16 and here a decreasing expression, as measured 

by median GTEx expression across the entire range of tissues and cell lines, is observed from 

most to least essential FUSIL bins (Fig. 2b). Similar continuous trends were observed for other 

gene features previously associated with essential genes, including protein-protein interaction 

network properties (Fig. 2c) or the likelihood of the gene product being part of a protein complex 

(Fig. 2d). CL genes also stand out as a singular category regarding the number of paralogues 

(Fig. 2e). 
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In contrast, features associated with mutational rate appear to peak in the DL or SV bins: 

probability of mutation based on gene context (Fig. 2f), transcript length (Fig. 2g), and strength 

of negative selection measured by gene-level integrated metric of negative selection (GIMS) 

scores (Fig. 2h). However, these observed increases in the DL and SV genes relative to CL 

were only statistically significant for transcript length (Supplementary Table 4). A similar effect is 

observed with several intolerance to variation scores from large genomic studies, where higher 

(but not statistically significant) values are observed in the DL and SV genes relative to CL (Fig. 

2i, Supplementary Fig. 2, Supplementary Table 4, Supplementary Table 5).  

 

Developmental lethal genes are enriched for human disease genes 

Previous studies have reported associations between disease and essential genes, or just 

organismal essential genes, using different criteria and datasets30,35. Our first report on 

developmental phenotypes showed a significant enrichment for disease genes in the IMPC 

essential genes23. By segmenting this set of genes into 3 mutually exclusive categories (CL, DL 

and SV; Fig. 3a), we found that whilst the CL and SV fractions showed a moderate enrichment 

for disease genes compared to all other categories (odds ratios, ORs > 1) and the two bins 

containing viable genes (VP and VN) were significantly depleted (ORs < 1), the highest 

overrepresentation of Mendelian disease genes was found in the DL fraction (2.6 fold-increased 

odds). This finding was consistent with an early study defining a set of peripheral essential 

genes27.  

Analysis of the mode of inheritance of the disease genes in each bin showed the CL fraction 

had the lowest proportion of autosomal dominant (AD) disorders, whilst the DL and VN fractions 

showed higher proportions (uncorrected P-values of 0.0143 and 0.004 respectively) (Fig. 3b), 

although the latter was based on a relatively small number of disease genes (40) with AD/AR 

annotations in this category relative to 119 and 286 seen in the CL and DL fractions 
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respectively. The proportion of known haploinsufficient genes in the disease genes was greatest 

in the DL fraction with twice as many as in the CL fraction (Fig. 3c). 

The Genome Aggregation Database (gnomAD) resource aggregates and harmonises exome 

and genome sequencing data from unrelated individuals representing broad populations and 

disease cohorts that are not known to be affected by a severe pediatric disease 

(http://gnomad.broadinstitute.org/). The analysis of the FUSIL categories for gnomAD’s 

observed/expected (o/e) LoF scores (upper bound fraction) which are used to evaluate a gene´s 

tolerance to LoF variation, showed that essential genes are more intolerant to inactivation 

compared to viable genes, and that the DL and SV categories showed the peak intolerance 

although the difference with respect to the set of CL genes was not significant (Fig. 3d, 

Supplementary Table 5). Again, this is consistent with an overrepresentation of AD disorders 

among DL genes. Similar results were found when we investigated other intolerance scores 

(Supplementary Fig. 2, Supplementary Table 5).  

The proportion of disease genes associated with an early age of onset (antenatal/prenatal and 

neonatal) was highest in the CL and DL gene sets, with the percentage of later onset associated 

genes increasing as we move towards more viable categories (Fig. 3e). The degree of 

pleiotropy, measured by the number of physiological systems affected according to HPO 

annotations, followed a similar pattern, with CL and DL genes showing the highest number of 

affected systems (Fig. 3f). 

In summary, our results suggest that disease genes in the DL fraction correlated with earlier 

ages of onset, multiple affected systems and autosomal dominant disorders (Supplementary 

Table 6). Given this, we compared the genes in our FUSIL bins with the genes associated with 

developmental disorders as reported by the DDD consortium in the Development Disorder 

Genotype - Phenotype Database (DDG2P) and found a strong enrichment in the DL FUSIL bin 
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for developmental disease genes (3.3 fold-increase; Fig. 3g). The DDD resource has a larger 

representation of non-consanguineous patients with de novo mutations compared to the OMIM 

and Orphanet resources36, so we next compared enrichment of DL genes by mode of 

inheritance across the three resources and found the strongest enrichment for monoallelic 

disease genes in the DDD resource (Fig. 3h).  

This result is particularly relevant for the identification of new disease genes using these FUSIL 

bins: for Mendelian genes, despite the enrichment in the DL fraction, the highest proportion was 

still found in the much larger VP bin (Fig. 3a, h), but for developmental disorders, as 

represented by DDG2P, the DL fraction contained the majority of genes, reaching a percentage 

close to 50% for monoallelic disease genes (Fig. 3g,h). Thus, we attempted to identify strong, 

novel candidate genes for undiagnosed cases of autosomal dominant, development disorders 

by extracting 163 genes from the DL bin genes (n=764) which had the following properties: (i) 

not described as associated with human disease by OMIM, Orphanet or DDG2P and (ii) highly 

intolerant to a LoF mutation (pLI > 0.90 or o/e LoF upper bound < 0.35 or HI < 10). We next 

focused on unsolved diagnostic cases from three large rare disease sequencing programs to 

investigate potential disease candidates within our set of 163 prioritised DL genes 

(Supplementary Table 7). 

First, DDD makes publicly available a set of rare de novo and/or homozygous, hemizygous or 

compound heterozygous LoF research variants from unsolved cases of genetic developmental 

disorders in genes that are not associated with human disease according to OMIM and DDG2P, 

with nearly 14,000 children sequenced to date in the UK DDD study. Given recent findings from 

DDD that most developmental disorders cases could be explained by de novo coding 

mutations36 we searched for heterozygous, de novo variants in this dataset that affected any of 

the prioritised 163 DL candidate genes described above and found variants in 44 genes that 

met these criteria. 
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Secondly, we searched 18,000 rare disease cases from the 100,000 Genomes Project 

(100KGP) and discovered de novo variants in undiagnosed patients with intellectual disability in 

47 of the 163 genes in our candidate set. 

