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Abstract  

Background: Vitamin D has been linked to a variety of diseases in observational studies. However, 

the causal role of vitamin D in human complex traits and diseases being unclear and under much 

debate. In this study, we used Mendelian randomization (MR) with genetic variants (as 

instrumental variables) to examine the causal role of vitamin D on various human complex traits 

and diseases. 

Methods: We performed MR analysis using genome-wide significant 25(OH)D SNPs from the 

latest vitamin D GWAS and 45 large-scale meta-GWASs on various outcomes (average sample 

size=137 112 per GWAS) to determine the causal role of 25(OH)D. We applied MR-Egger 

regression, MR-PRESSO, and weighted median approach to estimate the causal effect of 25(OH)D 

while examining and controlling for potential biases from horizontal pleiotropy. 

Results: We found limited evidence in support for causal effects of 25(OH)D on obesity-related 

traits, autoimmune diseases, cardiometabolic traits, neurological and psychiatric disorders. 

Sensitivity analysis using additional vitamin D instruments (association P<10-5) did not show any 

additional evidence for causal effect of vitamin D. Notably, we identified horizontal pleiotropy for 

20% of the trait pairs analyzed here.  

Conclusions: Despite the largely augmented sample size and substantially improved statistical 

power with the most recent, largest vitamin D GWAS, our MR analysis did not convincingly 

support a causal effect of circulating 25(OH)D on complex traits and diseases examined here. Our 

results can inform ongoing and future randomized clinical trials of vitamin D supplementation. 

Future studies are warranted to prioritize the most promising target diseases for vitamin D 

intervention.  
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Introduction 

Vitamin D and its major circulating form, 25-hydroxyvitamin D [25(OH)D], is a fat soluble, 

steroid pre-hormone that plays an essential role in human health. Vitamin D deficiency has long 

been observed to be associated with rickets and osteomalacia.1 In addition, a variety of common 

diseases such as cancer, autoimmune inflammatory diseases, cardiovascular conditions and 

diabetes, have been reported to be linked with vitamin D in observational studies.2-6 However, 

measurement error, confounding or reverse causality hinders causal interpretation of the results 

from observational studies. Although the effect of circulating vitamin D on disease risk can be 

demonstrated by traditional randomized controlled trials (RCTs), large-scale RCTs of vitamin D 

supplementation are not readily available due to their high cost and long duration.7,8 A recently 

completed RCT by VITAL (ClinicalTrials.gov: NCT01169259) involving a total of 25 871 

participants with a median follow-up period of 5.3 years did not find lowered incidence of invasive 

cancer or cardiovascular events for those who took vitamin D3 at a dose of 2000 IU per day 

compared the placebo group.9 In addition, there are ongoing RCTs aiming at other diseases and 

conditions, such as depression (DepFuD; ClinicalTrials.gov: NCT02521012) and cognitive change 

(ClinicalTrials.gov: NCT03613116). To better inform the field on the chance of success for such 

vitamin D trials, a better understanding in the causal role of vitamin D in these diseases and traits, 

preferably through less costly observational study, is necessary.  

The genetic basis of circulating 25(OH)D has been demonstrated by several large-scale genome-

wide association studies (GWASs), which have identified associations of GC, NADSYN1/DHCR7, 

CYP2R1, CYP24A1, SEC23A, AMDHD1 with serum levels of vitamin D.10,11 These genetic 

discoveries in 25(OH)D may help disentangle the causal relationships between vitamin D and other 

traits through Mendelian randomization (MR), an approach that uses genetic variants as 
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instrumental variables (IVs) for assessing the causal effect of an exposure on an outcome.12 Under 

certain assumptions – that the IVs are strongly associated with the exposure, but not associated 

with any confounders of the exposure-outcome relationship, nor affect the outcome via other 

pathways than through the exposure – an unbiased estimate of the causal effect can be estimated 

using the observed IV-exposure and IV-outcome associations.13  

To date, a large number of MR studies examining the effect of circulating vitamin D on various 

diseases have been conducted. However, the causal role of vitamin D beyond its importance for 

bone health remains unclear and is under much debate, as nearly all outcomes assessed by MR 

studies of vitamin D have been negative. The only replicated results from MR studies are higher 

vitamin D level decreases the risk of adult/pediatric multiple sclerosis14-16 and Alzheimer’s 

disease;17,18 whereas findings from MR studies for blood pressure, ovarian cancer, and all-cause 

