
1 

 

Article type: Original Article 

Circulating concentrations of micro-nutrients and risk of breast cancer: A 

Mendelian randomization study 

N. Papadimitriou1,2, N. Dimou1,2, D. Gill 3, I. Tzoulaki 1,3, N. Murphy2, E. Riboli3, S. 

J. Lewis4, R. M. Martin4,5, M. J. Gunter2, K. K. Tsilidis1,3   

 

Affiliations 

1 Department of Hygiene and Epidemiology, University of Ioannina School of 

Medicine, Ioannina, Greece 

2 Section of Nutrition and Metabolism, International Agency for Research on Cancer, 

Lyon, France  

3 Department of Epidemiology and Biostatistics, School of Public Health, Imperial 

College London, London, UK 

4 Department of Population Health Sciences, Bristol Medical School, University of 

Bristol, Bristol, UK 

5 University Hospitals Bristol NHS Foundation Trust National Institute for Health 

Research Bristol Biomedical Research Centre, University of Bristol, Bristol, UK 

 

Corresponding author: 

Dr Konstantinos K Tsilidis, Department of Epidemiology and Biostatistics, Imperial 

College London, St Mary’s Campus, London, W2 1PG, United Kingdom,Tel.: +44 (0) 

2075942623, E-mail: k.tsilidis@imperial.ac.uk 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/668186doi: bioRxiv preprint 

https://doi.org/10.1101/668186


2 

 

Where authors are identified as personnel of the International Agency for Research on Cancer 

/ World Health Organization, the authors alone are responsible for the views expressed in this 

article and they do not necessarily represent the decisions, policy or views of the International 

Agency for Research on Cancer / World Health Organization. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/668186doi: bioRxiv preprint 

https://doi.org/10.1101/668186


3 

 

Abstract 

Background: The epidemiological literature reports inconsistent associations 

between consumption or circulating concentrations of micro-nutrients and breast 

cancer risk. We investigated associations between genetically determined 

concentrations of 11 micro-nutrients (beta-carotene, calcium, copper, folate, iron, 

magnesium, phosphorus, selenium, vitamin B6, vitamin B12 and zinc) and breast 

cancer risk using Mendelian randomization (MR). 

Materials and methods: A two-sample MR study was conducted using 122,977 

women with breast cancer, of whom 69,501 were estrogen receptor positive (ER+ve) 

and 21,468 were ER-ve, and 105,974 controls from the Breast Cancer Association 

Consortium. MR analyses were conducted using the inverse variance weighted 

approach, and sensitivity analyses were conducted to assess the impact of potential 

violations of MR assumptions.  

Results: One standard deviation (SD: 0.08 mmol/L) higher genetically determined 

concentration of magnesium was associated with a 17% (odds ratio [OR]: 1.17, 95% 

confidence interval [CI]: 1.10 to 1.25, P=9.1 × 10-7) and 20% (OR: 1.20, 95% CI: 

1.11 to 1.30, P=3.17×10-6) higher risk of overall and ER+ve breast cancer, 

respectively. An inverse association was observed for a SD (0.5 mg/dL) higher 

genetically determined phosphorus concentration and ER-ve breast cancer (OR: 0.84, 

95% CI: 0.72 to 0.98, P=0.03). A suggestive inverse association was observed for a 

SD (0.48 mg/dL) higher genetically determined calcium concentration with overall 

breast cancer (OR: 0.91, 95% CI: 0.83 to 1.00, P=0.06). There was little evidence that 

any of the other nutrients were associated with breast cancer. The results for 

magnesium were robust under all sensitivity analyses. 
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Conclusions: Higher circulating concentrations of magnesium, phosphorus and 

calcium may affect breast cancer risk. Further work is required to replicate these 

findings and investigate underlying mechanisms. 

Word count:268 

 

key words: Mendelian randomization, diet, nutrition, breast cancer, causal inference 

 

key message: We conducted a Mendelian randomization study to investigate whether 

concentrations of 11 micro-nutrients are associated with risk of breast cancer. An 

increased risk of overall and oestrogen-receptor positive disease was observed for 

genetically higher concentrations of magnesium and inverse associations were 

observed for phosphorus and calcium concentrations 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/668186doi: bioRxiv preprint 

https://doi.org/10.1101/668186


5 

 

Introduction 

Breast cancer is the most common cancer in women with an estimated 2.1 

million new cases and over half a million deaths worldwide in 2018 [1]. Breast cancer 

is a heterogeneous disease and its epidemiology varies with menopausal and tumour 

receptor status at time of diagnosis. Established risk factors for post-menopausal 

breast cancer include adiposity, endogenous concentrations of estrogens and 

androgens and reproductive factors such as early menarche, late menopause, late age 

at first pregnancy and hormone replacement therapy [2]. The role of nutrition in breast 

cancer development is unclear. The World Cancer Research Fund (WCRF) has 

recently systematically reviewed all literature on the associations of dietary and 

nutritional factors with breast cancer [3]. The WCRF report concluded that the 

evidence was strong only for a positive association between alcohol consumption and 

risk of pre- and post-menopausal breast cancer, whereas limited but suggestive 

evidence was found for inverse associations between consumption of non-starchy 

vegetables and foods containing carotenoids and calcium with risk of pre- and post-

menopausal breast cancer [3]. The literature on circulating concentrations of minerals 

and vitamins with risk of breast cancer is generally not extensive with perhaps the 

exceptions of carotenoids and vitamin D [3]. 

