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Abstract 
 
The Epidermal Growth Factor Receptor (EGFR) is a membrane-anchored tyrosine kinase that is able 
to selectively respond to multiple extra-cellular stimuli. Previous studies have indicated that the 
modularity of this system is affected by ligand-induced differences in the stability of the dimerized 
receptor in a process known as “Biased signaling”. However, this hypothesis has not been explored 
using single-mutant ligands thus far. Herein, we developed a new approach to identify residues 
responsible for functional divergence combining the conservation and co-evolution information of 
ortholog and paralog genes encoding the epidermal growth factor (EGF) ligand. Then, we mutated these 
residues and assessed the mutants’ effects on the receptor by employing a combination of molecular 
dynamics (MD) and biochemical techniques. Although the EGF mutants had comparable binding 
affinities to the wild type ligand for EGFR, the EGF mutants induced a different phosphorylation and 
cell growth pattern in multiple cell lines. The MD simulations of the EGF mutants show a long-range 
effect on the receptor dimer interface. For the first time in this study, a single mutation in EGF is shown 
to be enough to alter the activation of the pathway at the cellular level. These results also support the 
theory of biased signaling in the tyrosine kinase receptor system and demonstrate a promising new way 
to study ligand-receptor interactions. 
 
 
 
Introduction 
 
The Epidermal Growth Factor (EGF)-like domain ligand-receptor signaling system is involved in many 
biological events in multicellular organisms (1). This system is constituted by one receptor (EGFR) and 
seven distinct peptide ligands (EGF, Epidermal Growth Factor; HBEGF, Heparin-Binding Epidermal 
Growth Factor; EPGN, Epigen; BTC, Betacellulin; EREG, Epiregulin; AREG, Amphiregulin). Upon 
binding to the receptor, these ligands can activate multiple intracellular downstream pathways through 
a network of intramolecular interactions with several feedback loops (2). For all ligands, binding 
induces a transition in the EGFR from monomer or inactive dimer to an active dimer state (3,4). 
However, different ligands are able to promote divergent outcomes, even at saturating concentrations; 
thus, the mechanism responsible of the modular downstream pathway activation is independent of 
ligand affinity or potency, and likely encompasses intrinsic effects (5). It is well known that the EGFR 
system plays a key role in cancer development. In particular, some studies have shown that 
overexpression of EGFR or its ligands may induce different types of cancer (6). A better understanding 
of the interaction between EGFR and its ligands could lead to the development of targeted therapies (7).  
 
Protein-protein interactions (PPIs), such as that between EGFR and its ligands, are well-studied 
examples of molecular co-evolution in biological systems. These interactions are sometimes defined by 
one part (receptor) that binds several counterparts (ligands). In these instances, receptor and ligands 
experience different selective constraints, where receptors tend to evolve more slowly due to the 
necessity of binding multiple ligands (8). Furthermore, paralogs, proteins related by a duplication event, 
are less likely to retain the same function as orthologs, proteins related by a speciation event (9). Then, 
the paralogous ligands rather than the receptor are a good candidate to test the functional divergence in 
the biased signaling system. However, this approach is susceptible to indirect factors, such as different 
ligand binding selectivity, thus resulting in the activation of unrelated pathways. In this work, we 
decided to test single mutants of one ligand, EGF, by identifying and modifying sites responsible for a 
divergent function among paralog ligands. Recent studies have shown that some EGF residues like Arg-
41 and Leu-47 are highly conserved and important for high binding affinity to EGFR (10). Another 
study highlighted Tyr-13, Leu-15 and His-16 in EGF as essential for downstream activity of ErbB1 
(11). These outcomes were based on structural analyses of ligands and experimental validation. While 
bioinformatic tools such as contact prediction (12) or molecular dynamics (13) can give a good overall 
picture of ligand-receptor interactions, the contribution of single ligand residues to the modularity of 
the system still remains unclear. 
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Ligand-induced selective activation of downstream pathway has been observed in G-protein coupled 
receptors, a phenomenon known as “biased signaling” (14,15). A recent report hints that this mechanism 
might also take place in the EGFR tyrosine kinase (16). Initially, the main contributor to the modularity 
of the system was thought to be the affinity of the ligands to the receptor. However, the discovery of 
the ligand EPGN, which induces a potent mitogen effect despite low binding affinity (17), and multiple 
cell-line studies (5) have changed this perspective. A plausible explanation was initially formulated by 
Wilson et al., where different EGFR ligands induce different receptor dimer stabilities, altering the 
phosphorylation dynamics (5). Later, new experimental evidence supported this theory by observing a 
transient activation in stable receptor dimers induced by EGF; whereas the activation of the weak 
receptor dimer induced by EPGN or EREG persisted for a longer time (18). A difference in dimer 
stabilities could result in alterations of the receptor oligomerization state, previously shown as a 
determinant of the intracellular kinase phosphorylation pattern (19). Now, the open question is how 
these ligands induce different dimer stabilities. Interactions between the interface of the ligand and 
EGFR have been shown to influence the stability of the dimerized receptor (20), a factor that is related 
to ligand-specific signaling bias (18,21). It is known that the EGFR dimer can be observed in a 
symmetrical, “flush” conformation or an asymmetrical, “staggered” conformation (22) depending on 
the presence/absence of the membrane, glycosylation, and the number of bound ligands (23). Whether 
and how this plays a role in biased signaling is still unknown.  
 