mortality are yet to be replicated.19-22 Overall, results from MR studies for vitamin D are not 

consistent with conventional observational studies, which have associated vitamin D with a variety 

of human diseases and traits. It is also worth noting that among almost all hitherto available MR 

studies for vitamin D are based on genetic variants (SNPs rs2282679, rs12785878, rs6013897 and 

rs10741657) identified by the SUNLIGHT meta-GWAS published in 2010.10 The recently updated 

vitamin D meta-GWAS identified two new genetic loci associated with circulating 25(OH)D level 

and improved SNP-vitamin D association estimates with larger sample size, which provided an 

exceptional opportunity to re-evaluate the casual effect of 25(OH)D with an improved instrument 

strength and accuracy of estimation. Moreover, the rapidly accumulating publicly available GWAS 

summary statistics for various diseases and traits allowed us to evaluate the effect of vitamin D on 

a wide range of outcomes using two-sample MR. 
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Here, we conducted a two-sample MR analysis (where IV-exposure and IV-outcome associations 

are estimated in two samples) to examine the effect of 25(OH)D on complex human traits and 

diseases using 45 GWASs. Five genetic variants associated with plasma 25(OH)D concentration 

were used as IVs. Summary statistics for the IV-exposure associations were extracted from the 

largest vitamin D GWAS involving 73 699 individuals. Summary statistics for the IV-outcome 

associations were extracted from publicly available GWASs of 45 traits involving 6170 075 

individuals (average 137 112 individuals per GWAS).  
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Methods 

Data for IV-exposure 

We retrieved summary data for the associations between six SNPs and circulating 25(OH)D 

concentration from the SUNLIGHT meta-GWAS involving 79 366 discovery samples and 42 757 

replication samples of European ancestry. Genome-wide analyses were performed within each 

cohort following a uniform plan. Specifically, an additive genetic model using linear regression 

on natural-log transformed 25(OH)D were fitted to each SNP, and a fixed-effects inverse variance 

weighted meta-analysis across the contributing cohorts was performed, with control for population 

structure within each cohort, and consistent quality control thresholds across cohorts (minor allele 

frequency (MAF)>0.05, imputation info score>0.8, Hardy-Weinberg equilibrium (HWE)>1´10-6). 

A minimum of 10 000 individuals was required to contribute to each reported SNP-phenotype 

association.11 

Among the six SNPs, four were previously identified as being robustly associated with vitamin D 

(rs3755967 at GC, rs12785878 at NADSYN1/DHCR7, rs10741657 at CYP2R1, rs17216707 at 

CYP24A1); and the other two were newly identified and replicated (rs10745742 at AMDHD1, 

rs8018720 at SEC23A). We excluded strand ambiguous SNPs (A/T and G/C SNPs) from the 

analysis to harmonize between exposure and outcome GWASs and used five SNPs as IVs. In 

addition to the leading index SNPs, we further performed P-value informed pruning of SNPs across 

the genome based on their linkage disequilibrium (LD) patterns (r2<0.0001 with clumping window 

size of 1Mb). We selected all LD-clumped SNPs associated with 25(OH)D concentration at 

P<1´10-5. This resulted in an additional 21 independent index SNPs which may increase the power 

of our analysis by incorporating more instruments. Excluding strand ambiguous SNPs from this 
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extended SNP set yielded a total of 19 SNPs as IVs. Details of the IVs are presented in 

Supplementary Table 1.  

Data for IV-outcome 

We retrieved summary data for the associations between index SNPs and 45 complex traits and 

diseases from publicly available GWASs conducted mainly in European ancestry populations (3 

GWASs were conducted in a mixed population including both European and Asian samples; 

Supplementary Table 2). These traits span a wide range of phenotypes including anthropometric 

traits, autoimmune inflammatory diseases, cardiovascular events and metabolomic traits, and 

neurological and psychiatric disorders. For each trait, we retrieved the appropriate variant 

annotations (SNP rs ID, chromosome, position, reference and alternate allele) and summary 

statistics (effect size, standard error, P-value, allele frequency [if available] and sample size of the 

study [if available]) for each index SNP. The sample sizes of these GWASs range from 9 954 to 

766 345. 