Lastly, the Centers for Mendelian Genomics (CMG), a collaborative network of Centers to 

discover new genes responsible for Mendelian phenotypes provides a list of phenotypes studied 

and potential associated genes37 for some 2,000 genes. A set of 14 genes overlapping with the 

DL candidates are classified as either Tier 1 (mutations have been identified in multiple kindreds 

or fall within a significant linkage analysis peak or the phenotype has been recapitulated in a 

model organism) or Tier 2 genes (strong candidates but in most cases mutations within those 

genes have only been found in one kindred). 

There was some degree of overlap between the candidates identified in the 3 programs (Fig. 

4a) and for the next stage we focused on the genes with evidence from both the 100KGP 

(where we had detailed patient phenotypes and variant information) and either DDD (variants 

and high level phenotypes available) or the CMG (gene and high level phenotypes available). 

We particularly focused on 9 genes where the associated variants were not present in any 

population in gnomAD and each gene was also intolerant to missense variation (o/e missense < 

0.8; Fig. 4b, Supplementary Table7). For these genes, further evidence for candidacy was 

gathered based on the number of unrelated families and phenotypic similarities between them, 

protein-protein interactions with known developmental disorder genes, embryonic and adult 

mouse gene expression in relevant tissues, and embryonic and adult mouse phenotypes that 

recapitulate the clinical phenotypes. Here we present two examples, VPS4A and TMEM63B, 

where the patient phenotype and genetic evidence is compelling as well as showing pheno-

copying in the mouse where the IMPC has produced the first knockout lines for these genes. 

For the other 7 genes, there was typically functional data strengthening the association but the 

patient evidence is currently less strong as we only have single, intellectual disability cases with 
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detailed clinical phenotypes, or de novo variants are also observed in cases affected with other 

types of rare disease.    

VPS4A (HGNC:13488, vacuolar protein sorting 4 homologue A) had no previously reported 

pathogenic variants and is highly intolerant to LoF and missense variants (gnomAD v.2.1., pLI = 

0.928, o/e LoF = 0.139, o/e missense = 0.532). De novo variants in VPS4A were detected in 

two unsolved, 100KGP intellectual disability cases but not in any of the other 18,000 cases 

representing most types of rare disease. These variants are not observed in gnomAD and both 

patients exhibited consistent intellectual disability, developmental delay, delayed motor 

development, microcephaly and eye abnormalities including cataracts (Supplementary Table 8, 

Supplementary Fig. 3). In addition, a Tier 2 CMG candidate was described with similar 

phenotypes of microcephaly, epilepsy, frontoencephalocele, right spastic hemiparesis and 

psychosocial retardation (Supplementary Table 8, Supplementary Fig. 3). The IMPC’s data for 

the first mouse knockout of the orthologous Vps4a gene, indicated preweaning lethality of the 

homozygotes and, in the case of the heterozygotes, abnormal skin morphology, enlarged 

spleen, and lens opacity, potentially modelling the eye phenotypes seen in the patients. LacZ 

staining in E12.5 embryos showed widespread expression. While the LoF mutants are lethal at 

P14, secondary viability of Vps4a mutants shows that they are viable at E18.5 (6/30, 20%), but 

display gross abnormalities at manual observation by and micro-Computed Tomography (CT) 

imaging. Homozygous Vps4a E18.5 embryos are smaller than wildtypes, with abnormal body 

curvature, omphalocele, small and compressed heart, abnormal spinal cord curvature, and 

abnormal brain development. Within the brain, microCT images showed evidence of 

abnormalities in the thalamus, thinning of the midbrain, and a smaller cerebellum and pons 

compared to the wild type (WT) littermates. The volume changes of the midbrain/ cerebellum/ 

pons might also be related to the enlargement of the fourth ventricle (Fig. 4c). Interestingly, 

VPS4A is known to directly interact in human with an intellectual disability gene, CHMP1A, from 
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NMR, affinity chromatography, pull down and two hybrid assays, and both are part of the 

necroptosis and endocytosis pathways38. Variants in CHMP1A cause pontocerebellar 

hypoplasia type 8 (OMIM:614961), with similar phenotypes to patients with VPS4A variants: 

severe psychomotor retardation, pontocerebellar hypoplasia, decreased cerebral white matter, 

thin corpus callosum, abnormal movements, hypotonia, spasticity, and variable visual defects. 

GTEx shows particularly high levels of gene expression across all tissues, both disease and 

non-disease related. Similarly, high levels of expression were also seen in WT mouse embryos 

from 4 to 36 somites according to Deciphering the Mechanism of Developmental Disorders 

(DMDD)39. 

TMEM63B (HGNC:17735, transmembrane protein 63B), is also extremely intolerant to loss of 

function and missense variants (gnomaD v. 2.1., pLI = 1.00, o/e LoF = 0.07, o/e missense = 

0.475) but has no previously reported pathogenic variants. De novo variants in unsolved, 

developmental disorder cases were identified in one DDD case and four, unrelated 100KGP 

participants with intellectual disability but none of the other 18,000 100KGP cases 

(Supplementary Table 9). These variants are not observed in gnomAD and the exact same 

variant (ENST00000259746:c.130G>A) was detected in three of the families, causing a 

p.44Val>Met change in a transmembrane helix that is predicted to be pathogenic. The clinical 

data (Supplementary Table 9, Supplementary Fig. 4) available from the four 100KGP cases 

showed consistent intellectual disability and abnormal movement and brain morphology 

phenotypes, with seizures also observed in three of the patients. For the DDD case, the high 

level phenotypes available were consistent with the 100KGP cases. IMPC data for the first 

mouse knockout of the orthologous Tmem63b gene showed preweaning lethality of the 

homozygotes and, in the case of the heterozygotes, abnormal behaviour, hyperactivity and limb 

grasping phenotypes that are consistent with the human patients. Expression analysis placed 

TMEM63B in a cluster of genes that are expressed at medium levels from early to late 
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development. GTEx showed high levels of gene expression in disease-related tissues, 

particularly for the brain cerebellum and muscular-skeletal tissues. High levels of expression 

were also seen across all mouse embryonic developmental stages (according to DMDD) with 

GXD data and the IMPC’s mouse embryo lacZ annotation supporting neuronal expression 

during development (Fig. 4d). 

