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Abstract

Analyses of pharmaceutical pipelines of drug development in the 1990-2010 documented progres-
sively increasing attrition rates and duration of clinical trials, leading to a diffuse perception of a
“productivity crisis”. We produced a new set of analyses for the last decade, using an extensive data
of more than 45,000 projects between 1990 and 2017, and report a recent upsurge of R&D productivity
within the industry. First, we investigated how R&D projects are allocated across therapeutic areas
and found a polarization towards high-risk/high-reward indications, with a strong focus on oncology.
Importantly, attrition rates have been decreasing at all clinical stages in recent years. In parallel,
we observed an increase of early failures in preclinical research, and a significant reduction of time
required to identify projects to be discontinued. Notably, more recent projects are increasingly based
on novel mechanisms of action and target indications with small patient populations. Finally, by anal-
yses of the relative contribution of different institutional types and development companies, we show
that the observed increased performance in clinical trials is mostly due to the contribution of biotech-
nological companies, while pharmaceutical companies have significantly improved their performances
in identifying false positives in preclinical research.

∗Politecnico di Milano, Department of Management, Economics and Industrial Engineering; fabio.pammolli@polimi.it
†Center for Analysis, Decisions, and Society (CADS) - Human Technopole, Milano, Italy
‡Center for Analysis, Decisions, and Society (CADS) - Human Technopole, Milano, Italy; lorenzo.righetto@htechnopole.it
§Istituto Nazionale Genetica Molecolare, Milano, Italy; abrignani@ingm.org
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At the beginning of 2010s, many concerns were raised on the ongoing process of drug development,
which culminated in a diffuse perception of a “productivity crisis” of the pharmaceutical R&D.1,2 Data
from the previous two decades showed a progressive increase of attrition rates throughout the whole
pipeline of drug development and a significant increase of the time needed for the completion of clinical
trials between the 1990s and the 2000s.1,3

Several hypotheses were offered to explain these trends, including a gestation lag associated with
the fundamental transformations of the scientific knowledge, underlying innovation dynamics within
companies. Recently, however, fragmented signals have emerged of a change of tendency in the produc-
tivity of the drug development process: i) the number of New Therapeutic Entities (NTE) approved
by year has been increasing since 2010;4,5 ii) the oncology field has benefited from the extensive use
of biomarkers;8,10 iii) several innovations have entered pharmaceutical R&D, from artificial intelligence
to aid decision-making throughout the process to 3D printing for personalized drug design and produc-
tion.9,11 In parallel, pharmaceutical companies are rethinking the entire R&D process, including the
implementation of organizational solutions, such as the creation of “constellations” of dedicated centres6)
and are devoting great efforts to devising strategies for more efficient early detection of the non-viable
drug candidates.7 Finally, the recent upsurge of advanced therapies (e.g. CAR-T cell therapies for cancer
treatment) has been interpreted as a sign of an ending gestation lag of further major breakthroughs.8,9

Concurrently, regulatory agencies, such as the US Food and Drug Administration (FDA), have worked
to accelerate drug approval. Requests for Breakthrough Therapy Designation,12 conceived to speed up
the approval process for drugs that exhibit outstanding performances in preclinical research, have been
increasing steadily since the onset of this initiative, passing from an average approval rate of 33% in its
first years of application (2013-2015) to 44% in the last three years (2016-2018).

Here, using the same analytical approaches as in Pammolli et al., 2011,1 in order to ensure full
comparability of results, we provide an updated and accurate picture of the current state of pharma-
ceutical R&D, using data on drug pipelines up to the 2018. Our data set includes more than 45,000
drug-development projects, whose processes have been registered with time and space signatures, po-
tentially up to their marketing. Information on drug pipelines was integrated with links to an enriched
patent database and to sales related to marketed compounds (between 2002 and 2016). These further
refinements of the data allowed us to classify the indication associated with each project (i.e. to define
the indication as “chronic”, “lethal”, “multifactorial” or “rare”) and to define the institutional type of
project developer/originator.

We analyzed the therapeutic areas that are attracting a greater fraction of efforts by the pharmaceu-
tical industry, and ascribed the observed changes in phase-by-phase attrition rates to specific institution
types, using our classification of companies (i.e. pharmaceutical and biotechnological companies and
non-industrial institutions). We used this classification to investigate the performance of different con-
figurations of the division of innovative labor within the industry.13 Finally, we developed an indicator
to monitor the evolution in time of the novelty of mechanisms of action associated with each project.

Results
The upsurge in pharmaceutical R&D productivity. We identified an R&D project as a specific
indication-compound association, and selected projects started in either the US, Europe or Japan since
1990. We first focused on phase-by-phase attrition rates between 1990 and 2013 (Fig.1). At each stage,
we defined a success when we observed a transition to the next stage of development within 4 years (that
is why we considered only data up to 2013), or, in case of missing data, to any other subsequent phase,
without time constraint. We used changepoint detection analysis14 to pinpoint the most relevant changes
in linear regression slopes in the data and found that attrition rates in clinical phases have been declining
in recent years, though they generally remained above their starting values. To portray a general picture
of recent trends, we show in Table 1 the average values of phase-by-phase attrition rates in the three
decades under study. As a general trend, we observed decreasing attrition rates in clinical trials, in recent
years. Attrition rates in late-stages clinical trials (i.e. Phase II and III), however, remain quite high (Fig.1
and Table 1). Concurrently, failures in the preclinical phase have been increasing steadily, in conjunction
with successful market launches (i.e. projects that are marketed after being registered by a regulatory
agent, see the Registration panel in Fig.1).