Here we show how single amino acid substitutions on the ligands effect the biased signaling in the EGF-
EGFR ligand-receptor system. We developed a new bioinformatic tool to analyze the co-evolution of 
the ligand-receptor pair and identify candidate function-altering mutations. The identified mutants 
induced an altered phosphorylation dynamics and different cellular phenotype. This is the first study to 
explain differences in biased signaling of EGFR using single-residue EGF mutants. Furthermore, our 
co-evolutionary analysis can be applied readily to other ligand-receptor interactions. 
 
 
Results 
 
DIRpred 
Firstly, we developed a method for predicting residues that are likely to be responsible for functional 
divergence among paralogs sharing a common interactor (referred as ligands and receptor from now 
on). We called the method DIRpred (Divergence Inducing Residues prediction). Our approach 
combines residue-specific conservation measures to identify positions that are conserved among 
orthologs while diverging among paralogs. The DIRpred analysis is based on the assumption that 
conservation of a residue in orthologs of a specific ligand shows whether a residue is important for 
either structural or functional reasons, while conservation of a residue among paralogous ligands 
denotes the importance of a residue for interaction with the common interactor (the main shared 
property of all ligands). Thus, residues that are highly conserved in orthologs but not in paralogs of a 
ligand are likely related to the ligand’s specific function. Unlike other existing methods for prediction 
of  specificity determining residues (a review can be found in (24)), we included inter-protein 
coevolution measures in order to narrow down those residues that are responsible for a specific 
interaction. The DIRpred score is calculated as the sum of the four components (I: orthologs 
conservation, II: complement of the paralog’s conservation, III: ligand-receptor co-evolution, IV: 
complement of ligand internal co-evolution). Optionally, the analysis can be conducted using a 
structural alignment of the paralogs (MSTA) instead of the sequence alignment (MSA). An 
implementation of the DIRpred analysis was done using Python. The pipeline accepts multiple sequence 
or structure alignments and a reference protein to conduct the analysis. The output consists of a single 
tabular file containing the four individual scores and the combined prediction score for each protein 
site, and a plotted recap of the results (Figure S1). 
 
DIRpred analysis of EGF 
We applied the DIRpred algorithm to predict the residues in EGF that induce functional divergence 
among paralogs (Figure 2). Since the analysis requires prior knowledge of paralogs and orthologs of 
the target gene, we first performed a phylogenetic analysis to confirm that the reported paralogous 
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ligands of EGF are monophyletic (Figure S2). The same tree was used in the statistical validation of the 
individual DIRpred scores. A random 53 amino acid long sequence was evolved 100 times on the EGFR 
ligands phylogenetic tree using Pyvolve (25). Assuming that the distribution of DIRpred scores will be 
normal, we estimated the probability that a site without functional constraints would have the same or 
higher than observed score (P-value) (26). We included the results of the statistical analysis to the output 
of DIRpred for EGF (Figure S3, Table S1). The analysis highlighted residue Asn-32, Asp-46, Lys-48 
and Trp-50 as potential candidates for paralog functional divergence. Asn-32 and Lys-48 show a very 
small conservation in both sequence and structure alignments resulting in a high partial score (II). Asp-
46 has a relatively high coevolution with the receptor (III), while Trp-50 has high scores overall (Figure 
S4). 
 
Three out of the four positions were mentioned in previous reports, however none of them was 
individually mutated. The tryptophan in position 50 is a strong outlier in our bioinformatics analysis, 
along with Trp-49 (Figure 2). Their score is high even when using conservation measures that do not 
take amino acid type change into account (data not shown). However, Trp-50 was a better candidate for 
testing because of its outward facing position, while Trp-49 is involved in buried protein contacts (27). 
Trp-49 and Trp-50 could be responsible in facilitating the interaction of EGF with the membrane 
phospholipids, as it happens for Pro-7 and Leu-8 (28); Trp-49 and Trp-50 are not burying inside the 
bilayer when EGF and a membrane are in solution alone (29), though this might be different when in 
complex with the receptor. For example, this could be achieved by Trp-50 through the formation of a 
helix, clustering together with Val-34 and Arg-45 around the conserved Leu-47 (30). Mutation N32R 
is on the interface between ligand and receptor. The slightly higher affinity is probably due to the 
presence of the guanidinium group of R which is positively charged and could interact with Gln-16 of 
EGFR ECD (Figure S5). Interestingly, mutations of the corresponding position in chicken TGFA were 
able to alter the mitogenicity without strongly affecting the binding affinity (31). While no previous 
literature reported about Asp-46 before, Lys-48 was found in two mutants that showed higher affinity 
(32).  
 
Next, we manually chose which amino acid to introduce on the four sites depending on several factors. 
The main contribution to the decision was given by the paralogs alignment, while also considering the 
amino acid type and the ligand functional divergence. The paralogs were divided into two groups based 
on their kinetics parameters of interaction with the receptor. After that, we selected an amino acid that 
infers a significant change in biochemical properties and that is found in the paralogs group without 
EGF. When multiple choices were possible, priority was given to EPGN or EREG, since these two 
ligands are the ones observed to induce a biased signaling in Freed et al (18). The four designed EGF 
mutants with a single amino-acid substitution that were selected for functional characterization are 
N32R, D46T, K48T and W50Y.  
 