 

DISCUSSION 

The current diagnostic rate of large-scale, rare disease sequencing programs ranges from 20-

40%40,41 leaving the majority of patients without a diagnosis and with the associated personal, 

psycho-social and healthcare cost this entails. New disease-gene discovery methods are 

needed to complement deeper sequencing approaches currently being employed to identify 

disease-causal variants beyond single-nucleotide variants in the coding region42. Here we 

demonstrate that the FUSIL categorisation of gene essentiality, combined with intolerance to 

variation scores, patient phenotypes and their overlap with those observed in mouse lines with 

null alleles can assist in the prioritisation of disease-causal variant candidates. We show an 

enrichment for disease genes among developmental essential genes, which is consistent with 

the proposed model where disease associated genes occupy an intermediate position between 

highly essential and non-essential genes29,43,44. In this model, highly essential genes will not be 

associated with human diseases because any function-altering mutation will likely lead to 

miscarriage or early embryonic death. Our results provide evidence that highly essential genes 

needed for cellular processes are less likely to be associated with disease than developmental 

essential genes, suggesting a new complementary approach and resource for finding such 

disease genes and understanding disease mechanisms.  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/678250doi: bioRxiv preprint 

https://doi.org/10.1101/678250


16 
 

An interesting finding was the dichotomy of trends observed for gene-associated features. For 

certain gene features, we replicate previously observed trends where genetic features are most 

differentiated between the two ends of the FUSIL spectrum e.g. genes with paralogues, gene 

expression, number of protein-protein interactions or the likelihood of being part of a protein 

complex16,29,45. The CL bin shows the lowest rates of recombination, and both the CL and DL 

fractions exhibit significantly lower rates than the viable categories. This is consistent with 

previous findings that genes with essential cell functions, and showing accumulation of disease-

associated mutations, concentrate in genomic regions with suppressed recombination33,34. The 

strong enrichment of CL genes for presence in protein complexes and a lack of paralogues 

would suggest these genes should be particularly intolerant to damaging mutations with no 

functional compensation that has evolved to buffer critical cell processes16,46,47. For other gene 

features associated with mutational rate, the trends peak in the DL and SV bins (e.g. transcript 

length, constraint scores) leading to the counter-intuitive observation that CL genes are less 

constrained against variation than DL genes, however the differences between these two 

categories are non-significant for the different constraint scores evaluated. The significant 

enrichment for longer transcript lengths and Mendelian disease genes aligns with previous 

observations that disease genes tend to be longer48,49, and genetic variant intolerance metrics 

such as shet, pLI, and o/e LoF are highly dependent on gene length7,14. In fact, one caveat of 

these scores is that short genes and recessively acting genes may go undetected14.   

Recent analysis from the DDD study estimates that de novo heterozygous variants will be the 

cause for nearly half of all undiagnosed, non-consanguineous individuals with developmental 

disorders36. Since these early onset disorders are particularly overrepresented among 

developmental lethal genes, we focused on a set of unsolved developmental disorder cases 

from DDD, the 100KGP and CMG. Research candidates were identified in half (82) of the 163 

highly LoF intolerant genes we selected from the DL fraction that have not previously been 
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associated with Mendelian disease. Nine genes in particular were observed in multiple consortia 

and are based on de novo variants in unsolved cases of developmental disorders that have 

never been observed in the general population. Further exploration of overlapping genotypes 

and phenotypes in the patients as well as embryonic and adult mouse phenotype evidence from 

the IMPC, alongside expression and protein-protein interactions with known developmental 

disorder genes, strengthened these novel associations. Two genes were particularly compelling 

from a clinical perspective as variants were only observed in intellectual disability cases and in 

multiple, unrelated families with specific phenotypes in common. The same de novo variant in 

TMEM63B was observed in 3 separate DDD and 100KGP patients with consistent intellectual 

disability, movement and brain morphology phenotypes that were recapitulated in the IMPC 

Tmem63b mutant mouse. Concordant phenotypes were also observed in 3 patients with VPS4A 

variants from the CMG and 100KGP and in the E18.5 mutant mouse embryos from the IMPC. 

Future identification of other families with similar variants segregating with disease and 

functional characterisation of the specific human variants will be required to establish a definitive 

role for these genes in disease. The IMPC partners are already supporting the CMG, 100KGP, 

other disease sequencing projects such as KidsFirst, and the wider rare disease community 

through Crispr/Cas9 production and phenotyping of mouse lines modelling patient-specific, 

potentially pathogenic variants.  

Cross-species data integration is not without its limitations. Not all human genes have a clear 

one-to-one orthologue in the mouse genome; in particular certain gene families, such as 

immune receptor genes, are rapidly evolving in both species. In addition, a significant proportion 

of the mouse protein-coding genome is not yet phenotyped by the IMPC and is without viability 

data. We chose to focus on high-quality, public IMPC viability calls based on robust statistical 

methodologies in this investigation, and not to integrate the numerous, additional data from 

literature curation of mice with knockout alleles because the variation in methods, genetic 
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context and gene targeting approach are known to affect embryonic lethality. Indeed, we 

observed a ~10% disagreement between embryonic lethality published in the literature on a 

variety of genetic backgrounds vs the IMPC observations made exclusively on an inbred 

C57BL/6N background (Methods and Supplementary Fig. 5). Human cell line data also has 

caveats, including the haploid nature of some of the cell lines and the use of immortalised cell 

lines, which may result in the identification of some genes as essential that are not in the 

context of multi-cellular systems. The gene-based constraint scores based on human 

sequencing data primarily identify selection against heterozygous variation and may fail to 

detect short genes and recessively acting genes, while the homozygous viability screens in 

knockout mice typically measure recessive effects. In fact, for 1,015 genes that were lethal in 

homozygous LoF mouse lines and further investigated in heterozygous mice, 1,013 resulted in 

viable phenotypes. Hence, a moderate overlap between the set of essential genes identified 

through the different approaches is to be expected14. Further investigation into haploinsufficient, 

essential genes in the mouse is more technically challenging but may reveal further disease 

candidates.  