As a first attempt to identify drivers of decreasing attrition rates in clinical stages, we computed the
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relative performance of R&D projects targeting different therapeutic areas. To this end, we divided the
projects according to their corresponding first-level Anatomical Therapeutic Codes (ATC), which consist
of a hierarchical classification of drugs, maintained by the European Pharmaceutical Market Research
Association (EphMRA). Fig.2 shows the relative contribution of each ATC class to the observed variations
in phase-by-phase attrition rates, between 2000-2009 and 2010-2013. We computed the contribution of
each ATC class as (∆ARa,p · Sha,p)100/∆ARp,tot, where: i) ∆ARa,p is the observed p-specific attrition
rate variation between the two periods for class a; ii) Sha,p is the share of phases p belonging to projects
in class a in the period 2010-2013 and iii) ∆ARp,tot is the total variation of the p-specific attrition rate
between the two periods. Table S1 reports the values involved in this computation in their entirety (phase-
by-phase attrition rates, project share, relative contribution by ATC class). Expectedly, the oncological
ATC class L (Antineoplastic and Immunomodulating Agents; light blue in Fig.2) emerges as one of the
most important in determining the observed variations, first and foremost because of its dominant share
in almost all phases under consideration. While its contribution in absolute value is sizable in early
development stages because of higher share, it becomes more significant in Phases III, where it is actually
considerably higher than its share. In other words, the reduction of its attrition rate in Phases III has
been more significant than in other ATC classes. In general, the contribution values did not deviate
greatly from the project share distribution (Table 1), suggesting that most ATC classes have similar
performances. In Phases III, instead, we observed a more diversified picture, with some ATC classes
showing increasing attrition rates, while others significant decreases (the latter happens in particular for
classes A: Alimentary Tract and Metabolism; J: General Anti-Infectives Systemic; L: Antineoplastic and
Immunomodulating Agents and R: Respiratory System).

We also considered time as a fundamental variable. We first analyzed the relationship between the
increasing attrition rate in the preclinical phases and the time needed to identify non-viable candidates.
To this end, we looked at the time needed for discontinuation of projects and its distributions among
dead projects in the two different time intervals (Fig.3). Interestingly, ' 70% of projects that had started
between 2000 and 2009 were terminated in the year they entered preclinical research, with a '20%
increase with respect to the previous decade. We then measured the time needed for a successful project
to join the market. We choose patent application year as the starting time of each project. Accordingly,
in the inset of Fig.3 we show the distribution of the time lag, measured in years, between patent filing
and market launch of successful projects in the three different decades under study (based on the year of
market launch). Interestingly, despite the increase observed between the 1990s and 2000s, this measure
has decreased again, showing that the development of at least a fraction of the projects has become faster
in recent years.

To track the evolution of phase duration, we computed the time needed to progress along the pipeline
in the different decades of observation (in the 2010s, we limited the analysis to year 2013 and, to facilitate
comparisons across decades, we imposed the constraint of 48 months as the maximum observable lag). As
shown in Fig.4, the time needed to complete the preclinical phase is slightly increasing. When a project
has entered clinical phases, its progress is instead signifcantly faster in Phase I, while the duration of
Phase II has not increased, at least in the last decade. The duration of Phase III increased progressively in
the analyzed decades and remains the longest, due to the complexity of inherent activities (the regulatory
requirements, increasing patient sample size, the simultaneous multi-center logistics; see e.g. Scannell et
al., 20122).

Period Preclinical Phase I Phase II Phase III Registration
1990-1999 88.17(±3.20)% 52.20(±6.85)% 76.13(±5.65)% 65.49(±8.81)% 46.91(±10.70)%
2000-2009 92.09(±1.23)% 68.69(±4.34)% 84.61(±2.48)% 71.40(±6.27)% 39.79(±7.61)%
2010-2013 93.99(±1.26)% 58.31(±1.74)% 79.64(±0.93)% 66.03(±1.70)% 19.73(±7.80)%

Table 1: Average (± standard deviation) yearly phase-by-phase attrition rates in three different time intervals (1990-1999, 2000-
2009, 2010-2013).
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Figure 1: Attrition rates in time for different stages of drug development. White circles: data; red solid lines: linear regression
in the corresponding time window; black vertical point line: changepoint. The attrition rate for a development phase in a year is
defined as the percentage of projects that started the focal phase in that year and passed to the subsequent phase within four years
(accordingly, 2013 is the last year we do consider).
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Figure 2: Variations in phase-by-phase attrition rates between 2000-2009 and 2010-2013 and the respective, relative contribution
of each ATC class. Attrition rates in the above periods are computed as the total average attrition rate (i.e. 1−cp,succ,∆t/cp,tot,∆t,
where cp,succ,∆t is the total count of successful phases p, as defined in the text, in period ∆t and cp,tot,∆t is the total number
of phases i in the same period. The relative contribution of its ATC class to the total variation in phase-specific attrition rates
is computed as (∆ARa,p · Sha,p)100/∆ARp,tot, where ∆ARa,p is the observed p-specific attrition rate variation between the two
periods for class a, Sha,p is the share of phases p belonging to projects in class a in the period 2010-2013 and ∆ARp,tot is the
total variation of the p-specific attrition rate between the two periods. Only positive contributions are taken into account in this
computation. For complete values, see Table S1.
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Figure 3: Time needed for project discontinuation in 1990-1999 (blue) and 2000-2009 (red). We highlight in green the area between
the two curves. We show the fraction of projects that are discontinued after x years from the start of preclinical research. The
distribution accounts for a maximum discontinuation time of 8 years, so we cannot perform such a computation for projects started
after 2009. Inset: boxplot of the time interval between patent filing and market launch years, based on the year of market launch,
in three different time intervals (1990-1999, 2000-2009, 2010-2013).

Figure 4: Median phase duration in time per each phase of drug development process, in three different time intervals (1990-1999,
2000-2009, 2010-2013). The duration of a development phase in a year is defined as the median time required to the projects that
started the focal phase in the given year to pass to the subsequent phase. The median is computed considering only transitions
with duration lower than or equal to four years, to make a sound comparison across decades.
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Finding the niche. All in all, the emerging picture is consistent with a general improvement
of efficiency: attrition rates in clinical phases have all started decreasing in recent years, though as
expected they remain higher than those at the start of the observation period. Moreover, there is
significant evidence that the performance of early screenings has improved. Thus, we investigated which
are therapeutic areas where the industry is focusing its efforts.