Biochemical properties of the EGF mutants 
To determine the integrity of the secondary structure of the mutated ligands and the functional effects 
of these amino acid substitutions, we first performed in-vitro analysis. Initially, Circular Dichroism 
(CD) spectroscopy was used to confirm that the secondary structure of the mutants was maintained 
(Figure S6). The β-sheet content of the EGF mutants (ranging from 0.41 to 0.54 %) was not 
substantially different than the WT EGF (0.44 %) while the other secondary structure varies. It is not 
surprising that only the beta sheet content can be detected by CD considering that EGF is a peptide 
(53 amino acids) constituted by two β-sheets connected by a loop and the regions at the C- and N- 
terminus are flanking. Then, we tested the ability of each mutant to bind the soluble extracellular 
domain of EGFR, by Isothermal Titration Calorimetry (ITC) and MicroScale Thermophoresis (MST). 
The mutants bound the receptor analogously to the WT sample in both the experiments (Figure 3). 
Even though the N32R sample showed a slightly steeper response in both the experiments, the 
mutations did not appear to strongly affect the ligand secondary structure and the ability to bind the 
receptor. 
 
Biological effects of the EGF mutants 
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To shed light on the biological outcome of the short-term response, we sampled the effect of the EGF 
single mutants on EGFR expression and phosphorylation in A431 cells. A431 is a human epidermoid 
carcinoma cell line that overexpresses EGFR. For this reason, we postulated that any changes at the 
receptor level would be amplified. We measured the amount of total and phosphorylated EGFR protein 
at multiple timesteps by Western Blot (WB) after treating with saturating concentrations (100 nM) of 
WT or mutant ligands (Figure 4). Remarkably, D46T mutant showed a reduced level of EGFR 
phosphorylation (pEGFR) up to 30 minutes after treatment (Figure 4A). Meanwhile, the pEGFR bands 
for K48T and W50Y samples appear slightly stronger than the WT in the first three timesteps. However, 
the differences are not significant. The dimerization state of the receptor, tested by cross-linking assay, 
follows a similar trend as the phosphorylation experiments (Figure 4B). After 1 h or 6 h, the treatment 
with the ligands also caused a reduction in the total amount of EGFR compared to the control (Figure 
S7). However, the reduction of D46T sample did not appear as marked as the other samples. This result 
shows an inverse relationship between receptor activation and receptor quantity, a fact that could be 
explained by the biased signaling theory. Thus, while the EGF mutants showed comparable binding 
affinities to the receptor, at least one of the mutants showed a different phosphorylation pattern 
compared to the WT ligand. Furthermore, the observed differences in the total amount of EGFR protein 
indicate a possible alteration in the membrane expression or recycling of the receptor. 
 
In order to observe the long-term effects of the mutants on the cellular phenotype, we performed a cell 
growth assay using an IncuCyte® live-cell analysis system on two fibroblast cell lines (Bj5-tα and 
Albino Swiss mouse 3T3). With the same platform, we also performed an apoptotic assay on A431 cells 
by measuring the reduction in cell population, using the Annexin V green reagent to confirm the 
induction of apoptosis. After one day of initial incubation, we subjected the cells to 1, 10 or 100 nM 
concentration of growth factors. Treating Bj5-tα fibroblasts with 100 nM WT EGF resulted in the 
highest reduction in the proliferation rate compared to the control. The reduction in proliferation was 
accompanied by a change in cellular morphology that could be a signal of differentiation 
(Supplementary Data 1). However, treatment with any of the mutants decreased the ability of the ligand 
to suppress growth (Figure 5A). The D46T and K48T mutants differed most from the WT (Figure S8A). 
We observed a similar trend in the Albino Swiss mouse 3T3 cell line (Figure S8B). In both cell lines, 
the effects are concentration dependent (Figure S9). Next, we further tested the mutants in an apoptosis 
assay using the A431 cell lines. This cell line is known to exhibit apoptosis when treated with high (>10 
nM) concentrations of the EGF peptide (33). The WT showed the highest decrease in cell population 
48h after treating with 100 nM WT, while the four mutants had an intermediate response between WT 
and the control. Cells treated with the W50Y mutant have the closest level to the WT (Figure 5B). In 
WT EGF cells, we observed evidence of apoptosis in cell’s globular processes and increased ratio of 
Annexin to confluence signal (Figure S10). Meanwhile, D46T and K48T treated cells displayed signs 
of cellular differentiation (Figure 5C), in comparison to the no ligand and other mutants (Figure S11, 
Supplementary Data 1). Significantly, these results show that single amino acid changes in the EGF 
ligand display differential effects on the EGFR transduction mechanism. 
 
The observation that the four mutations in EGF alter signal transduction without disrupting any contacts 
between the ligand and the receptor can be explained by the “loss of symmetry” model of EGFR 
signaling (18). Freed et al. observed how stable symmetrical dimers show a short-lived nature of 
signaling, while asymmetric dimers conduct a sustained activation, lasting longer than 24 h. Such a 
model provides an explanation on how a low level of phosphorylation after EGF treatment causes 
modifications in the apoptotic behavior observed in the cellular growth experiments. Compared with 
WT EGF, the D46T variant show a constantly lower phosphorylation signal, possibly through the 
formation of a less stable, asymmetric dimer. Thus, the observed effects of the EGF mutations on EGFR 
phosphorylation and dimer stability are consistent with the "loss of symmetry" theory. However, the 
fact that some mutants have a similar phosphorylation pattern as the WT EGF but show different cellular 
phenotypes suggests that there might be other factors at play.  
 