In summary, this study highlights how the information on gene essentiality may be used to 

prioritise potential pathogenic variants in new disease genes from human sequencing studies. 

Clinical researchers assessing candidate disease genes should consider using high quality 

model organism data in conjunction with gene constraint scores from human sequencing 

projects. We intend to incorporate such data into our Exomiser variant prioritisation tool50, which 

together with patient phenotypes, may facilitate the genetic diagnosis by prioritising genes in the 

relevant FUSIL category. Large-scale projects such as the IMPC and Broad Institute Project 

Achilles are continuing to generate ever larger datasets, making the resources richer and more 

robust for these analyses. Future work will explore the mechanisms behind how these redefined 
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essential categories correlate to other functional attributes and, ultimately, the evolutionary 

constraints imposed upon gene essentiality.  

 

METHODS 

In this study, we examined genes for which viability data for null homozygote mice has been 

produced by the International Mouse Phenotypic Consortium (IMPC, 

www.mousephenotype.org). We obtained high- to moderate-confidence human orthologues and 

integrated selected human genetic data. In particular, we incorporated gene viability data 

obtained in human cell screens (initially 11 cell lines corresponding to three studies)19; in this 

study we used the Broad Institute Project Achilles Avana dataset comprising 485 cell lines, 

release 18Q3 of August 2018). We also incorporate constraint scores (shet, RVIS, pLI and O/E 

LoF), disease information (OMIM, ORPHANET, HPO, DDD) and DMDD annotations (see below 

for details). We use HGNC and MGI as stable identifiers in our analysis to avoid problems 

associated with gene symbol changes (synonyms and previous symbols, which may lead to 

ambiguous identifiers). 

 

IMPC primary and embryo viability assessment 

We conducted an analysis on 4,934 genes with primary adult viability data currently available in 

IMPC Data Release (DR) 9.1. This release included the 1,751 genes previously analysed in 

Dickinson, et al. 23 and the 4,237 genes analysed in Munoz-Fuentes, et al. 19, corresponding to 

DR4.0 and DR7.0, respectively, and additional data collected since then.  

Viability data generated by the IMPC was analysed as defined in IMPRESS (the International 

Mouse Phenotyping Resource of Standardised Screens, 

https://www.mousephenotype.org/impress/). A minimum of 28 pups were genotyped before 
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weaning, and the absence of knockout (null) homozygote pups would classify the gene as 

lethal. Thus, lethal lines are defined as those with an absence of live null homozygous pups, 

while subviable lines are those with fewer than 12.5% live homozygous pups (half of the 25% 

expected; P < 0.05, binomial distribution). Viable mouse lines are those for which homozygous 

(null and wild type) and heterozygous pups are observed in normal Mendelian ratios. A viable 

call was also made when there were less than 28 total pups and homozygous null pups ≥ 4 (as 

this would result in ≥ 14% homozygous pups when 28 pups were genotyped). We filtered out 

genes for which sample size was insufficient (total pups < 28, n = 1 gene), hemizygous genes (n 

= 13 genes), as well as those with conflicting calls (genes that appear in more than one viability 

category, n = 34 genes). The resulting set comprises 4,886 genes, of which 1,171 had a lethal 

phenotype, 449 a subviable phenotype, and 3,266 a viable phenotype (24%, 9% and 67%, 

respectively). 

The IMPC also implements a dedicated embryonic pipeline for lethal lines, in which null 

homozygous embryo viability is assessed at selected stages during embryonic development, 

including embryonic day (E) 9.5, E12.5, E14.5-E15.5, and E18.5. Viability at a given stage is 

assessed by scoring homozygous embryos for the presence of a heartbeat at dissection, as 

described in Dickinson, et al. 23. To establish windows of lethality, we considered a gene lethal 

at a given stage if no live homozygous embryos were identified after scoring at least 28 live 

embryos, and viable if any live homozygous embryos were identified, irrespective of additional 

phenotype features. Following Dickinson, et al. 23, we defined windows of lethality as “prior to 

E9.5”, “E9.5-E12.5”, “E12.5-E14.5/E15.5”, “E15.5-E18.5”, “after E14.5/E15.5”, and “after E18.5”. 

Lines with incomplete data to define these windows were excluded. For this study, windows 

were combined to yield three functional groups: early (gestation) lethal (prior to E9.5), 

intermediate (mid gestation) lethal (E9.5-E12.5, E12.5-E14.5/E15.5) and late (gestation) lethal 

(E14.5/E15.5-E18.5, after E14.5/E15.5 and after E18.5). Out of 523 for which secondary screen 
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data are available, 400 could be assigned to one of the described windows. Additional time 

points are required to complete the window assignment for the remaining 123 genes 

(Supplementary Table 3).  

 

Orthologue mapping 

Orthologues were obtained using the HCOP tool developed by HGNC, based on 12 established 

inference methods (https://www.genenames.org/tools/hcop/, HCOP file with human and mouse 

orthologue inferences downloaded 18.10.31)51. We determined the confidence on the 

orthologue prediction based on the number of methods that supported each inference (12-9 

methods, 100-75%, good-confidence orthologue; 8-5, 67-42%, moderate-confidence 

orthologue; 4-1, 33-8%, low-confidence orthologue; 0 - no orthologue). We kept orthologues for 

which at least one gene, the human or the mouse gene, was protein coding and the orthologue 

inference score was ≥ 5. Of those, we kept genes for which in both directions, mouse-to-human 

and human-to-mouse, the score was maximum (and also filtered out genes with duplicated 

maximum scores). This resulted in 4,664 genes. Of these, 33 genes with conflicting viability 

phenotypes and 17 genes with no adult viability data and insufficient embryo data to call a 

phenotype were not considered further. Among the remaining 4,614 genes, 1,185 (26%) genes 

had a lethal phenotype, 443 (9%) a subviable phenotype, and 2,986 (65%) a viable phenotype. 