To this end, we partitioned the projects under study based on their ATC, identifying their main
therapeutic areas at the 3-digit hierarchical level (ATC3). In Fig.5 we show how projects are distributed
among therapeutic areas, as a function of the related probability of success (POS; i.e. how many projects
reach the market from the preclinical phase, overall) up to 2013 and of the yearly average sales between
2002 and 2016. In general, results show that high-reward/high-risk projects (i.e. the area with low
POS and high yearly sales) are polarizing the investments (Fig.5a), as previously reported.1 Expectedly,
projects in therapeutic areas with higher revenues and lower attrition rates have registered the highest
share increase between 2002-2009 and 2010-2017 (Fig.5b). In particular, monoclonal antibody neoplastics
(class L1G) and immunosuppressants (L4X) have increased their share, while the still prevailing class
L1X, being at lower POS and yearly sales, has remained constant.

The concentration of projects in oncology is even more apparent in the latest decade: i) 4 out the top
5 ATC3 classes, ranked by their overall share in 2010-2017 projects, are related to oncology (L category);
and ii) more than 40% of ongoing studies, currently listed on ClinicalTrials.gov1, are oncology-related
(see Table S2). Recent reports5,11 showed similar findings and predicted even greater sales and market
share for the future for oncological treatments. The observed concentration of projects in oncology can
be related to the increase of the R&D productivity, as oncology is recognized among the areas with
higher unmet medical need and where major improvements can still be made.2 In this respect, we found
that advanced therapies (i.e. cell or gene therapies) are mostly dedicated to oncology (Fig.S1), and new
projects have been on a steep rise in the last few years (Fig.S2), as recently reported.9 Also, the rising
importance of anti-cancer antibodies (class L1G) is a factor of simplification of drug preparation for
preclinical test and clinical trials, as the efficiency of monoclonal antibody production has significantly
improved in recent times.21 Other relevant fields that showed up in rankings include degenerative diseases
of the central nervous system (N7X), with specific reference to Alzheimer’s disease (N7D), another area
in which medical need is high.16,17 Interestingly, while projects in class L have improved their attrition
rates after 2010 (see Fig.2 and Table S1), possibly due to the drivers we just mentioned, the performance
of projects in class N worsened in most cases (i.e. fewer failures in preclinical research, and more in late
clinical development stages, Phase II and III). In fact, IQVIA (2019)9 reports that, out of 86 projects on
Alzheimer’s disease in the last ten years, only one received approval.

The progressive focus of the industry on projects of high complexity, in relatively unexplored areas, can
also be seen horizontally, across therapeutic areas. Orphan drugs approval, for instance, has significantly
increased over recent years.18 The number of yearly NME approvals for orphan drugs has more than
doubled from 2000-2009 to 2010-2017, while drug repositioning approvals towards rare diseases have
tripled in the same period.18 We used a manual classification of indications to retrieve the share of rare
diseases (defined as having a prevalence of ≤ 200,000 affected individuals in the US) by year of project
start (Fig.6a). In the observation period, this share has increased from 3% in 1990 to about 16 % in 2017,
suggesting that the greater focus on orphan drugs might be an important driver also in the improved
efficiency of the whole R&D process. On one side, FDA data19 show that orphan drugs cover a majority
share in fast-track programs. On the other, the “better than the Beatles” problem described by Scannell
et al. (2012)2 might be less relevant for these diseases. We report in Table S3 that the average phase-by-
phase attrition rates have also been declining in the subset of projects focusing on rare indications, with
the notable exception of Phase III, in which trial set-up is known to be more demanding because of the
limited size of target population.20

Expectedly, the general tendency towards orphan drug development is also a factor of increasing
difficulty of projects. It has been observed, for instance, that orphan drug development takes, on av-
erage, 2.3 years longer.20 This is due, for instance, to the smaller and geographically dispersed patient
populations and to the scarcity of available animal models and biomarkers. An additional factor of com-
plexity might be the increasing relevance of multifunctional drugs, which have emerged, in opposition to
single-targeted drugs, as a new approach to treatment22,23 (see Barabasi et al., 201125 on the concept
of network medicine). We also considered the average number of mechanisms of action per drug, by the

1ClinicalTrials.gov15 is a database of privately and publicly funded clinical studies conducted around the world.
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starting year of the project (Fig.6a). Also, here we observed a clear positive trend, with an even more
pronounced increase after 2010. Between 1990 and 2017, this number has nearly tripled. This may reflect
a general improvement of drug efficacy, as they act on multiple targets, or, alternatively, it may represent
the increasing difficulty of drug design.

Finally, we assessed the degree of novelty of this increasing number of mechanisms of action. To this
end, we devised an indicator that measures the number of times a given mechanism of action, listed in the
focal project, has appeared in projects started previously, taking into account the total number of previous
projects (see Methods for details). Interestingly, the median value of novelty of mechanism of action in
projects, despite decreasing from 1990 to 2010, has then started to increase again, overcoming the obvious
bias imposed by the increasing probability of finding previous projects with the same mechanism of action
(Fig.6b). Recent reports9 showed, in fact, that 34% of mechanisms of action in FDA-approved drugs in
2018 were first-in-class (i.e. they were different from those of existing therapies). To gain insights into the
effect of novelty on project success, we divided our dataset in successful (i.e. marketed) and failed projects
and found a significantly higher median novelty of successful projects (0.083 vs 0.015; a Wilcoxon24 test
rejects the null hypothesis that the two distributions have the same median with p«0.01).
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(a)

(b)