Statistical analysis 

MR uses SNPs as IVs to estimate the effects of risk factors on outcomes while controlling for 

potential confounding, by leveraging the random allocation of SNP alleles at conception. Three 

assumptions need to be satisfied to ensure a valid IV. The first is the relevance assumption, that 

IVs should be strongly associated with the exposure; the second assumption requires no association 

between IVs and confounders of the exposure-outcome relationship; and the third is the exclusion 

restriction assumption, indicating that genetic variants should affect the outcome only through 

exposure. If all MR assumptions are met, a causal effect can be estimated based on the observed 

IV-exposure and IV-outcome associations. 
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We conducted two-sample MR to test for the potential causal relationship between circulating 

25(OH)D and various traits. We applied a number of MR methods to estimate causal effects 

including an inverse variance weighted meta-analysis (IVW) approach,23 MR-PRESSO,24 MR-

Egger,25 and a weighted median approach.26 While IVW does not account for potential horizontal 

pleiotropy, i.e., a genetic variant affects the outcome via a separate biological pathway from the 

exposure under investigation (violation of exclusion restriction assumption), MR-PRESSO, MR-

Egger and weighted median approaches control potential horizontal pleiotropy under different 

model assumptions. In addition, we performed MR-Egger regression, modified Q test, modified 

Q’ tests, and MR-PRESSO to detect estimation bias due to horizontal pleiotropy. MR-PRESSO 

implements a global test to evaluate the presence of horizontal pleiotropy, and an outlier test to 

detect specific outliers.24 In MR-Egger, significant difference of an intercept from zero suggests 

the existence of average directional horizontal pleiotropy.25 Modified Q and Q’ tests are 

traditionally used to identify over-dispersion and have been applied in the context of MR to detect 

outliers caused by horizontal pleiotropy.27 

Lastly, we estimated the power of detecting the causal effects of 25(OH)D on various traits in our 

study. We followed the simulation framework outlined in Verbanck et al.,24 while assuming five 

IVs having the same effect sizes and standard errors for exposure, and allele frequencies as the 

five SNPs used in our real data analysis. We showed the power to detect significant causal effects 

at different sample sizes for the outcome GWAS (ranging from 10 000 to 150 000; matched with 

real outcome GWAS sample sizes), and different true causal effect sizes (ranging from 0 to 1) at 

a type-I error rate of 0.05.  
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Results 

As shown in Table 1, Table 2 and Fig 1, in the primary analysis where five index SNPs were used 

as IVs, vitamin D did not show any causal effects on the outcomes examined here. However, 

several traits were identified to be potentially causally affected by 25(OH)D using both IVW and 

the adjusted MR-PRESSO approaches, and without apparent signs of horizontal pleiotropy. These 

traits include height (!=0.12, 95%CI: 0.01-0.23), hemoglobin A1c (HbA1c; !=0.04, 95%CI: 0.02-

0.07), insomnia complaints (odds ratio=1.23, 95%CI: 1.03-1.48), age at menopause (!=-0.42, 

95%CI: -0.08- -0.03). However, only HbA1c remained significant in the MR-Egger regression 

approach (!=0.05, 95%CI: 0.01-0.09), and none of these putative causal pairs survived multiple 

testing correction. We visualized the effect sizes of IV-exposure vs. IV-outcome for the four 

nominally significant pairs in scatter plot (Fig 2). The corresponding odds ratios and 95%CI of 

binary traits are presented in Supplementary Table 3. 

We further found that 25(OH)D levels significantly affected two traits using the MR-Egger 

regression approach: the Crohn’s disease (!=0.45, 95%CI: 0.08-0.82) and triglycerides (!=0.12, 

95%CI: 0.02-0.21). However, these two traits showed evidence for horizontal pleiotropy 

(Ppleiotropy=0.011 and 0.008 from MR-Egger intercept test for Crohn’s disease and triglycerides, 

respectively) and were not significant in either IVW (PIVW=0.98 and 0.76) or the adjusted MR-

PRESSO approach (PMR-PRESSO=0.98 and 0.76). 

We also performed a sensitivity analysis using an expanded set of IVs (independent SNPs 

associated with 25(OH)D levels at the P-value threshold of 1´10-5), as this approach was used in 

previous MR studies when fewer genome-wide significant SNPs were available as IVs.28,29 As 

shown in Supplementary Fig 1, Supplementary Table 4 and Supplementary Table 5, when 

incorporating additional IVs, only insomnia complaints remained nominally significant (P<0.05) 

using both the IVW and the adjusted MR-PRESSO approaches without evidence of horizontal 
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pleiotropy. Although height and HbA1c showed some degrees of horizontal pleiotropy, both 

were nominally significant in the adjusted MR-PRESSO approach (PMR-PRESSO=0.02 and 0.01 for 

height and HbA1c, respectively).  