Of these, 4,446 genes had human cell viability data (Avana data set; see next section).  

 

Human cell essentiality 

In our previous study19, we used viability data as reported for 11 cell lines from 3 studies16-18. 

Here we used the Broad Institute Project Achilles Avana dataset, CRISPR-Cas9 proliferation 

(essentiality) scores. This data set comprises viability data on 17,634 genes in 485 cell lines 
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(release 18Q3 in August 2018), with lower values indicating more intolerance (more essential). 

The Avana data set presents several advantages as compared to the previous studies. It is a 

larger data set, viability is measured using the same units for all cell lines (allowing us to obtain 

a mean per gene) and the data are corrected for copy number variation21. Gene identifiers were 

provided as Entrez identifiers (NCBI) and converted to HGNC identifiers. 

 

Determining functional bins 

For each gene, we obtained a mean of the Avana proliferation scores and integrated with our 

dataset of mouse genes with viability data based on the mouse-to-human orthologues (obtained 

as described above). We observed that for genes with an Avana mean score below -0.45, the 

mouse null homozygotes were lethal in almost all cases, while genes with an Avana mean score 

above -0.45 presented lethal, subviable or viable phenotypes (Supplementary Fig. 1a, 

Supplementary Fig. 1b). A similar pattern was observed when a different resource for cell 

essentiality –based on 11 cell lines from 3 different studies – was used (methods and threshold 

criteria explained in Munoz-Fuentes, et al. 19 (Supplementary Fig. 1c). 

F1 scores were derived from confusion matrices generated when considering different Avana 

mean scores and the classification from the previous studies, and a mean score cut-off of -0.45, 

was found to maximise the F1 scores across the different datasets (Supplementary Fig. 1d, 

Table 1, Supplementary Table 1). We therefore set a threshold where a mean Avana score 

equal to or below -0.45 were considered essential in cell lines, while the set above -0.45 

corresponded to cellular non-essential genes. Based on all this evidence, we categorised two 

sets of genes, Cellular Lethal (CL) and Developmental Lethal (DL) genes, comprising 413 and 

764 genes, respectively (Table 1). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/678250doi: bioRxiv preprint 

https://doi.org/10.1101/678250


23 
 

Genes with a subviable or viable phenotype were classified for their human orthologue almost in 

all cases as non-essential (Avana mean score for each gene > -0.45), except for 16 and 22 

genes for the subviable and viable categories, respectively, which had a mean Avana scores 

below but very close to the -0.45 threshold). These genes were non-essential based on data 

from the 3 human cell studies.  Thus, we distinguish a Subviable group (SV) with Avana mean 

score > -0.45, as well as two outlier groups, SV.outlier and V.outlier, with Avana mean score ≤ -

0.45. We classified viable genes further, in those with at least one IMPC significant phenotype 

(VP) or no IMPC significant phenotypes (VN). A number of viable genes (n=627) had less than 

50% phenotype procedures obtained so far as the IMPC releases are snapshots of ongoing 

characterisation for many lines, and thus we termed them V.insuffProcedures (Supplementary 

Table 10). 

These categories, established using the Avana cell scores, were almost identical (96% 

concordance) to those established using a gene essentiality classification (essential / non-

essential) based on the 11 cell lines from 3 studies as described previously19.  

All the subsequent analysis focused on the main five FUSIL bins: CL, DL, SV, VP and VN. 

Sankey diagrams representing the mappings between mouse and human cell essentiality 

categories were plotted with the R package alluvial52. Gene Ontology Biological Process 

enrichment was conducted with the R package category53, with the entire set of IMPC genes as 

the reference set. BH method was applied for multiple testing correction54 and plotted using the 

REVIGO algorithm for semantic similarity and redundancy reduction55. The algorithm selects 

GO term representatives out of the significant results, maximising semantic representation and 

enriched/statistical significance (settings: SimRel semantic similarity measure, medium 

similarity, Homo sapiens database). Significant results were only found for CL and DL gene 

categories. In Fig. 1b, bubble size is proportional to the frequency of the term in the database 

and the colour indicates significance level as obtained in the enrichment analysis 
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Previous knowledge on mouse viability  

The IMPC is an ongoing project. Given that about ¼ of the mouse genome has been screened 

for viability to date, we decided to compare our results with previous annotations from Mouse 

Genome Informatics (MGI)56. We found a total of 4,599 mouse genes with embryo lethality 

annotations (50 Mammalian Phenotype Ontology terms as described in Dickinson, et al. 23 once 

conditional mutations were excluded from a total of 13,086 genes with any phenotypic 

annotation (including normal phenotype). That would mean that approximately 35% of the 

genes for which a knockout mouse has been reported in the literature and curated by the MGI 

showed some type of embryo / perinatal lethality. As the MGI resource also includes IMPC data, 

we subsequently excluded those gene-phenotype associations corresponding to IMPC alleles. 

This results in 9,254 mouse genes with phenotypic annotations other than IMPC with a PubMed 

ID (old papers with no abstract available, conference abstracts and direct data submissions 

were therefore excluded for this analysis). For 3,362  (36%) of these genes, we found 

annotations related to embryonic lethality. 

Even though the procedures for determining viability may differ from the standardised viability 

protocol followed by the IMPC, this percentage is very close to that found using IMPC data, with 

26% of the screened genes lethal and 10% of the screened genes subviable. For 2,115 mouse 

genes with both IMPC and non-IMPC phenotypic annotations available to infer viability, we 

found discrepancies for a set of 63 genes that were scored as lethal by the IMPC and with no 

previous records of lethality in MGI, as well as 154 genes scored as viable by the IMPC and 

with some type of lethality annotation reported in MGI (Supplementary Fig. 5, Supplementary 

Table 11).  (Mouse Genome Database (MGD) at the Mouse Genome Informatics website [ 

http://www.informatics.jax.org ; MGI_GenePheno.rpt; Data Accessed 19.02.06].  
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Constraint scores of gene variation based on human population data 

The Residual Variation Intolerance Score (RVIS)5 was downloaded from http://genic-

intolerance.org/, version CCDSr20, with lower values indicating more intolerance to variation. 