 
Molecular dynamics 
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To understand how EGF single mutants affect the receptor signaling transduction, we performed full 
atomistic molecular dynamic (MD) simulations of the extracellular EGFR in complex with WT or 
mutant ligands (100 ns each). We modeled the receptor starting from the asymmetric, “unstable” 
conformation of 5WB7 (22). In this way, we expected to observe a fast rearrangement for those 
simulations where a ligand more favorably induces a stable dimer. In previous literature, an unstable 
conformation was observed when removing one of the EGF ligands (23). For this reason, we also 
performed one simulation of the EGFR dimer in complex with only one WT ligand as a comparison 
(1ligEGF). The MD simulations quickly converged to a stable RMSD (Figure 6A). For each simulation, 
we calculated the number of H-bonds between the two receptor dimers, and between ligand and receptor. 
In the WT EGF simulation, the EGFR dimer had an average of 15 H-bonds, higher than any other 
simulation (Figure 6D). However, the number of bonds between receptor and ligand was not altered 
(Figure 6E). In addition, during the course of our simulations we also noted differences in the RMSF 
specifically located at the dimerization arm domain (Figure 6B). The conformational space sampled by 
the dimerization arm of K48T simulation was much wider than the WT simulation (Figure 6C). To 
analyze the temporal distribution of these motion, we measured the distance between Pro-272 and Gly-
288 of different EGFR monomers. This distance was chosen because it was able to discriminate between 
the EGFR dimer in complex with EREG (PDB ID 5WB7) and EGF (PDB ID 1IVO). In 5WB7, one of 
the two distances is much bigger (~ 1.10 nm vs 0.4 nm) compared to 1IVO (Figure 6F). In our 
simulations, we observe WT showing a sharp peak at 1 nm, while the mutants and 1ligEGF have a 
secondary peak at higher distances (Figure 6G). Thus, the mutations in EGF appear to affect the stability 
of the EGFR dimer without affecting the stability of the EGF-EGFR interaction. 
 
 
Discussion 
 
The prediction of functional residues is a well-developed field (34), where conservation measures are 
considered a key factor to rely on. Tools such as ConSurf (35) and the ET-like methods (36) are able to 
identify slowly evolving positions that are involved in folding, interaction, or catalytic activity (34). 
However, the specific reason why a residue is conserved often remains unclear. In this work, we show 
a new method to identify residues that affects specific functions in a system of interest. Our approach 
combines a conservation score calculated from the structural alignment of paralogs and among 
orthologs, with an intra- and inter-molecular co-evolution score with previously known interactors. 
Conservation and coevolution give a complementary signal, thus improving the overall predictive 
performance (37). The coevolution score was introduced to DIRpred to highlight residues that are 
directly responsible of an interaction with the receptor, at the expenses of those that interact 
intramolecularly within the ligand. While the first part efficiently identifies Asn-32 and Lys-48 as 
putative interactors, the second part does not properly give a penalty to residue Tyr-29. The interaction 
of this position with His-10 is also conserved in EGF but with reversed positioning (Figure S12), 
resulting in a low paralog conservation (therefore high contribution to DIRpred score). While it is still 
possible to optimize the co-evolution scoring function, integrating conservation and coevolution 
measures is a promising way to recall information of specific functions involving protein-protein 
interactions. 
 
The herein studied mutations do not alter significantly the ability to bind EGFR. However, the mutants 
showed a different cellular effect on Bj-5ta cells (Figure 5). A delayed proliferation response compared 
to control might seem counterintuitive for fibroblast (38). Though, Bj-5ta hTERT immortalized 
fibroblasts have features that distinguish them from in vivo fibroblast, like differential gene expression 
and epiregulin-dependent proliferation (39).  A decrease in cell proliferation after EGF treatment could 
be the result of competition between the endogenously synthesized epiregulin and EGF, thus altering 
the balance between proliferation and differentiation. 
A431 cells constitutionally express EGFR at high levels. Treatment with EGF has been observed to 
promote STAT1 dependent apoptosis (40). This pathway is dependent on the internalization of the 
ligand-receptor complex by the endocytosis process, a key factor in the ligand-induced biased signaling 
(16). In our experiments, A431 cells treated with mutant EGF ligands show a higher growth rate, 
therefore a decreased rate of apoptosis compared to WT. Given the setting of the experiment, modularity 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 28, 2021. ; https://doi.org/10.1101/677393doi: bioRxiv preprint 

https://doi.org/10.1101/677393
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

in the endocytosis pathway is a straightforward explanation to the observed differences in growth rate 
and in protein levels and phosphorylation. Interestingly, D46T and K48T treated cells showed an 
increase in long and thin cellular processes in all replicates (Figure 5). D46T was also observed with a 
marked difference in the EGFR phosphorylation compared to WT (Figure 4). A possible explanation 
could be the EGF-induced tubular formation, an alternative EGF-induced pathway reported in intestinal 
epithelial cells (41). In both the cellular growth experiments, the growth rate of the mutants is 
intermediate between the control and EGF, and concentration dependent. This phenomenon, and the 
cell-line specific response of growth hormones is consistent with previous literature reports (42).  
 
The analysis of the fluctuations in the dimerization arm reveals an underlying bias in ligand-induced 
receptor dimerization, originally not visible from the static images of structure comparison. K48T is the 
mutant that induce the biggest deviation from the WT. Although, all mutants show a transition. While 
giving an initial outlook on the effect of the mutants, our MD simulations do not take into account other 
factors that could be important in the mechanism of action of EGFR. Differential multimerization (43), 
oligomerization (19), receptor glycosylation, and the interaction with the membrane (23)  are factors 
where the underlying bias induced by the mutant ligands could also have an effect in.  
 
In this work, we showed how a single mutation of EGF is able to alter the specific functional 
relationship with the receptor. For functional divergence to arise, it could take as little as mutating 15% 
of the sequence (44). However, the EGFR ligands divergence date back to the vertebrate ancestor of 
R1/R2 whole genome duplication, up to 500 million years ago (45), as hinted by the low (~25%) 
sequence identity. From our results, the sequence distance does not reflect the distance in function. In 
fact, the functional divergence of EGF was altered with just a single targeted mutation.  
 