For a majority of outcomes that we studied here (26 out of 45), their GWASs included more than 

110 000 individuals. Under this sample size, our current study had >80% power to detect a causal 

effect (!) of 0.2 at the P-value threshold of 0.05. We also presented power estimation for a range 

of GWAS sample sizes of the outcome (Supplementary Table 6).  
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Discussion 

In this study, we used two-sample MR methods with 25(OH)D-associated SNPs and 45 large-scale 

meta-GWASs covering a wide spectrum of human complex traits and diseases to determine the 

causal role of 25(OH)D. 

In general, our results, which were based an increased number of IVs and larger GWAS sample 

sizes, showed limited evidence for an causal effect for 25(OH)D on the traits or diseases 

investigated here. An earlier MR study which aggregated information from 21 adult cohorts with 

up to 42 024 participants and explored the causal relationship between vitamin D status and obesity, 

did not identify any effect of genetically instrumented 25(OH)D on BMI (P=0.57).30 In our current 

analysis, we expanded this outcome category by incorporating body fat percentage, hip 

circumference, waist circumference, waist-to-hip ratio (both BMI adjusted and unadjusted), in 

addition to BMI. We used the latest GWAS summary statistics of these outcomes with 

substantially augmented sample sizes, ranging from 76 137 in body fat percentage to 322 154 in 

BMI. We did not find any evidence in support for a causal role of 25(OH)D in obesity-related traits 

(all P-values>0.2). Likewise, earlier MR studies have reported null findings for most of the 

autoimmune diseases including inflammatory bowel disease [Crohn’s disease (P=0.67), ulcerative 

colitis (P=0.42)],31 eczema (P=0.27),32 lupus (P=0.79) and rheumatoid arthritis (P=0.66).33 We 

results using summary statistics from greatly enlarged GWAS were in line with previous findings 

in autoimmune diseases. Although a causal role of 25(OH)D has been considered more solid with 

multiple sclerosis, where three independent MR studies have consistently identified an association 

between genetically predicated 25(OH)D and the disease,14-16 we unfortunately could not replicate 

this finding due to limited data accessibility. Among the cardiometabolic traits, previous MR 

studies did not identify any causal role of 25(OH)D with coronary artery disease,34 myocardial 
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infarction,35 total cholesterol levels including triglycerides and low-density lipoprotein (LDL) 

cholesterol,36 type 2 diabetes,37,38 fasting insulin and adiponectin,39 all of which, were further 

validated by our results. There are, however, some discrepancies. For example, an earlier study 

incorporated 31 435 individuals and used four index SNPs from two 25(OH)D-associated genes 

found no associations between 25(OH)D-lowering alleles and either non-fasting remnant 

cholesterol or LDL-cholesterol, but identified that a 50% decrease in 25(OH)D levels was 

genetically associated with 6.0% (P=0.001) lower HDL-cholesterol levels.36 The effect of 

25(OH)D on HDL-cholesterol was no longer significant in our current analysis where the summary 

statistics of a more recent HDL GWAS involving 187 167 individuals (a 5-fold increase in sample 

size) were used. Finally, putative causal relationships between 25(OH)D and neurological or 

psychiatric traits have rarely been investigated. So far, only a few MR studies explored the role of 

25(OH)D in cognitive function,40 major depression,41 and Alzheimer’s disease;17,18 and nominally 

significant findings have only been reported in Alzheimer’s disease but not the other two traits. It 

might worth noting that previous MR studies conducted in Alzheimer’s disease used either IV-

exposure association estimates from the smaller 25(OH)D GWAS (SUNLIGHT consortium 

2010)10 or correlated IVs, which affected the validity of the results. In our updated analysis, the 

causal relationship between 25(OH)D and Alzheimer’s disease attenuated (P=0.053). Extending 

the outcome list by incorporating additional neurological or psychiatric traits did not identify any 

significant results. These results are important in informing the ongoing RCT of vitamin D on 

depression (ClinicalTrials.gov: NCT02521012) and cognitive change (ClinicalTrials.gov: 

NCT03613116).  