Estimates of selection against heterozygous protein-truncating variants (shet) were obtained 

from the supplementary material of  Cassa, et al. 12 with higher values indicating more intolerant 

to variation. The probability of a gene being intolerant to loss of function (pLI)6, with higher 

values indicating more intolerance, the observed / expected (o/e) ratio of Loss of Function (LoF) 

with the corresponding upper bounds (LOEUF) the (o/e) ratio of missense and the (o/e) ratio of 

synonymous alleles, with lower values indicating more intolerance to variation, were retrieved 

from gnomAD2.1 (hhttp://gnomad.broadinstitute.org/)7,57. The haploinsufficiency score (HI), was 

obtained from the Deciphering Developmental Disorders (DDD) consortium 

(https://decipher.sanger.ac.uk/about#downloads/data , downloaded BED file, 18.11.27, 

Haploinsufficiency Predictions Version 3)58. High ranks (e.g. 0-10%) indicate a gene is more 

likely to exhibit haploinsufficiency while low ranks (e.g. 90-100%) indicate a gene is more likely 

to NOT exhibit haploinsufficiency. In all cases, gene identifiers were obtained as symbols and 

converted to HGNC IDs using the multi-symbol checker provided by HGNC 

(https://www.genenames.org/tools/multi-symbol-checker/). 

 

Gene features 

Recombination Rates 

We used the average genetic map computed from the paternal and maternal genetic maps from 

Halldorsson, et al. 59 (Data S3). The recombination rate (cMperMb) in intervals provided were 

mapped to the closest protein coding gene - Ensembl 96 GRCh 38 - (upstream or downstream) 

by means of R_bedtools_closest function in HelloRanges library60. Gene positions were 
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obtained through biomaRt61. Once we assigned the recombination rates for the intervals 

provided to a certain gene, average recombination rates per gene were computed.  

 

Gene expression 

Gene median TPM values by tissue were downloaded from the GTEx portal 

[https://gtexportal.org/home/datasets, Accessed 18.12.02 ,file ” GTEx_Analysis_2016-01-

15_v7_RNASeQCv1.1.8_gene_median_tpm.gct.gz”]62. Gene symbols were mapped to HGNC 

ID identifiers. Spearman correlation coefficients between gene expression values across tissues 

were estimated, only TPM values for relevant (non-correlated) tissues were considered for 

further analysis. 

 

Protein-protein interaction data 

Human protein-protein interaction data were downloaded from STRING website [Accessed 

18.11.18]. Only high confidence interactions, defined as those with a combined score > 0.7 

were used for further analysis63. Ensembl protein IDs were mapped to  HGNC IDs using 

Ensembl biomaRt (Ensembl Genes 94)61. Several network parameters for every node in the 

network were computed with Cytoscape (v3.5.1) plug-in Network Analyzer64,65. Spearman 

correlation coefficients between different network parameters were estimated, only non-

correlated parameters were considered for further analysis. 

 

Protein complexes 

A core set of human protein complexes was downloaded from Corum 3.066 

(http://mips.helmholtz-muenchen.de/corum/#download) [Accessed 18.12.03]. Gene symbols 

were mapped to unambiguous HGNC ID identifiers corresponding to protein coding genes. 
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Paralogues 

Paralogues were retrieved with biomaRt (https://www.ensembl.org/biomart). Ensembl Genes 95 

version [Data accessed 19.02.18]. Only genes with HGNC IDs were considered, and only those 

protein coding paralogues with an HGNC ID were kept for downstream analysis. A cut-off of 30 

for the percent of identical amino acids in the paralogue compared with the gene of interest was 

used for the computation. 

 

Probability of mutation 

Per-gene probabilities of mutations (all types of mutations) were obtained from Samocha, et al. 

67. Gene symbols were mapped to HGNC IDs. (Probabilities are shown as 10^all). 

 

Transcript length 

Transcript lengths were retrieved with biomaRt R package (Ensembl Genes 96, 

hsapiens_gene_ensembl dataset). For each HGNC ID, the maximum transcript lengths was 

computed from all the gene transcripts61.  

 

Selection Scores 

Gene-level Integrated Metric of negative Selection (GIMS) scores, which combine multiple 

comparative genomics and population genetics to measure the strength of negative selection 

were obtained from Sampson, et al. 68  (Table_S1) and Alyousfi, et al. 69. Gene symbols were 

mapped to unambiguous HGNC ID identifiers. 
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Human disease genes annotations and analysis 

Gene-disease associations 

Disease associated genes curated by OMIM70 and Orphanet71 were analysed through our 

PhenoDigm pipeline72 [Data accessed 19.01.16]. DECIPHER developmental disorders genes 

are defined as those “reported to be associated with developmental disorders, compiled by 

clinicians as part of the DDD study to facilitate clinical feedback of likely causal variants. The 

DDG2P is categorised into the level of certainty that the gene causes developmental disease 

(confirmed or probable), the consequence of a mutation (loss-of function, activating, etc) and 

the allelic status associated with disease (monoallelic, biallelic, etc)” [DDG2P version: 

DDG2P_19_2_2019.csv; https://decipher.sanger.ac.uk/ddd#ddgenes]. 

 

Mode of inheritance and physiological systems affected 

Mode of Inheritance and number of physiological systems affected were annotated for each 

gene according to Human Phenotype Ontology annotations 

[https://hpo.jax.org/app/download/annotation, Downloaded 19.02.19]. The file 

ALL_SOURCES_ALL_FREQUENCIES_genes_to_phenotype.txt provides a link between genes 

and HPO terms8. Autosomal recessive inheritance (HP:0000007) and Autosomal dominant 

inheritance (HP:0000006) annotations were selected for downstream analysis. Phenotype 

ontology terms associated with each gene were mapped to the top level of the HPO to compute 

the number of unique physiological systems affected.  