In conclusion our data suggests that a single mutant ligand induces a conformational change of the 
receptor that then affects receptor dimer stability, with plausible effects on phosphorylation level and 
downstream pathway activation (46). This shows how the persistence of biased signaling in EGFR is 
in an unstable equilibrium, where the observed conservation of diverging sites among paralogs is 
naturally reinforced to maintain the functional divergence. To determine whether a short distance in 
function space among paralogs is a consequence or a necessity for living systems, further studies will 
be required. 
 
 
Experimental procedures 
 
Sequence and structure analysis 
The sequences of EGFR ligands and the multiple sequence alignment of EGF orthologs were obtained 
from the Ensembl database (47). Multiple sequence alignment (MSA) of all ligands was performed with 
MAFFT software (48). X-ray structures were obtained from the PDB database (49). Structural 
alignments were created using Chimera (50). 
 
Phylogenetic analysis 
From the multiple sequence alignment of EGF from different species, nearly identical sequences were 
removed. The Drosophila melanogaster EGF sequence was added as an outgroup in the EGF phylogeny, 
while Caenorhabditis elegans EGF was used as outgroup for the ligand phylogeny. MSA and 
phylogenetic tree images were created using Unipro UGENE software (51). Three phylogenetic trees 
were made using the Neighbor Joining (NJ), Maximum Likelihood (ML), and Bayesian (MrB) methods 
in IQTREE (52), using ModelFinder to scan for the best-fit evolutionary model and parameters (53). 
 
Divergence Inducing Residue PREDiction 
We identified sites in EGF responsible for functional divergence using a method that combines 
evolutionary and co-evolutionary data, called DIRpred (Divergence Inducing Residue PREDiction). 
The DIRpred scoring function combines four components to evaluate each residue: I) The combined 
conservation scores in the ortholog alignments. This score is calculated by averaging the conservation 
of a reference ligand site with the conservation in the respective positions of the other ligands’ orthologs 
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alignments; II) The complementary value (1 – x) of the conservation score in the paralogs alignment. 
This score can be obtained either from sequence alignment (paralogs MSA) or structural alignment 
(paralogs MSTA). III) The highest co-evolution score between a reference ligand site and all of the 
receptor sites. IV) The complementary value (1 – x) of the highest co-evolution score between a 
reference ligand site and all of the other ligand sites in the joint orthologs alignment of all ligands 
(Figure 7). 
 
Conservation scores were calculated using three different formulations: 1) IDENTITY, 2) BLOSUM, 
and 3) JSDw. The IDENTITY score measures the frequency of appearance of a reference residue in the 
MSA. The BLOSUM score takes the amino acid substitution frequency into account using the 
BLOSUM62 matrix, normalized by the maximum and minimum score for the BLOSUM matrix. The 
JSDw score is based on Jensen Shannon divergence with a window of residues (54). The fasta sequences 
were imported using BioPython package, while analysis and plots were performed with Python3 
package SEABORN. EGF index positions from the paralogs MSA and MSTA were respectively used 
to align the MSA and MSTA based scores. A schematic representation of how the four scores were 
obtained is showed in Figure S1. 
The code used in the analysis of the DIRpred score and plots and the data used in this paper are shared 
on Github: https://github.com/oist/DIRpred. 
 
Statistical validation of EGF DIRpred 
The statistical analysis of EGF DIRpred scores was done as in Mirny and Gelfand (55) with some 
modifications. The key point is that a null-hypothesis dataset should take into account the higher 
similarity found between orthologs, rather than between paralogs. Such a dataset was obtained through 
a simulated evolution performed using the Python package Pyvolve (25). The sequences in the output 
dataset were required to have a relationship akin to those of the EGF homologs. Using the WAG model 
(56), a random 53 amino acid-long protein sequence was evolved from the root of the EGF homologs 
tree until each leaf node, simulating a scenario of neutral evolution. Then, the sequences were divided 
in orthologs and paralogs using the original tree classification. The output was used as input for the 
DIRpred pipeline to obtain four partial scores for each site. After 100 times repetition, the partial scores 
were gathered together to form four background distributions. Through the assumption of normality, it 
was possible to estimate the probability of a site to have a higher or equal score as a randomly evolved 
site, i.e., without functional constrains (26). The scores were considered significant only on the side 
where they contribute positively to the total DIRpred score, for example, when there is a lower level of 
paralogs conservation than expected. For this reason, only one side of the normal distribution is used 
for the calculation of the P-value. (Figure S3). In this way, it was possible to isolate the highly conserved 
cysteine positions, that usually get a misleading high overall DIRpred score. About the relative 
contributions of individual scores, an equal weighting system was preferred over the use of arbitrary 
values, which might not be always optimal. However, the pipeline allows the user to provide his own 
weighting system that might be more optimized for the user’s study subject. 
 