While null findings for the outcomes examined here would the main conclusion of our study, we 

found nominally significant results for 25(OH)D to affect height (P=0.026), glycated hemoglobin 
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(HbA1c) (P=0.001), age at menopause (P=0.03) and insomnia (P=0.02). Note that one previous 

MR study did not identify any association between 25(OH)D and glycemic traits.42 These results 

should be interpreted with caution given the large number of statistical tests we performed, and 

the fact that none of them survived multiple testing correction. Further investigations are warranted 

to elucidate these suggestive findings. 

To ensure the validity of MR results, several important assumptions need to be satisfied. First of 

all, the relevance assumption, that IVs should be strongly associated with the exposure, is naturally 

guaranteed by selecting 25(OH)D-associated independent SNPs with genome-wide significance 

as IVs. Secondly, none of the IVs used in our analysis were cited by the NHGRI-EBI Catalog of 

published GWASs as associated with potential confounders, such as BMI, smoking or alcohol 

consumption at P=1´10-5 level. This could also be partly reflected by negligible associations 

between 25(OH)D and various traits from the current and past MR studies, many of which, act as 

potential confounders for other disease outcomes (e.g., obesity related traits). Finally, the exclusion 

restriction assumption requires IVs to affect the outcome only through the exposure (no horizontal 

pleiotropy). We employed a number of methods to control for horizontal pleiotropy. While MR-

Egger regression with only a few SNPs can be underpowered to identify pleiotropy, we also used 

MR-PRESSO global test and modified Q and Q’ tests test for horizontal pleiotropy. We also 

increased the number of IVs by incorporating independent SNPs associated with 25(OH)D at 

P=1´10-5 level. No causal relationships appeared when using additional instruments after multiple 

testing correction. We expect that some of these ambiguous causal links will become evident in 

the future when larger GWASs become available. However, we also note that our MR analysis is 

well-powered to detect moderate causal effects of 25(OH)D (>80% power with a causal effect 

β>0.2), as shown in our power calculation. 
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Our MR analysis showed limited evidence on any effects of vitamin D on the traits and diseases 

examined here. This is inconsistent with many observational studies which may be affected by 

various confounding biases. Our results may inform costly RCTs that would be paid for by publicly 

funded agencies and help to prioritize the most promising target diseases for vitamin D 

intervention.  
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Figure 1. Estimated causal effects of 25(OH)D on various traits and diseases based on the MR-
PRESSO approach using genome-wide significant SNPs of 25(OH)D. 
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Figure 2. Scatter plots of effect sizes of IV-exposure vs. IV-outcome for nominally significant 
trait pairs in inverse-variance weighted meta-analysis. (a) height; (b) HbA1c; (c) insomnia 
complaints; (d) age of menopause  
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Table 1. Causal effect estimates of 25(OH)D with complex traits and diseases using genome-wide significant SNPs of 25(OH)D. We 
highlighted all nominally significant results, including 4 vitamin D-outcome pairs from IVW meta-analysis depicted in scatter plots in 
Figure 2. Note that none of these nominally significant results remained significant after multiple comparison correction. 

Outcome IVW meta-analysis MR-Egger MR-PRESSO adjusted Median estimate 
BETA 95% CI P BETA 95% CI P BETA 95% CI P BETA 95% CI P 

Height 0.12 (0.01, 0.23) 0.03 0.10 (-0.07, 0.27) 0.26 0.12 (0.01, 0.23) 0.03 0.11 (0.01, 0.21) 0.03 

BMI 0.03 (-0.07, 0.13) 0.52 0.04 (-0.17, 0.26) 0.71 0.03 (-0.07, 0.13) 0.52 0.02 (-0.07, 0.11) 0.68 
Body fat percentage 0.01 (-0.04, 0.07) 0.69 0.00 (-0.12, 0.11) 0.94 0.01 (-0.04, 0.07) 0.69 0.00 (-0.12, 0.13) 0.96 
Hip circumference 0.02 (-0.15, 0.03) 0.85 -0.04 (-0.40, 0.32) 0.85 -0.03 (-0.10, 0.03) 0.31 -0.02 (-0.12, 0.09) 0.75 
Hip circumference adjusted 
for BMI 

0.02 (-0.14, 0.18) 0.82 0.02 (-0.33, 0.37) 0.92 0.02 (-0.14, 0.18) 0.82 0.01 (-0.10, 0.13) 0.80 

Waist circumference 0.03 (-0.08, 0.14) 0.54 0.00 (-0.23, 0.22) 0.97 0.03 (-0.08, 0.14) 0.54 0.01 (-0.09, 0.12) 0.83 
Waist circumference 
adjusted for BMI 