Figure 5: In each panel, the probability of success (POS) is shown on the x axis and the logarithm of potential sales (yearly
average computed in 2002-2016) on the y axis. A contour plot and a three-dimensional view of the same distribution are shown.
In the contour plot we highlight the top 10 ATC3 classes by the focal metric being shown on the vertical axis. These are listed
besides the contour plots. a: The vertical axis shows the percentage distribution of research and development (RD) projects by
POS and potential sales level. The distribution of RD efforts is concentrated in the upper left hand corner of the plot (indicating
high sales and low POS); b: The vertical axis shows the share variation between 2002-2009 and 2010-2017, again as a function of
POS and sales.
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Figure 6: a: Evolution in time of the share of projects targeting rare diseases (i.e. having a prevalence of fewer than 200,000
affected individuals in the US) and of the average number of mechanisms of action per project, between 1990 and 2017, by project
starting year (i.e. the year the focal project entered preclinical research). b: Evolution in time of median novelty of mechanism of
action per project, between 1990 and 2017, by project starting year.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 13, 2019. ; https://doi.org/10.1101/670471doi: bioRxiv preprint 

https://doi.org/10.1101/670471
http://creativecommons.org/licenses/by-nc-nd/4.0/


The Division of Innovative Labor. Having assessed a trend inversion for phase-by-phase attrition
rates, we then endeavoured to ascribe these patterns to specific institutional categories. As shown in
Pammolli et al., (2011)1 and Arora et al. (2009),26 the contribution of different institutional categories
(pharmaceutical and biotech companies or non-industrial institutions) to R&D performance might differ
significantly. To investigate their role in the observed increasing productivity, we used a manual classi-
fication of a large number of companies, according to the main institutional types (i.e. pharmaceutical,
biotech, university, hospital, other research center). We extended this classification to the list of devel-
oper institutions in our data set. Overall, this classification allowed us to classify ' 60% of projects, that
showed statistics comparable to the whole sample (Table 1). In Fig.7 we show the percent contribution of
each type of institution to the change we observed in each phase, while in Table 2 we list the complete re-
sults concerning the phase-by-phase attrition rates for each institution type and the corresponding project
share, in the two periods. We measured the contribution of institution type i to the variation in attrition
rates in phase p between 2000-2009 and 2010-2013 using the formula δip = (∆ARip ·Shi)∗100/∆ARtot,p,
where ∆ARip is the variation observed in attrition rates in p in the projects developed by i, Shi is the
share of phases belonging to projects developed by i in 2010-2013, and ∆ARtot,p is the total attrition
rate observed for phase p for all projects for which institution classification was available. Results showed
that project phase-by-phase share alone is not sufficient to account for the percent contribution to the
attrition rate change, suggesting that some minority institution types have greatly improved their perfor-
mance. For example, despite pharmaceutical companies have a lower prevalence of projects in preclinical
research (Table 2), their contribution to the increased attrition rate in that phase is predominant (Fig. 7).
Conversely, the contribution of biotech companies is greater than its share in late clinical stages (Phase
II and III).

Figure 7: Contribution to each of the three main institutional categories to changes in global attrition rates between the periods
2000-2009 and 2010-2013. In the upper bar plot we show phase-by-phase attrition rates in the two periods. The bars below expand
the attrition rate variation for the focal phase and are divided according to the relative contribution of each institutional type to
the observed variation.

Moreover, by using the same classification of institutions, our database allowed us to define different
Originator-Developer relationships, in which originators are defined according to the patent assignees
we have retrieved from our linked patent dataset. Again, division of labor might unravel differences in
R&D performance and help to define a landscape of drug development organization in greater detail, as,
in general, R&D agreements in the pharmaceutical industry have become increasingly important.27 For
instance, academic and non-industrial institutions have been advocated as pivotal in driving early devel-
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Attrition rates
Pr PI PII PIII Reg

Developer 00 10 00 10 00 10 00 10 00 10
Pharmaceutical 87.95 92.59 70.16 62.18 79.34 76.90 65.07 62.53 40.95 20.00

Biotech 89.68 90.16 63.95 55.77 84.50 78.10 77.40 67.42 31.68 19.75
Non-industrial 96.61 96.43 66.67 56.56 87.02 75.00 81.36 58.82 48.65 0

Share
Pr PI PII PIII Reg

Developer 00 10 00 10 00 10 00 10 00 10
Pharmaceutical 26.35 26.98 43.54 48.32 46.74 47.84 62.46 62.17 77.08 59.09

Biotech 48.49 47.38 45.46 43.33 43.45 44.61 31.23 32.79 16.78 36.82
Non-industrial 25.16 25.65 11.00 8.35 9.81 7.55 6.31 5.04 6.51 4.09

Table 2: Average phase-by-phase attrition rates and phase-by-phase share in 2000-2009 (00) and 2010-2013 (10), for the three
institutional types under study (pharmaceutical and biotechnological companies and non-industrial institutions).

opment of candidate drugs.28 Other sources29,30 underline the importance of interfirm and public/private
knowledge transfer to influence R&D productivity. We studied the effect of different Originator-Developer
(OD) relationships on the productivity indicators we have analyzed so far, namely attrition rates and
sales (i.e. the logarithm of composite sales in the available period for sales – 2002-2016). In general, we
identified an OD relationship for 4968 projects in the selected time span (1916 in the decade 1990-1999,
3052 in 2000-2013). We show in Table S5 a full count of these projects by their relative OD relationship.
We found that biotechnological companies have increased their share after 2000 as either originators or
developers, while pharmaceutical companies are no longer dominant. This trend is confirmed by recent
reports.9 In particular, the biotech–biotech relationship has increased its share.

Taking the pharmaceutical – pharmaceutical relationship as our baseline OD relationship, we show in
Table 3 the results of the regressions accounting for different OD relationships against the baseline (the
complete results can be found in Tables S6–S10). We repeated the regression for data before and after
2000, taken as a reference year (projects starting before 1990 are not accounted for). We also considered
fixed effects of time and project difficulty (expressed by indication and by our indication classification,
i.e. “chronic”, “lethal”, “rare” or “multi-factorial”).

A few observations, arising from the results shown in Table 3, are worth mentioning. First with respect
to the role of non-industrial originators in the drug development process, we did not find a significant
difference in the share of projects with a non-industrial partnership between projects started in the 1990s
and after 2000 (both being around 20%). We found, instead, that the non-industrial → pharmaceutical
model has changed its performance considerably before and after 2000. In the former case, we found
evidence that attrition rates were higher than the pharmaceutical → pharmaceutical baseline. In the
end, though, projects turned out to be significantly more successful (i.e. to have greater sales with
respect to the baseline) on the market. Notably, in the latest period, we found that differences from
the baseline model are no longer tangible. In parallel, an obvious change is affecting the non-industrial
→ non-industrial model. We found evidence that attrition rates remain high (or higher, even) in early
development phases, but they are also decreasing in later stages, with respect to the baseline.