Selection of the mutations 
Along with the DIRpred score, the choice of positions for mutation was influenced by two manually 
curated factors: the distance from the receptor and the amino acid variation among ligand types. We 
designed mutations with the aim of inferring a transition to the amino acid properties in sites where the 
ligands show a different pattern. Overlapping residues at a given position were divided into two groups, 
based on an EGF-like and non EGF-like stabilization of the receptor dimer. This property was 
previously shown to follow binding affinity (18). Residues that introduced a noticeable shift in amino 
acid properties between the two groups were selected. For example, position N32 is hydrophobic in the 
high affinity ligands group, positively charged in the low affinity group and negatively charged in EGF. 
Finally, we carefully analyzed exceptional cases in the DIRpred scoring. Some of the residues that show 
high score have intramolecular interactions with another amino acid in the ligand. These residues, if 
mutated, will lose EGF structural stability (namely “residue swapping” behavior showed in Figure S12). 
The decision of which mutation to introduce was made using the paralogs alignment, with a preferential 
choice over the residue found in EREG or EPGN. Positions 32, 48 and 50 have high DIRpred score. 
Position 46 was included although having a lower score, because the substitution pattern matches the 
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two ligands groupings.  Furthermore position 46, 48 and 50 were preferred because, given previous 
experiments and the overall scores, the EGF C-terminus tail seems to play a critical role in the ligand 
function; see for example (57). 
 
Synthetic Peptides 
The wild-type, N32R, D46T, K48T, and W50Y variants of EGF were ordered from Scrum Net Co with 
purity >90% and quantity 5 mg/mL. These peptides were used for ITC measurements, Circular 
Dichroism (CD) measurements, proliferation studies, and Western Blot (WB) analyses.  
 
Cell Lines 
The Bj5-tα human normal fibroblast cell line was purchased from ATCC. Cells were grown in DMEM 
with 10% fetal bovine serum (FBS), and 5 µg/mL hygromycin B. The Swiss Albino 3T3 mouse normal 
fibroblast cell line was obtained from the RIKEN Cell Bank. Cells were grown in DMEM, 10% FBS, 
50 ug/mL gentamycin at 37oC in a 5% CO2 atmosphere with 95% humidity. The A431 human epithelial 
carcinoma adherent cell line (RIKEN Cell Bank) is a model skin cancer cell line with overexpressed 
EGFR used for oncogenic pathway studies (58).Cells were cultured in DMEM supplemented with 10% 
FBS (Sigma-Aldrich), 50 ug/mL gentamycin antibiotic or a combination of 100 unit/ml Penicillin G 
(Nacalai Tesque) and 100 µg/ml streptomycin sulfate (Nacalai Tesque). Experiments were conducted 
at 37°C in a 5% CO2-enriched air atmosphere with 95% humidity. Cell lines were grown and used for 
Western Blot and cell proliferation studies. 
 
Cell Proliferation Assay 
We measured cell proliferation using a label-free, non-invasive, cellular confluence assay with 
IncuCyte Live-Cell Imaging Systems (Essen Bioscience).  Human Bj5-tα (2,500 cells / well) and Mouse 
Swiss Albino 3T3 (1,000 cells/well) were seeded overnight on a 96-well plate (Corning) at 37°C in an 
incubator. The next day, cells were treated with WT EGF and mutants at 1 nM, 10 nM and 100 nM 
concentrations and placed in an XL-3 incubation chamber maintained at 37°C. The plate was scanned 
using a 4x objective at 2-hr intervals over 3 days. Cell confluence was measured using IncuCyte 
Analysis Software. The IncuCyte Analyzer gives real-time confluence data based on segmentation of 
high-definition phase-contrast images. Cell proliferation is shown as an increase in confluence rate 
relative to control. 
 
Apoptosis Assay 
Experiments were performed with the A431 human cancer cell line. 5,000 cells/well were seeded on a 
96-well plate (Corning) and incubated at 37°C for 24 hr. Media were replaced with fresh DMEM 
containing WT EGF, or EGF mutants at 1, 10, and 100 nM concentrations and fluorescent annexin V 
green reagent. Plates were pre-warmed prior to data acquisition to avoid condensation and expansion 
of the plate, which affect autofocus. Images were captured every 2 hrs (4x) for 3 days in the IncuCyte 
system. Cell proliferation is reported as in the previous assay. 
 
Statistics 
Proliferation and apoptosis experiments were performed in duplicates. All results are shown as the 
mean±s.d. Raw data was analyzed by two-way ANOVA with 95% confidence level. The multiple 
test was corrected using Bonferroni post hoc test. Prism 8 software was used for statistical analysis. 
Asterisks in the pictures show P-values using GraphPad convention: 0.1234 > (ns), 0.0332 > (*), 
0.0021 > (**), 0.0002 > (***), 0.0001 > (****). 
 
Isothermal Titration Calorimetry (ITC)  
All ITC studies employed a MicroCal PEAQ-ITC System (Malvern). For titration, both EGFR ECD 
(Sigma-Aldrich) and EGF variants were dialyzed into the same reaction buffer Milli-Q H2O (22 µm) at 
25°C. Each titration involved serial injections of 13 ´ 3 µL aliquots of EGF variants (200 µM) into a 
solution of EGFR ECD (20 µM) in the sample cell. In each case, the reference cell was filled with the 
same reaction buffer as the control to determine the heat upon binding of the two components. The 
measured heat constant value was subtracted from the heat per injection prior to analysis of the data. 
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The experiment was replicated twice. Results were analyzed by MicroCal PEAQ-ITC Analysis 
Software. 
 
Circular Dichroism (CD)  
Far UV measurements were taken at a protein concentration of 0.1 µM, using a cuvette with a path 
length of 0.1 cm. Secondary structure content was calculated from far UV spectra using CAPITO 
software (59). Five scans in the 190-240-nm wavelength range were taken. 
 