0.04 (-0.03, 0.12) 0.26 0.01 (-0.13, 0.15) 0.85 0.04 (-0.03, 0.12) 0.26 0.03 (-0.07, 0.13) 0.54 

Waist-to-hip ratio 0.02 (-0.04, 0.09) 0.52 -0.02 (-0.15, 0.11) 0.80 0.02 (-0.04, 0.09) 0.52 0.02 (-0.07, 0.12) 0.62 
Waist-to-hip ratio adjusted 
for BMI 

0.02 (-0.07, 0.10) 0.70 0.01 (-0.17, 0.19) 0.93 0.02 (-0.07, 0.10) 0.70 0.01 (-0.09, 0.12) 0.82 

Crohn's disease -0.01 (-0.33, 0.32) 0.98 0.45 (0.08, 0.82) 0.02 -0.01 (-0.33, 0.32) 0.98 -0.02 (-0.57, 0.53) 0.95 
Eczema 0.01 (-0.33, 0.35) 0.94 0.40 (-0.18, 0.97) 0.18 0.01 (-0.33, 0.35) 0.94 0.08 (-0.35, 0.51) 0.72 
Inflammatory bowel 
disease 

-0.08 (-0.31, 0.15) 0.49 0.12 (-0.27, 0.51) 0.55 -0.08 (-0.31, 0.15) 0.49 -0.03 (-0.44, 0.39) 0.90 

Lupus 0.48 (-0.73, 0.74) 0.44 0.33 (-2.20, 2.86) 0.80 0.13 (-0.49, 0.74) 0.69 0.27 (-0.44, 0.98) 0.46 
Primary biliary cirrhosis -0.13 (-1.23, 0.97) 0.81 -1.49 (-3.18, 0.19) 0.08 -0.13 (-1.23, 0.97) 0.81 -0.14 (-0.95, 0.66) 0.73 
Rheumatoid arthritis -0.12 (-0.25, 0.02) 0.10 -0.14 (-0.45, 0.18) 0.40 -0.12 (-0.25, 0.02) 0.10 -0.11 (-0.58, 0.37) 0.66 
Ulcerative colitis -0.24 (-0.61, 0.13) 0.20 -0.13 (-0.82, 0.57) 0.72 -0.24 (-0.61, 0.13) 0.20 -0.20 (-0.73, 0.33) 0.47 
Coronary artery disease 
(Nikpey et al. 2015) 

-0.11 (-0.31, 0.09) 0.29 -0.20 (-0.62, 0.21) 0.34 -0.11 (-0.31, 0.09) 0.29 -0.11 (-0.34, 0.12) 0.34 

Coronary artery disease 
(Schunkert et al. 2011) 

-0.07 (-0.36, 0.22) 0.64 -0.07 (-0.69, 0.55) 0.82 -0.07 (-0.36, 0.22) 0.64 -0.08 (-0.40, 0.25) 0.63 

SOFT CAD (Nelson et al. 
2017) 

-0.11 (-0.35, 0.12) 0.35 -0.14 (-0.63, 0.35) 0.56 -0.11 (-0.35, 0.12) 0.35 -0.13 (-0.34, 0.09) 0.25 

Myocardial infarction -0.12 (-0.31, 0.08) 0.23 -0.19 (-0.59, 0.21) 0.35 -0.12 (-0.31, 0.08) 0.23 -0.12 (-0.37, 0.14) 0.36 
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Total cholesterol 0.05 (-0.12, 0.22) 0.59 -0.10 (-0.45, 0.26) 0.60 0.05 (-0.12, 0.22) 0.59 -0.02 (-0.14, 0.11) 0.79 
Triglycerides -0.01 (-0.11, 0.08) 0.76 0.12 (0.02, 0.21) 0.01 -0.01 (-0.11, 0.08) 0.76 -0.01 (-0.12, 0.10) 0.90 
High-density lipoprotein 
cholesterol 

0.09 (-0.07, 0.25) 0.27 -0.07 (-0.31, 0.17) 0.56 0.09 (-0.07, 0.25) 0.27 0.06 (-0.07, 0.19) 0.35 

Low-density lipoprotein 
cholesterol 

0.03 (-0.13, 0.19) 0.72 -0.14 (-0.45, 0.18) 0.39 0.03 (-0.13, 0.19) 0.72 -0.02 (-0.15, 0.11) 0.79 