A few interesting remarks come from the analysis of the evolution of the performance of biotechnology
firms. In the biotech → pharmaceutical model, we did not find significant differences from the baseline
and in the two time periods, except for the fact that the effect on sales has changed sign after 2000. This
is a pattern that can be found in all other OD relationships including biotech firms as either originators
or developers. For the non-industrial → biotech model, the considerations for the strictly non-industrial
model remain valid, but with a more drastic reduction of the difference in attrition rates with respect to
the baseline after 2000 (and no sensible change in terms of phase duration, though).

The general pattern of sales becoming significantly lower in projects involving biotech firms or non-
industrial institutions, after 2000, hints at a possible greater focus on smaller markets of this part of the
industry. For this reason, we list in Table 3 the share of projects focusing on an indication classified
as “rare” in our expert-guided classification. Preliminarily, we report that the pharmaceutical baseline
model increased its share from 4.5% to 10.7%. In the first place, we observed that projects involving
non-industrial institutions, in any role, have not increased their share, quite the opposite. Also, they
appear, after 2000, comparable to what is observed in the baseline. At the same time, we found that
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Transition rates
Pr PI PII PIII Reg

O→D 90 00 90 00 90 00 90 00 90 00
ni→ph -0.156† -0.067 -0.095 -0.032 -0.129† 0.003 -0.105 0.004 -0.140† 0.010
bt→ph -0.079 -0.039 -0.011 -0.048 -0.005 -0.033 -0.087 0.013 -0.067 0.042†
ni→ni -0.326† -0.325† -0.246† -0.264† -0.217† -0.191† -0.168† -0.111† -0.162† -0.053†
ni→bt -0.319† -0.070† -0.227† -0.088† -0.223† -0.136† -0.174† -0.095† -0.175† -0.035
bt→bt -0.253† -0.056† -0.206† -0.106† -0.228† -0.090† -0.191† -0.080† -0.155† -0.048†

Sales [log10e] Orphan [%]
O→D 90 00 90 00
ni→ph 0.756† 0.184 9.2 8.7
bt→ph 0.395 -0.355† 9.8 14.3
ni→ni 0.295 -0.942† 12.0 10.5
ni→bt 0.137 -0.581† 8.2 13.4
bt→bt 0.362 -0.282† 5.5 15.0

Table 3: Regression coefficients for the five cases of Originator-Developer relationship and the three categories of response variables
(phase-by-phase transition rates, phase duration and sales). ni: non-industrial; ph: pharmaceutical; bt: biotech. †: significant at
p < 0.05.

projects in which non-industrial institutions appear among originators and developers both show the
greatest difference in sales with respect to the baseline, almost one order of magnitude. This result
reveals, possibly, an increasing focus on rare indications and on small target populations. Concurrently,
we found that the biotech → biotech model has had the greatest increase in orphan share in the two
periods, including the baseline.
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Discussion
The sustainability and productivity of R&D on drugs remains a major issue for the biopharmaceutical
industry. Our analyses of drug development pipeline data, though, showed significant improvements in
the overall efficiency of the process. In particular, the screening of drug candidates is becoming more
and more effective in the selection of more viable projects at early stages, so that later attrition rates
are decreasing. This has a two-fold effect on productivity: increased approval of drugs and decreased
average cost per project. As a possible driver of this phenomenon is the increased attention to the
validation of the drug targets in preclinical research, both in terms of their role on the disease, and
the toxicity inherent to their manipulation. Indeed, the extensive genetic validation of drug targets has
been shown to improve the chances of passing through clinical stages32 and has become more widely
embraced in different therapeutic areas.33,34 A better selection of patient subsets for the clinical trials
via “stratification” based on biomarkers36 is another possible factor of improvement of success rates.
Also, the prevalence of antibodies as new drugs has simplified both preclinical development and clinical
grade batch preparation, since antibody production is a relatively easy process amongst biologics. Finally,
“precision” diagnostic assays have been increasingly used as clinical endpoints,35 thus providing accuracy
and efficiency to clinical trial assessment.

We found that many of these improvements are quite widespread across projects in different therapeu-
tic areas and at different stages of clinical development, except for Phase III, in which performances can
still vary greatly and where molecular stratification of patients is still very poor. Also, we found that the
pharmaceutical industry is increasingly focusing on therapeutic/pathological areas where medical need is
high (i.e. oncology and degenerative diseases of the CNS). These increasing efforts on high-risk projects,
combined with the rise in the number and novelty of mechanisms of action in recent projects, reveal that
new discovery areas are opening up, in a renewed pursuit of the “endless frontier”. We found, though, that
phase duration in late stages of drug development is consistently increasing, particularly in Phase III,
pointing at an increasing difficulty of project requirements in terms of trial characteristics and efficacy.
Though a recent publication reports similar findings,9 it speculates that an increasing focus on orphan
drugs may also result in shorter trial duration. We documented instead further evidence of increasing
numbers of drugs based on disease mechanisms, which follows improvements in the understanding of the
etiology of diseases. Though this paradigm shift may result into the generation of more efficacious drugs,
it might affect the length of the process of drug design, as shown by the duration of successful preclinical
research that, in fact, has increased after 2010.