An additional set of haploinsufficient genes from ClinGen73 (https://www.clinicalgenome.org/)  

(n=295) was used for the analysis [https://github.com/macarthur-lab/gene_lists; Data accessed 

19.02.19]. 
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Age of onset 

The age of onset was obtained from rare diseases epidemiological data (Orphadata) 

[http://www.orphadata.org/cgi-bin/epidemio.html; Data accessed,19.02.13]. The earliest age of 

onset associated with each gene was selected for downstream analysis. 

 

Disease gene enrichment  

For each FUSIL bin, odds ratios were computed from a contingency table with the number of 

disease (combined OMIM and ORPHANET) and non-disease genes for each one of the 

categories versus the remaining set of IMPC genes with FUSIL information. Odds Ratios were 

calculated by unconditional maximum likelihood estimation (Wald) and Confidence Intervals 

using the normal approximation, with the corresponding two-sided P-values for the test of 

independence calculated using Fisher’s exact test as implemented in the R package epitools74 

(adjusted P-values,  BH adjustment54). 

 

Candidate developmental disorder genes annotation and prioritisation strategy 

A gene set consisting of those developmental lethal genes (n = 764) that were not associated to 

a Mendelian disorder according to OMIM, ORPHANET or DECIPHER (n=387) and highly likely 

to be haploinsufficient (HI % < 10 | o/e lof upper bound < 0.35 | pLI > 0.90) (n=163) was used to 

identify candidate genes for undiagnosed cases of developmental disorders with heterozygous 

mutations.  

DECIPHER developmental disorders (DDD)2 research variants (found in ~2,000 genes) were 

downloaded from https://decipher.sanger.ac.uk/ddd#research-variants [Accessed 18.11.05]. 
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Centers for Mendelian Genomics (CMG)75 Tier 1 and Tier 2 level genes (~ 2,000 genes) were 

obtained from  http://mendelian.org/phenotypes-genes [Accessed 19.28.02]. 

De novo variants in undiagnosed patients with intellectual disability from the 100,000 Genomes 

Project (100KGP) and associated clinical phenotypes (HPO terms) were extracted by querying 

the data available in the GeCIP research environment [Accessed 18.10.20] and intersecting with 

our set of 163 prioritised genes.  

Research candidates were identified in 82 of the 163 prioritised genes (highly LoF intolerant not 

previously been associated with Mendelian disease). Out of the total number of 47 genes with 

heterozygous de novo variants from undiagnosed cases in the 100KGP project and with 

extensive clinical phenotype available, 19 overlap with genes with heterozygous de novo 

variants from the DDD set of research candidates and 4 of them with Tier1 or Tier 2 genes from 

CMG (of which 2 were shared between the 3 datasets). We next focused on this set of 

overlapping genes to narrow down the search for strong candidates, we discarded those genes 

where the variants were present at any frequency in gnomAD along with those intolerant to 

missense variation (gnomAD o/e missense score < 0.8). This resulted in 9 genes that were then 

prioritised based on the presence of unrelated probands with phenotypic similarities and the 

existence of knockout mice – with embryonic and/or adult phenotypes - mimicking the clinical 

phenotypes. 

The R package eulerr76 was used to create the Venn diagram and the ontologyPlot77 R package 

was used for the visualisation of the patient phenotypes as subgraphs of the HPO. 

For the set of candidate genes, expression analysis was conducted using BrainSpan78 and 

FUMA Gene2Func79 with all protein-coding genes as a background. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 24, 2019. ; https://doi.org/10.1101/678250doi: bioRxiv preprint 

https://doi.org/10.1101/678250


31 
 

Other mouse annotation resources include: Deciphering the Mechanism of Developmental 

Disorders (DMDD)39 (https://dmdd.org.uk/); GXD resource80; IMPC mouse embryo lacZ imaging 

(http://www.mousephenotype.org/data/imageComparator?&parameter_stable_id=IMPC_ELZ_0

63_001&acc=MGI:2387609). 

 

Software 

R software81 including the following additional packages were used for data analysis and 

visualisation: dplyr82, ggplot283, cowplot84, ggpubr85. 

 

Ethical approval 

Mouse production, breeding and phenotyping at each centre was done in compliance with each 

centre's ethical animal care and use guidelines in addition to the applicable licensing and 

accrediting bodies, in accordance with the national legislation under which each centre 

operates. All efforts were made to minimize suffering by considerate housing and husbandry. All 

phenotyping procedures were examined for potential refinements disseminated throughout the 

IMPC. Animal welfare was assessed routinely for all mice. 

All patient data used in this study was either accessed through the public websites provided by 

DDD and the CMG or, in the case of the 100KGP, through the research environment provided 

by Genomics England and conforming to their procedures. All participants in the 100KGP have 

provided written consent to provide access to their anonymised clinical and genomic data for 

research purposes. 
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Tables 

Table 1. FUSIL categories. Integration of data from human cell essentiality screens from the 

Avana dataset and mouse phenotypes from IMPC screens defines 5 mutually exclusive 

categories of intolerance to loss of function.  

 

Mouse category Human cell line 
category 

Number 
of genes 

% Overlap FUSIL category 

Lethal 

Essential 413 35.09 % Cellular lethal (CL) 
 

Non-essential 764 64.91 % Developmental 
lethal (DL) 

 
Subviable 

Essential 
 

16 3.66 % - 

Non-essential 
 

421 96.34 % Subviable (SV) 

 
 
 
 
 
Viable 

With 
phenotypic 
abnormalities 

Essential 18 0.95 % - 

With 
phenotypic 
abnormalities 

Non-essential 1,867 99.05 % Viable with 
phenotype (VP) 

With normal 
phenotype 

Essential 2 0.62 % - 

With normal 
phenotype 

Non-essential 318 99.38 % Viable with no 
phenotype (VN) 
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Figures 

Fig. 1. Cross-species FUSIL categories of intolerance to LoF. a) Correspondence 

between primary viability outcomes in mice and human cell line screens. The sankey 

diagram shows how human orthologues of mouse genes with IMPC primary viability 

assessment (lethal, subviable and viable) regroup into essential and non-essential human cell 

categories; the width of the bands is proportional to the number of genes. b) Gene Ontology 

Biological Process (GO BP) enrichment results. Significantly enriched GO terms at the 

biological process level were computed using the entire set of IMPC mouse-to-human 

orthologues as a reference (Table 1). Significant results were only found for the cellular and 

developmental lethal gene categories. Bubble size is proportional to the frequency of the term in 

the database and the colour indicates significance level as obtained in the enrichment analysis. 