Type-2 diabetes -0.09 (-0.52, 0.34) 0.68 0.48 (-0.06, 1.02) 0.08 -0.09 (-0.52, 0.34) 0.68 -0.03 (-0.34, 0.28) 0.86 
HbA1c 0.04 (0.02, 0.07) 0.001 0.05 (0.01, 0.09) 0.01 0.04 (0.02, 0.07) 0.001 0.05 (-0.01, 0.10) 0.09 
Fasting insulin 0.03 (-0.06, 0.11) 0.55 0.04 (-0.14, 0.21) 0.68 0.03 (-0.06, 0.11) 0.55 0.04 (-0.05, 0.13) 0.41 
Estimated glomerular 
filtration rate (creatinine) 

-0.04 (-0.12, 0.01) 0.29 0.01 (-0.12, 0.14) 0.89 -0.03 (-0.06, 0.01) 0.12 -0.03 (-0.06, 0.00) 0.06 

Adiponectin 0.12 (-0.02, 0.25) 0.09 0.09 (-0.15, 0.33) 0.47 0.12 (-0.02, 0.25) 0.09 0.11 (-0.02, 0.24) 0.09 
Cognitive performance 
(SSGAC 2018) 

0.04 (0.00, 0.08) 0.07 0.04 (-0.04, 0.12) 0.34 0.04 (0.00, 0.08) 0.07 0.04 (-0.03, 0.12) 0.25 

Education attainment 
(SSGAC 2018) 

0.00 (-0.04, 0.03) 0.81 -0.02 (-0.08, 0.05) 0.62 0.00 (-0.04, 0.03) 0.81 -0.01 (-0.05, 0.03) 0.67 

Schizophrenia (PGC 2014) -0.12 (-0.43, 0.20) 0.47 0.03 (-0.59, 0.65) 0.92 -0.12 (-0.43, 0.20) 0.47 -0.07 (-0.34, 0.21) 0.64 
Bipolar disorder (PGC 
2018) 

0.08 (-0.50, 0.69) 0.78 0.29 (-0.96, 1.53) 0.65 0.23 (-0.22, 0.69) 0.32 0.22 (-0.18, 0.62) 0.27 

Depressive symptoms 0.03 (-0.05, 0.10) 0.52 0.01 (-0.15, 0.18) 0.87 0.03 (-0.05, 0.10) 0.52 0.03 (-0.07, 0.12) 0.59 
PTSD (PGC 2017) 0.39 (-0.62, 1.39) 0.45 -0.30 (-2.14, 1.53) 0.75 0.39 (-0.62, 1.39) 0.45 0.16 (-0.79, 1.12) 0.74 
Generalized anxiety 
disorder (case-control) 

-0.36 (-1.37, 0.65) 0.49 0.28 (-1.62, 2.17) 0.78 -0.36 (-1.37, 0.65) 0.49 -0.40 (-1.12, 0.33) 0.28 

Anorexia -0.82 (-1.75, 0.11) 0.08 -1.65 (-3.27, -0.02) 0.05 -0.82 (-1.75, 0.11) 0.08 -0.96 (-1.90, -0.02) 0.04 

Chronotype -0.02 (-0.13, 0.08) 0.70 0.11 (-0.04, 0.26) 0.15 -0.02 (-0.13, 0.08) 0.70 0.00 (-0.10, 0.10) 0.99 
Insomnia complaints 0.21 (0.03, 0.39) 0.02 0.15 (-0.12, 0.42) 0.28 0.21 (0.03, 0.39) 0.02 0.19 (-0.07, 0.44) 0.15 
Sleep duration 0.03 (-0.02, 0.09) 0.25 0.02 (-0.09, 0.13) 0.75 0.03 (-0.02, 0.09) 0.25 0.03 (-0.07, 0.13) 0.53 
Subjective well-being -0.02 (-0.15, 0.03) 0.78 -0.14 (-0.38, 0.10) 0.26 -0.04 (-0.11, 0.03) 0.29 -0.03 (-0.10, 0.04) 0.37 
Extraversion 0.08 (-0.12, 0.28) 0.44 -0.19 (-0.38, 0.01) 0.07 0.08 (-0.12, 0.28) 0.44 0.03 (-0.10, 0.17) 0.62 
Neuroticism 0.04 (-0.05, 0.14) 0.35 0.07 (-0.11, 0.26) 0.45 0.04 (-0.05, 0.14) 0.35 0.04 (-0.05, 0.13) 0.41 
Alzheimer's disease -0.48 (-0.95, 0.00) 0.05 -0.20 (-0.93, 0.52) 0.58 -0.48 (-0.95, 0.00) 0.05 -0.42 (-0.91, 0.08) 0.10 
Age of menopause -0.42 (-0.80, -0.03) 0.03 -0.64 (-1.33, 0.06) 0.07 -0.42 (-0.80, -0.03) 0.03 -0.44 (-0.96, 0.08) 0.10 
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Table 2. Test for potential biases in MR analysis using genome-wide significant SNPs for 
25(OH)D. We highlighted all nominally significant results. Note that only Estimated glomerular 
filtration rate (creatinine) showed significant pleiotropic bias after multiple comparison correction. 