We also found that the intensification of the collaboration between firms and regulatory agents can
guide the whole process from the beginning and positively impact the development time in Breakthrough
Therapy Designation procedures, as recently suggested.31

When looking at the relative contribution of different institutional types to the increasing R&D
productivity, we found that results depend on the focal phase of drug development. The observed increase
of early failures, i.e. in preclinical research, are mostly attributed to pharmaceutical companies. In late
stages of clinical trials (Phase II and III), we found that the performance of projects developed by biotech
companies has documented the most significant increase. Non-industrial projects are also contributing
more than their (minority) share to the improvement of attrition rates in late clinical phases. Regarding
the institutional models regulating the originator-developer scheme, projects originated and developed
by non-industrial institutions (i.e. universities, hospitals and other research centers) are found to fail
earlier, when started after 2000, than in the previous decade, and they reduce the duration of Phase II
and III, the most critical for R%D costs, in a statistically significant way. Concurrently, we found that
collaborations between non-industrial institutions and pharmaceutical companies, which were enablers
for state-of-the-art technology development in pharmaceutical firms (something we found in our data in
the 1990 decade and is reported in the literature, see e.g. Cassiman & Gambardella, 200937), no longer
retain the same signature after 2000. Additionally, this is not due to an increasing focus on the orphan
drug market, which might overshadow the added value of knowledge outsourcing. On the other side, we
found evidence that non-industrial institutions are focusing on extremely rare diseases, as sales related to
strictly non-industrial projects are lower than the baseline by nearly an order of magnitude, after 2000.
We did find, also, that projects involving biotechnological firms have all increased their share of projects
on rare diseases, and they appear higher than the baseline by 3-5% after 2000.
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Methods
Data
The main data source employed in this study is R&D Focus, a proprietary database about drug R&D
projects. Moreover, R&D Focus data has been complemented with proprietary sales information from
the IQVIA sales database, and with free patent data from Regpat and USPTO datasets.

R&D Focus contains information about over 43,000 medical compounds developed until September
2018, both successful and failed. For each compound a number of details are available. In particular, in
this work we use the following pieces of information:

• ATC codes, dividing compounds into groups on the basis of the organ on which they act and their
therapeutic and chemical properties; it is a hierarchical classification envisaging five levels, from
ATC1 to ATC5.

• Indications, i.e., the diseases for which the compound is/will be used. We can also take advantage
of a classification of the indications provided by a pharmacologist; the indications are classified as
rare/not rare, lethal/not lethal, chronic/not chronic, multifactorial/not multifactorial. A disease is
multifactorial when its causes are represented by the competition of several factors of a different
nature, apparently not in direct connection between each other.

• Mechanisms of action, representing the biochemical interactions through which the drug produces
its effects.

• Companies which have developed the compound.

• Codes of the patents possibly related to the compound.

Moreover, each pair (compound, indication), which for us defines a project, is connected with information
about its development history. The development history is the sequence of development phases that the
compound has undergone until its marketing or failure for that indication; the available phases are
Preclinical, Phase I, Phase II, Phase III, Registration, Marketed. Each phase in the history is associated
with date and country; in this work only the projects initiated in USA, EU or Japan are taken into
account. Overall, this selection and processing and data originates 49,591 projects.

The IQVIA sales data at our disposal envisage the sales in euros of both branded and unbranded
pharmaceutical products from 2002 to 2016 in 35 countries. The database contains 202,651 products
corresponding to 48,402 distinct compounds. The compound names in IQVIA have been linked to the
R&D Focus compounds via text matching. In R&D Focus there are 2,333 marketed compounds, and we
have been able to connect 2,123 of them with IQVIA sales entries (91.0%).

The patent codes specified in R&D Focus are used to link the compounds with the freely available
patent datasets (the American USPTO dataset, and Regpat for EPO and PCT patents); the R&D Focus
compounds are associated with 2,917 USPTO patents, 3,441 EPO patents and 2,419 PCT patents. The
integration with the free datasets allowed us to retrieve the assignees of the patents.

The assignees of the patents, as well as the companies developing the compounds specified in R&D
Focus, are divided into some categories through a manual classification provided by a domain expert;
in particular, we consider three industrial categories (pharmaceutical, biotech and other industrial) and
three non-industrial categories (university, hospital and other research centers). About the coverage of
the manual classification, 84.6% of the R&D Focus patents have all the assignees classified, and 87.7% of
the R&D Focus compounds have all the developing companies classified.

Data processing
Attrition Rate

The attrition rate for a development phase in a year is defined as the percentage of projects that started
the focal phase in the given year and passed to the subsequent phase within four years (accordingly,
the maximum possible starting year in our data is 2013). If the following phase is missing but a more
advanced one is recorded, then the transition is deemed accomplished without imposing time constraints.
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Phase duration

The duration of a development phase in a year is defined as the median time required to the projects
that started the focal phase in the given year to pass to the subsequent phase. The median is computed
considering only transitions with duration lower than or equal to four years, to make a sound comparison
across decades.

Probability of success

We measure the probability of success of projects associated with a specific ATC3 as the number of
projects which reach the market (i.e. they have a “Marketed” phase in their history) over the total
number of projects in that ATC3. In this paper, we do not take into account projects started after 2013.

Novelty of mechanism of action

We express the degree of novelty of mechanisms of action of a project as:

Novi = 1
(nm,<t + 1)

Np,<t

Np,<t + 1 (1)

where nm,<t is the minimum number of times a mechanism of action listed in project i has appeared
in previous projects, while Np,<t is the total number of previous projects.

Statistical techniques
Changepoint Detection

Changepoint detection14 identifies the time instants (changepoints) corresponding to abrupt changes in
a function. Identifying the changepoints divides the function into sections, and in particular we split the
attrition rate in correspondence of the years where the regression line changes the most. This is obtained
by finding the sections of the function such that the sum of the residual errors of the regressions in each
section is minimized.

Note that adding more changepoints keeps reducing the value of the residual error, leading to over-
fitting. To avoid this problem, the error metric needs to envisage also a term penalizing high number of
changepoints.

Let x1, . . . , xn be the points of the function that we are studying, and let fp,q be the regression
line approximating the function between the time instants p and q (p < q). The changepoint detection
procedure finds the K time instants k1, . . . , kK minimizing the following metric:

J(K) =
K∑

r=0

kr+1−1∑
i=kr

(xi − fkr,kr+1−1
i )2 + βK (2)

where in this formula k0 represents time instant 1 and kK+1 represents the last time instant (n). The
internal summation describes the residual error of the regression between the time instants kr and (kr+1−
1). The term βK, where β is a parameter to be set, penalizes the addition of new changepoints. It can
be easily shown that a new changepoint is rejected if it does not bring an improvement to the residual
error of the regression at least equal to β. In this work the threshold β has been set to twice the variance
of the function, meaning that we stop adding changepoints when the subsequent new one would increase
the R2 determination coefficient of the regression of less than 2/n.