Western Blot Analysis  
A431 epidermoid carcinoma cells were harvested using Lysis Buffer (0.4% SDS, 1 mM DTT, 1%). 
Samples were incubated at 37°C for 10 min with Benzonase and centrifuged at 15,000 rpm at 22°C for 
10 min. Supernatants were used for further analysis. Sample concentrations were measured with a BCA 
protein assay kit (ThermoFisher Scientific). Lysate were mixed with 4x Sample Loading Laemmli 
Buffer and incubated at 90°C for 5 min. Equal amounts of protein were loaded in 12% Mini 
PROTEAN® TGX™ SDS-PAGE gel (Bio-Rad) and transferred to PVDF membranes (Trans-Blot 
Turbo RTA Mini 0.2 µm PVDF Transfer Kit). Membranes were blocked for 10 min with Bullet 
Blocking One (Nacalai) and reacted with monoclonal rabbit anti-EGFR antibody (Cell Signaling 
Technology, Inc.), Phospho-EGF Receptor (Tyr1173) (Cell Signaling Technology, Inc.), and rabbit 
anti-α-tubulin pAb (MBL) at dilution of 1:1000. Samples were incubated with Goat Anti-Rabbit IgG 
HRP at a 1:5000 dilution and chemiluminescent signals were detected by CDP Plus (ThermoFisher 
Scientific) and ChemiDoc touch MP (Bio-rad). 
 
Cross-linking assay 
A431 cells were cultured in 6 well-plate to sub-confluency. The cells were starved for 16 h. After 
activation with EGF and EGF mutants for 30 min at 4˚C, the cells were washed 3 times by ice-cold 
PBS. The cross-linking reaction was performed as previously reported (60). Briefly, crosslinking 
reagents bis(sulfosuccinimidyl)suberate (BS3) (Dojindo) were then added to a final concentration of 
3.0 mM in PBS, and the reaction was incubated on ice for 15min. The reaction was quenched by further 
incubation with 250mM Glycine in PBS and incubated for 15 min on ice. The cells were washed 3 
times by ice-cold PBS, and then lysed with 1% SDS in PBS containing proteinase inhibitor cocktail 
(Nacalai) on ice. The EGFR dimerization was analyzed by SDS-PAGE and western blotting. 
 
Microscale Thermophoresis 
Recombinant human EGFR Protein (ECD, His Tag) was purchased from Sino Biological Inc. (Cosmo 
bio, Japan). The protein was labeled with Large Volume His-Tag Labeling Kit RED-tris-NTA 2nd 
Generation (Nanotemper, Munich, Germany) and diluted to 200 nM with 0.05% tween-PBS. EGF WT, 
N32R, D46T, K48T, W50Y, BSA were prepared by 2-fold serial dilution with 0.05% tween-PBS (4000 
nM–0.122 nM). The EGFR and ligands were mixed 1:1 and incubated at room temperature for 5 min, 
and then loaded into standard capillaries. Microscale thermophoresis measurements were performed by 
using Monolith NT.115 (Nanotemper, Munich, Germany). 
 
 
Molecular Dynamics  
All the simulations were performed with Gromacs version 2020 (61) using charmm36-mar2019 force 
field (62) and SPC216 for water. PDB ID 5wb7 was used as model and template. EGF structure model 
was extracted from PDB ID 1ivo and superimposed to the ligand using UCSF Chimera Match-Maker 
algorithm (63). Mutants were generated using Swissmodel webserver (64), while missing atoms were 
compensated using Scwrl4 (65). A system was composed of EGFR dimer in complex with one or two 
EGF wild type (WT), N32R, D46T, K48T or W50Y were solvated and neutralized using NaCl ions in 
a dodecahedral box. Then, energy temperature and pressure equilibrations were performed to the system 
following the guidelines in Lemkul 2019 (66). 
 
A 100 ns production simulation was run using the Verlet cut-off scheme (67) for non-bonded 
interactions and LINCS as constraint algorithm (68). All the simulations reached convergence of RMSD. 
Long range electrostatic interactions were computed using the Particle Mesh Ewald method (69) using 
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a dedicated GPU. We checked for differences in relative motions between the three simulations by 
extracting and concatenating the backbone trajectories using catDCD plugin of VMD (70), then 
performing a PCA using Bio3d R package (71). 
 
 
Data availability 
The source code and alignments data to reproduce the analysis of this paper are available at 
https://zenodo.org/badge/latestdoi/287415954. 
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Figures 
 

 
Figure 1. Study rationale. EGF mutants were identified using an ad hoc methodology that combines 
conservation and coevolution measures, DIRpred. Unlike WT EGF, the mutant ligands induce an 
unstable conformation of the receptor dimer, similarly to a dimer with a single WT EGF. Treating 
A431 and fibroblast cells with either WT EGF or mutant EGF resulted in a different response both in 
the phosphorylation dynamics and the cell proliferation phenotype. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 28, 2021. ; https://doi.org/10.1101/677393doi: bioRxiv preprint 

https://doi.org/10.1101/677393
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