Outcome MR-Egger 
intercept 

test p-value 

MR-PRESSO 
global test 

p-value 

N of 
outliers 

Modified 
Q test p-

value 

Modified 
Q' test 
p-value 

Height 0.75 0.39 0 0.30 0.31 
BMI 0.93 0.40 0 0.21 0.22 
Body fat percentage 0.75 0.92 0 0.93 0.93 
Hip circumference 0.74 0.07 1 0.01 0.02 
Hip circumference adjusted for BMI 1.00 0.12 0 0.03 0.03 
Waist circumference 0.69 0.38 0 0.26 0.29 
Waist circumference adjusted for BMI 0.63 0.79 0 0.71 0.74 
Waist-to-hip ratio 0.50 0.85 0 0.75 0.80 
Waist-to-hip ratio adjusted for BMI 0.92 0.62 0 0.54 0.54 
Crohn's disease 0.01 0.39 0 0.79 1.00 
Eczema 0.14 0.16 0 0.51 0.85 
Inflammatory bowel disease 0.27 0.69 0 0.84 0.92 
Lupus 0.89 0.04 1 0.01 0.01 
Primary biliary cirrhosis 0.08 0.05 0 0.15 0.97 
Rheumatoid arthritis 0.88 0.99 0 0.98 0.98 
Ulcerative colitis 0.70 0.83 0 0.74 0.76 
Coronary artery disease (Nikpey et al. 2015) 0.58 0.66 0 0.49 0.55 
Coronary artery disease (Schunkert et al. 2011) 0.99 0.53 0 0.47 0.47 
SOFT CAD (Nelson et al. 2017) 0.88 0.30 0 0.19 0.19 
Myocardial infarction 0.66 0.78 0 0.65 0.69 
Total cholesterol 0.40 0.04 0 0.09 0.25 
Triglycerides 0.01 0.24 0 0.52 1.00 
High-density lipoprotein cholesterol 0.21 0.05 0 0.16 0.58 
Low-density lipoprotein cholesterol 0.27 0.05 0 0.15 0.48 
Type-2 diabetes 0.04 0.01 0 0.04 0.77 
HbA1c 0.32 0.99 0 0.99 1.00 
Fasting insulin 0.88 0.51 0 0.42 0.42 
Estimated glomerular filtration rate (creatinine) 0.41 <0.001 1 2.52E-10 6.05E-08 
Adiponectin 0.77 0.23 0 0.29 0.31 
Cognitive performance (SSGAC 2018) 0.98 0.91 0 0.89 0.89 
Education attainment (SSGAC 2018) 0.66 0.57 0 0.58 0.62 
Schizophrenia (PGC 2014) 0.59 0.28 0 0.16 0.21 
Bipolar disorder (PGC 2018) 0.71 0.04 1 0.01 0.02 
Depressive symptoms 0.86 0.51 0 0.46 0.47 
PTSD (PGC 2017) 0.41 0.08 0 0.25 0.39 
Generalized Anxiety disorder (case-control) 0.46 0.13 0 0.04 0.09 
Anorexia 0.15 0.29 0 0.24 0.67 
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Chronotype 0.07 0.03 0 0.21 0.80 
Insomnia complaints 0.55 0.86 0 0.85 0.88 
Sleep duration 0.74 0.93 0 0.85 0.86 
Subjective well-being 0.25 0.02 1 0.0016 0.04 
Extraversion 0.02 0.01 0 0.04 0.88 
Neuroticism 0.70 0.46 0 0.29 0.32 
Alzheimer's disease 0.43 0.50 0 0.48 0.65 
Age of menopause 0.34 0.85 0 0.77 0.86 
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