Regression with dummy variables

We model here a set of response variables in a regression framework:

• phase-by-phase transition: binary variable identifying the successful passage from the focal phase
to the next one;

• sales: logarithm of the sum of sales of the focal drug.
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Our main explanatory variable is the binary variable identifying the type of Originator-Developer (OD)
relationship under study. We define the originators of a project according to the assignees of the related
patent(s), and the developers according to the developing company listed in the relevant R&D Focus
project. We define OD relationships according to the presence of at least 1 assignee or developer in one of
the relevant institutional types. We treat the “university”, “hospital” and “other research” classifications
as “non-industrial”. Also, we define as the baseline OD relationship the one that has a pharmaceutical
company among originators and developers both. Then, we study 5 possible relationships: non-industrial
(O) and pharmaceutical (D); biotech (O) and pharmaceutical (D); non-industrial (O) and non-industrial
(D); non-industrial (O) and biotech (D); biotech (O) and biotech (O). We treat each project which has at
least one non-industrial institution among originators and developers as a non-industrial-non industrial
project (the same goes for biotech firms). Mixed projects (but missing the focal type of institution in
either the originators or the developers) are included in the baseline.

In addition, we use a few dummy variables to control from fixed effects characterizing the focal
project: the starting year, the indication and the classification of the indication along four dimensions
(i.e. “chronic”, “lethal”, “rare” and “multi-factorial”). The latter has been performed manually by a
domain expert.

It follows that the regression model for the generic response variable X can be written as:

X = αOD +
Ny∑
t=1

βtyeart +
Ni∑
i=1

ιi indicationi + κ chronic+ λ lethal + ρ rare+ µmulti− factorial (3)

where OD is the binary variable classifying each project by either a relevant project according to the
OD relationship under study, or a baseline project (pharmaceutical as originator and developer both).
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Attrition rates
Pr PI PII PIII Reg

ATC class 00 10 00 10 00 10 00 10 00 10
A 88.49 88.99 68.54 55.92 79.11 76.86 67.95 61.72 49.28 26.67
B 89.37 93.62 57.69 52.94 81.92 57.45 74.07 76.27 35.90 63.64
C 92.71 94.58 69.85 62.30 86.09 77.96 74.68 74.74 44.21 18.52
D 87.77 91.84 63.64 41.82 89.11 78.61 61.80 68.67 40.63 34.21
G 84.72 85.00 71.10 66.27 85.98 80.92 68.29 67.86 48.24 31.58
H 87.38 100 79.59 70.59 79.17 61.29 60.00 64.29 29.41 25.00
J 91.45 93.95 65.46 59.62 83.70 73.91 68.61 61.11 30.08 28.30
L 95.55 96.58 67.02 58.73 86.64 84.41 79.68 73.05 47.06 29.21
M 93.07 92.22 76.58 53.62 86.67 85.38 73.15 70.73 42.11 19.64
N 91.99 91.68 75.14 70.18 82.52 82.59 66.30 69.54 31.90 23.40
P 92.50 100 64.71 75.00 100 20.00 75.00 100 28.57 0
R 91.93 95.80 77.42 68.27 84.87 81.13 80.25 67.74 46.48 32.00
S 90.34 91.84 57.52 42.86 80.00 77.27 74.16 69.46 45.90 39.13

Share 2010-2013 Relative contribution
ATC class Pr PI PII PIII Reg Pr PI PII PIII Reg

A 8.12 10.06 10.67 15.44 13.91 3.29 14.35 6.57 18.40 21.74
B 2.40 2.25 2.76 4.36 2.04 8.25 1.20 18.28 - -
C 4.24 4.04 5.47 7.02 5.01 6.35 3.41 11.67 - 9.02
D 3.75 3.64 5.91 6.13 7.05 4.45 5.96 4.17 6.07 3.36
G 2.04 2.75 3.85 4.14 7.05 0.45 1.48 5.02 0.39 8.28
H 0.28 0.56 0.91 1.03 1.48 2.80 0.56 4.17 - 0.46
J 13.07 8.77 7.44 9.31 9.83 25.62 5.70 18.54 15.25 1.24
L 38.08 45.88 34.90 22.75 16.51 30.12 42.18 19.41 35.13 20.88
M 4.26 4.57 6.23 6.06 10.39 - 11.41 1.98 3.87 16.68
N 15.65 10.99 12.50 14.55 17.44 - 5.91 - - 10.65
P 0.71 0.26 0.15 0.30 0.37 4.00 - 2.89 - 0.76
R 3.65 3.44 4.68 4.58 4.64 10.52 3.41 4.29 15.28 4.84
S 3.75 2.78 4.53 4.36 4.27 4.16 4.41 3.02 5.61 2.08

Table S1: Average phase-by-phase attrition rates in 2000-2009 (00) and 2010-2013 (10), phase-by-phase share in 2010-2013, and
relative (positive) contribution, when projects are divided according to their first-level ATC class. The relative contribution of its
ATC class to the total variation in phase-specific attrition rates is computed as (∆ARa,p · Sha,p)100/∆ARp,tot, where ∆ARa,p

is the observed p-specific attrition rate variation between the two periods for class a, Sha,p is the share of phases p belonging to
projects in class a in the period 2010-2013 and ∆ARp,tot is the total variation of the p-specific attrition rate between the two
periods. Only positive contributions are taken into account in this computation.

Table S2: Top-10 disease types by percentage of ongoing clinical studies involving that disease type (source: clinicaltrials.gov)

Disease type Percentage of ongoing clinical studies
Neoplasms 41.59%
Nervous System 20.96%
Cardiovascular 20.69%
Digestive System 17.29%
Immune System 13.29%
Female Urogenital 13.17%
Respiratory Tract 13.03%
Male Urogenital 10.77%
Hemic and Lymphatic 10.37%
Skin and Connective Tissue 10.36%

Statistics computed using 33,269 studies whose overall status is “Recruiting” “Active” “Not yet recruiting”, “Enrolling by invita-
tion” or “Available”. We have excluded the studies with only behavioral interventions and the disease type “Pathological conditions,
signs and symptoms”˙ The assignment of a study to a disease type is not exclusive, therefore the reported percentages do not sum
to 100.
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Figure S1: Share of advanced therapy projects by ATC code 1.
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Figure S2: Number of advanced therapy projects by starting year.