 
Figure 2. DIRpred analysis of EGF. (A) The relative ranking score of the four mutants. The outer 
circle represents paralogs multiple sequence analysis (MSA)-based scores, while the inner circle 
represents paralogs multiple structural alignment (MSTA)-based scores. The darker color indicates a 
higher ranking in the EGF sites-based scoring. The ranking values are reported in Table S2. (B) Cross-
conservation plot. The plot is obtained by crossing the two conservation scores. Interestingly, no point 
lies in the bottom right half of the plot (high paralogs conservation and low orthologs conservation), 
suggesting that paralogs and orthologs conservation are not independent. This observation points out 
that there is no organism-specific adaptation shared by all ligands at the protein sequence level. (C) 
Cross-co-evolution score. The plot is obtained by crossing the two co-evolution scores, the ligand-
receptor (L-R) co-evolution score (III) on the y axis and the ligand-ligand (L-L) co-evolution score (IV) 
on the x axis. 
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Figure 3. Binding measurements of EGF mutants to the EGFR receptor by Isothermal Titration 
Calorimetry (ITC) and MicroScale Thermophoresis (MST).  (A) ITC analysis of WT (Wild Type) 
EGF ligand, and mutants N32R, D46T, K48T, and W50Y binding to the ECD of the EGFR receptor at 
25° C. Measurements were taken by adding WT EGF or mutants at 200 µM to the ECD of EGFR at 20 
µM. (B) Extrapolated curves of the MST experiment. The normalized fluorescence difference (Fnorm) 
at 20 seconds for different concentrations of ligands was analyzed using the NanoTemper Technologies 
analysis software. Using the Kd model, it was possible to fit a curve for every sample except BSA, that 
showed no binding. All ligands show a transition at about 100nM. (C) Multiple sampling of 
thermophoresis was performed at a concentration of 100nM, the point of the curve where we expected 
to observe a biggest difference for a ligand with an altered affinity. The Fnorm is shown in relationship 
to a NL (No Ligand) sample average coming from the same experimental batch. 
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Figure 4. Short-term response: Effects of WT and single-mutant EGF on the receptor 
phosphorylation and dimerization in A431 cells at different time points. (A) Short-term effects on 
the phosphorylation level of EGFR Tyr-1173 after treating A431 cells with 100nM concentration of 
different ligands. The membrane containing EGFR and tubulin was separated after the transfer. D46T 
treated cells show a statistically significant reduction in the level of phosphorylation compared to the 
other samples. (B) A431 cells were treated with 100nM WT or mutant ligand. After 30 minutes, the 
cell lysate was run through a protocol for cross-linking and western blot. The bars represent mean ± s.d. 
of at least four biological repeats. The number on top of the bars shows the p-values of a 2-way ANOVA 
(A) or one-way ANOVA (B) multiple comparison corrected for multiple sampling using the Bonferroni 
correction. Details of the ANOVA statistics can be found in Table S3. Band intensity estimates were 
calculated using BIO-RAD ImageLab software (BioRad). Plots and statistics were performed using 
PRISM software (GraphPad). 
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Figure 5. Long-term response: Growth assays of cells treated with EGF variants. (A) Effect of 
different concentrations of EGF variants on proliferation of the human normal fibroblast Bj5-ta cell 
line. Data represent the percentage of the growth rate, calculated from the confluence of cells, relative 
to the control (mean ± standard deviation). Percent confluence was estimated 24 h after the treatment 
(two replicates per treatment). (B) Apoptosis effect of WT or mutant EGF on A431 cells. EGF-induced 
apoptosis is measured as the reduction in total population compared to the control. (C) Comparison of 
A431 cell growth after treatment with 100 nM WT EGF and EGF variants D46T and K48T. Cells were 
labeled with fluorescent Annexin V Green Reagent. Plates were pre-warmed prior to data acquisition 
to avoid condensation and expansion of the plate, which affect autofocus. Images were captured every 
2 h (4x magnification) for 3 days in the IncuCyte system. The number on top of the bars shows the p-
values of a 2-way ANOVA (A) or one-way ANOVA (B) multiple comparison to the control lane, 
corrected for multiple sampling using the Bonferroni correction. Details of the ANOVA statistics can 
be found in Table S3.  Band intensity estimates were calculated using BIO-RAD ImageLab software 
(BioRad). Plots and statistics were performed using PRISM software (GraphPad). 
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Figure 6. Molecular Dynamics of the EGFR extracellular domain. (A) Root Mean Square Deviation 
from the initial structure. (B) Top, Root Mean Square Fluctuations of the 100 ns simulations. The WT 
level is marked in bold and dashed red line. Bottom, focus on the RMSF of the dimerization arm domain. 
The two plots represent the two EGFR in the receptor dimer. (C) Dynamics of the dimerization arm 
domain in WT (red) and K48T (green) simulations. A structure every 20 ns of simulation was taken 
and aligned to 1IVO reference structure (blue surface and black ribbon). The structure at 20 ns is 
represented in solid colors. K48T simulation shows a more dynamic dimerization arm. (D) Number of 
H-bonds formed between the two receptors during the 100 ns simulation time. (E) Number of H-bonds 
formed between the receptor that shows a dynamic dimerization arm and the corresponding ligand 
during the 100 ns simulation time. (F) Distance used to investigate the fluctuations of the dimerization 
domain highlighted on the structure. Pro-272 (purple) and Gly-288 (red) are highlighted both on 5WB7 
(green and teal) and in 1IVO (grey). The distance between the alpha carbons of the 5WB7 couple is 
shown in brown and is notably longer than 1IVO. (G) Distribution of the distance between Pro-272 and 
Gly-288 in all the simulations. WT simulation shows a single peak at ~1nm, while in all other ligands 
the distance has two peaks. 
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Figure 7. DIRpred rationale. The prediction of Divergence Inducing Residues consists of a linear 
combination of four site-specific scores, in roman numerals. In I, the orthologs MSA of each paralog is 
used to compute a conservation score (as exemplified from the histograms on the alignments). 
Alignment images were produced using Unipro software (72). In II, the human paralog sequences or 
structures were aligned and the same conservation score function was used. In the purple box, the 
conservation score functions are represented. In III, the co-evolution score between EGF and each 
receptor site was computed using Mutual Information (MI). The yellow lines on the structure connect 
the highest scoring co-evolving residues between ligand and receptor. In IV, MI co-evolution score was 
computed from the combined ligands orthologs alignment. The circular plot was performed using 
MISTIC2 (73). 
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