The GO terms associated to embryo development are in bold. c) Correspondence between 

mouse embryonic lethality stage and essentiality in human cell lines. Embryonic lethal LoF 

strains are assessed for viability at selected stages during embryonic development: early 

(gestation) lethal (prior to E 9.5), mid (gestation) lethal (E9.5-E14.5/15.5), late (gestation) lethal 

(E14.5/E15.5 onwards). E, embryonic day. 

Fig. 2. FUSIL categories and gene features. (CL, cellular lethal CL; DL, developmental lethal; 

SV, subviable; VP viable with phenotypic abnormalities; VN, viable with normal phenotype). a) 

Violin plots showing the distribution of recombination rates for the different FUSIL bins. 

Human recombination rates for genomic intervals59 were mapped to the closest gene and 

average recombination rates per gene were computed (outliers not shown). b) Distribution of 

median gene expression values for different tissues. Median TPM expression values from 

GTEx for selected non-correlated tissues are shown (outliers not shown). c) Protein-protein 

interaction network parameters. Violin plots showing the distribution of degree and topological 

coefficient computed from human protein-protein interaction data extracted from STRING. Only 
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high confidence interactions, defined as those with a combined score of >0.7, were kept 

(outliers not shown). d) Protein complexes. Bar plots representing the percentage of genes in 

each FUSIL bin being part of a protein complex (human protein complexes). e) Paralogues. 

The barplot shows the percentage of genes without a protein-coding paralogue gene in each 

FUSIL bin. Paralogues of human genes were obtained from Ensembl Genes 95. A cutoff of 30% 

amino acid similarity was used. f) Probability of mutation. Distribution of gene-specific 

probabilities of mutation from Samocha, et al. 67(outliers not shown). g) Transcript length. 

Maximum transcript lengths among all the associated gene transcripts (Ensembl Genes 95, 

hsapiens dataset) (outliers not shown). h) GIMS Selection Score. Distribution of Gene-level 

Integrated Metric of negative Selection (GIMS)68 scores across the different FUSIL bins. i) 

Probability of being Loss-of-Function intolerant scores (pLI) retrieved from gnomAD2.1. 

Higher values indicate more intolerance to variation. Significance for pairwise comparisons for 

all features are shown in Supplementary Table 4. 

Fig. 3. Human disease genes and FUSIL bins (CL, cellular lethal CL; DL, developmental 

lethal; SV, subviable; VP viable with phenotypic abnormalities; VN, viable with normal 

phenotype). a) Enrichment analysis of Mendelian disease genes. Combined OMIM-

ORPHANET data was used to compute the number of disease genes in each FUSIL bin. Odds 

Ratios were calculated by unconditional maximum likelihood estimation (Wald) and confidence 

intervals (CI) using the normal approximation, with the corresponding adjusted P-values for the 

test of independence. b) Distribution of disease associated genes according to mode of 

inheritance. Disease genes with annotations regarding the mode of inheritance according to 

the Human Phenotype Ontology8. c) Haploinsufficient genes. Known haploinsufficient genes 

curated by ClinGen (% with respect to the total number of disease genes in each bin). d) 

Distribution of gnomAD o/e LoF scores. Upper bound of observed versus expected LoF 

score (gnomAD 2.1.). A score threshold of 0.35 (dashed line) has been suggested to identify 
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intolerant to LoF variation genes57. Distribution of genes across o/e LoF upper bound deciles. e) 

Age of Onset as described in rare diseases epidemiological data from Orphanet (Orphadata). 

The earliest age of onset associated to each gene was used. f) Physiological systems 

affected. The phenotypes (Human Phenotype Ontology, HPO) associated to each gene were 

mapped to the top level of the ontology to compute the number of unique physiological systems 

affected. g) Enrichment analysis of developmental disorder genes. DECIPHER2 set of 

genes was used to compute the number of developmental disorder genes in each FUSIL bin. h) 

Distribution of disease genes. Percent distribution of Mendelian and developmental disorder 

genes among the different FUSIL categories (colors representing FUSIL bins as in other 

figures).  Percent distribution of disease genes by mode of inheritance. 

Fig. 4. Developmental disorders gene candidate prioritisation. a) Venn diagram showing 

the overlap between DL prioritised genes with evidence from 3 large scale sequencing 

programs. Overlap between the set of 163 developmental genes highly intolerant to LoF 

variation (pLI > 0.90 or o/e LoF upper bound < 0.35 or HI < 10) and not yet associated to 

disease and the set candidate genes from three large rare disease sequencing consortia: 

100KGP, CMG and DDD. b) Set of 9 candidate genes. The selected genes met the following 

criteria: (1) evidence from both the 100KGP (with detailed clinical phenotypes and variants) and 

either DDD (variants and high level phenotypes available) or CMG (gene and high level 

phenotypes available), (2) the associated variants were not present in gnomAD; and (3) 

intolerance to missense variation; these genes were further prioritised based on the number of 

unrelated probands and the phenotypic similarity between them and the existence of a mouse 

knockout line with embryo and adult phenotypes that mimic the clinical phenotypes. c) Mouse 

evidence for VPS4A. IMPC embryonic phenotyping of homozygous mutants at E18.5 showed 

abnormal/curved spine and abnormal brain among other relevant phenotypes. The phenotypic 

abnormalities observed in heterozygous knockout mice include lens opacity. Heterozygous 
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mouse phenotypic similarity to known disorders as computed by the PhenoDigm algorithm. d) 

Mouse evidence for TMEM63B. IMPC homozygous mouse embryo lacZ imaging at E14.5 

supporting neuronal expression during development. Heterozygous IMPC knockout mice 

associated phenotypes included abnormal behavior evaluated through different parameters. 

The heterozygous mice showed a high phenotypic similarity with several developmental 

disorder phenotypes. 
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Fig.1 
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Fig.2 
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Fig.3 
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Fig. 4 
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