Period Preclinical Phase I Phase II Phase III Registration
1990-1999 87.77(±3.59)% 52.64(±9.60)% 76.26(±10.83)% 61.01(±16.01)% 46.68(±15.30)%
2000-2009 90.83(±2.45)% 63.91(±7.26)% 83.15(±2.87)% 65.64(±13.13)% 42.04(±14.00)%
2010-2013 94.04(±2.02)% 51.10(±5.23)% 80.82(±1.78)% 68.91(±6.01)% 26.70(±13.21)%

Table S3: Average (± standard deviation) yearly phase-by-phase attrition rates in three different time intervals (1990-1999, 2000-
2009, 2010-2013), for projects focused on treatment of rare diseases. Rare diseases are identified according to a manual classification
performed by a domain expert.
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Period Preclinical Phase I Phase II Phase III Registration
1990-1999 87.29(±5.21)% 48.16(±9.16)% 70.87(±6.70)% 62.35(±9.74)% 45.25(±11.08)%
2000-2009 90.92(±2.45)% 66.51(±7.26)% 82.58(±2.87)% 69.51(±13.13)% 40.05(±14.00)%
2010-2013 92.44(±1.89)% 59.05(±3.78)% 77.28(±2.20)% 63.81(±7.14)% 20.00(±8.23)%

Table S4: Average (± standard deviation) yearly phase-by-phase attrition rates in three different time intervals (1990-1999,
2000-2009, 2010-2013), for projects for which we have a classification of the institution of the developer (according to the “phar-
maceutical”, “biotech” and “non industrial” classification).

(a) 1990-1999

O
D ph ni bt

ph 772 (40.3%) - -
ni 56 (0.3%) 400 (20.9%) 102 (5.3%)
bt 135 (7.1%) - 451 (23.5%)

(b) 2000-2013

O
D ph ni bt

ph 1132 (37.1%) - -
ni 59 (1.9%) 510 (16.7%) 89 (2.9%)
bt 330 (10.8%) - 932 (30.5%)

Table S5: Number of projects (percentage share over the whole period) for each OD relationship in the two observation periods
(1990-1999 and 2000-2013). ni: non-industrial; ph: pharmaceutical; bt: biotech.

Variable OD type90−99 N obs90−99 R2
90−99 OD type00−13 N obs00−13 R2

00−13
Preclinical, transition -0.156∗∗ 859 0.316 -0.067∗ 1236 0.331

Phase I, transition -0.095 859 0.351 -0.032 1236 0.383
Phase II, transition -0.129∗∗ 859 0.390 0.003 1236 0.381
Phase III, transition -0.105∗ 859 0.380 0.004 1236 0.398

Registration, transition -0.140∗∗ 859 0.360 0.010 1236 0.434
Sales 0.756∗∗ 268 0.541 0.184 446 0.526

Table S6: Effect of non-industrial originators vs pharmaceutical developers on project progress and sales.
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Variable OD type90−99 N obs90−99 R2
90−99 OD type00−13 N obs00−13 R2

00−13
Preclinical, transition -0.079 925 0.287 -0.039∗ 1483 0.316

Phase I, transition -0.011 925 0.339 -0.048∗ 1483 0.359
Phase II, transition -0.005 925 0.368 -0.033 1483 0.373
Phase III, transition -0.087∗ 925 0.371 0.013 1483 0.391

Registration, transition -0.067 925 0.359 0.042∗∗ 1483 0.417
Sales 0.395 269 0.505 -0.355∗∗ 504 0.507

Table S7: Effect of biotech originators vs pharmaceutical developers on project progress and sales.

Variable OD type90−99 N obs90−99 R2
90−99 OD type00−13 N obs00−13 R2

00−13
Preclinical, transition -0.326∗∗ 1073 0.379 -0.325∗∗ 1578 0.449

Phase I, transition -0.246∗∗ 1073 0.403 -0.264∗∗ 1578 0.439
Phase II, transition -0.217∗∗ 1073 0.421 -0.191∗∗ 1578 0.400
Phase III, transition -0.168∗∗ 1073 0.407 -0.111∗∗ 1578 0.393

Registration, transition -0.162∗∗ 1073 0.374 -0.053∗∗ 1578 0.422
Sales 0.295 275 0.576 -0.942∗∗ 456 0.572

Table S8: Effect of non-industrial originators vs non-industrial developers on project progress and sales.

Variable OD type90−99 N obs90−99 R2
90−99 OD type00−13 N obs00−13 R2

00−13
Preclinical, transition -0.319∗∗ 1017 0.358 -0.070∗∗ 1334 0.336

Phase I, transition -0.227∗∗ 1017 0.384 -0.088∗∗ 1334 0.386
Phase II, transition -0.223∗∗ 1017 0.416 -0.136∗∗ 1334 0.398
Phase III, transition -0.174∗∗ 1017 0.388 -0.095∗∗ 1334 0.406

Registration, transition -0.175∗∗ 1017 0.349 -0.035 1334 0.439
Sales 0.137 275 515 -0.581∗∗ 448 0.551

Table S9: Effect of non-industrial originators vs biotech developers on project progress and sales.

Variable OD type90−99 N obs90−99 R2
90−99 OD type00−13 N obs00−13 R2

00−13
Preclinical, transition -0.253∗∗ 1299 0.326 -0.056∗∗ 2124 0.332

Phase I, transition -0.206∗∗ 1299 0.345 -0.106∗∗ 2124 0.346
Phase II, transition -0.228∗∗ 1299 0.384 -0.090∗∗ 2124 0.303
Phase III, transition -0.191∗∗ 1299 0.363 -0.080∗∗ 2124 0.318

Registration, transition -0.155∗∗ 1299 0.329 -0.048∗∗ 2124 0.337
Sales 0.362 298 0.548 -0.282∗∗ 604 0.483

Table S10: Effect of biotech originators vs biotech developers on project progress and sales.
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