Most of the evidence regarding the nutritional epidemiology of breast cancer 

comes from observational studies that often rely on food frequency questionnaires 

(FFQ) to measure the consumption of foods and nutrients. This approach is prone to 

measurement error, because it is based on participants’ self-reports that might be 

inaccurate leading to biased results [4]. Furthermore, individuals who follow different 

dietary patterns might also differ in other aspects, which are not always adequately 

controlled for in statistical confounder adjustments [5, 6]. Evidence from clinical 
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trials is also lacking, as there are not many adequately powered trials that have 

evaluated the effect of micro-nutrients and cancer risk [7-10].  

A Mendelian randomization (MR) approach can be used to assess the 

existence of a potential causal association between a risk factor and disease. MR 

attempts to emulate a randomized controlled trial (RCT) within an observational 

setting using genetic variants as instrumental variables for the risk factor of interest 

[11]. As genotype is allocated randomly at conception, genetic variants are not 

influenced by potential confounding factors, such as environmental exposures, and 

cannot be altered by disease occurrence.  

The aim of the current study was to investigate potential causal associations of 

genetically determined circulating concentrations of minerals and vitamins with risk 

of overall breast cancer and cancer by estrogen receptor status (ER+ve and ER-ve) using 

MR methodology.  

 

Methods 

Data on the genetic epidemiology of circulating nutrients concentrations 

The Genome-Wide Association Studies (GWAS) catalog 

(https://www.ebi.ac.uk/gwas) and Pubmed (https://www.ncbi.nlm.nih.gov/pubmed) 

were searched (last checked on September 2017) for published GWASs on circulating 

concentrations of minerals and vitamins that were conducted in populations of 

European ancestry. The initial list included 20 nutrients: beta-carotene, calcium, 

copper, folate, iron, magnesium, phosphorus, potassium, retinol, selenium, sodium, 

vitamins B1, B2, B6, B12, C, D, E, and K, and zinc. Vitamin D was excluded because 

recent MR studies have investigated the role of circulating vitamin D concentrations 
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and risk of breast cancer [12, 13]. Potassium, sodium, vitamins B1, B2, C and K were 

also excluded because either no genome-wide significant results have been reported 

[14, 15] or no GWAS has been conducted. Two further GWAS, those for circulating 

vitamin E and retinol, were excluded because they adjusted for body mass index 

(BMI), which may bias MR estimates [16-19]. Published GWAS for 11 nutrients were 

finally retrieved, namely beta-carotene, calcium, copper, folate, iron, magnesium, 

phosphorus, selenium, vitamins B6 and B12 and, zinc [14, 20-27]. Single nucleotide 

polymorphisms (SNPs) that independently affected the concentrations of these 

nutrients at a genome wide significance level (� � 5 � 10��) and were not in linkage 

disequilibrium (LD r2 
≤ 0.1) were obtained. For serum iron, we used summary 

estimates for three (rs1800562, rs1799945 and rs855791) out of the five (rs1800562, 

rs1799945 and rs855791, rs7385804, rs8177240) available genome-wide significant 

SNPs, because these SNPs showed a concordant effect on serum iron, ferritin, 

transferrin and transferrin saturation, and have been associated with an overall 

increased systemic iron status [26, 28, 29]. Three additional SNPs with minor allele 

frequency (MAF) smaller than 5% (rs12272669, rs2336573, rs6859667) in the initial 

GWAS papers for selenium and vitamin B12 were excluded from the final list of 

SNPs since their effects might be unstable due to their small MAF [24, 25]. In total, 

summary association data for 47 common (minor allele frequency ≥ 0.05) genetic 

variants associated with the 11 nutrients of interest was obtained. Detailed 

information on the selected genetic variants is provided on Supplementary Table S1.  

Data on the genetic epidemiology of breast cancer 

The genetic effects of the selected instruments on risk of overall breast cancer 

and cancer by estrogen receptor status were obtained from a recently published large 

GWAS of almost 230,000 participants (122,977 breast cancer cases and 105,974 
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controls) of European ancestry from the Breast Cancer Association Consortium 

(BCAC) (http://bcac.ccge.medschl.cam.ac.uk/) [30]. Out of the 47 SNPs, rs778805, 

that was associated with vitamin B12, was significantly associated with risk of overall 

breast cancer, and rs4072037, that was associated with magnesium, was significantly 

associated with both overall and ER+ve breast cancer (Supplementary Table S1). 

Statistical power 

Power calculations were performed using an online tool available at 

http://cnsgenomics.com/shiny/mRnd/ [31]. The statistical power to capture an OR of 

1.10 per a standard deviation (SD) change in the circulating concentrations of the 

nutrients, given a sample size of 228,951 participants, type 1 error of 5% and a 

proportion of cases equal to 0.54, ranged from 0.55 for calcium to 1 for copper, 

vitamin B12, and, zinc and the statistical power was between 0.80 and 1 for seven 

(i.e., beta – carotene, copper, iron, magnesium, selenium, vitamin B12, and zinc) of 

the 11 instruments tested (Supplementary Table S2). 

Mendelian Randomization analysis 

Two-sample MR using summary association data was performed. In the case 

of beta-carotene, where only one SNP was available, the effect estimate was 

calculated as the ratio of the SNP-outcome over the SNP-nutrient association [32], 

whereas the fixed – effect inverse variance weighted (IVW) method was implemented 

when the instruments consisted of multiple SNPs, and this analysis can be thought as 

a meta-analysis of single SNP effects [32, 33]. The beta estimates from the 

regressions for circulating concentrations for beta-carotene, copper, selenium, vitamin 

B6, and zinc were transformed from the logarithmic scale that were originally 

reported in the published GWAS to the natural scale using a published formula [34]. 
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All reported associations correspond to OR for risk of breast cancer per SD change in 

the circulating concentrations of the nutrients.  

To be valid instruments for the MR analysis, the selected genetic variants must 

meet the following criteria: i) be associated with the circulating concentrations of the 

nutrients, ii) be independent of any potential confounding variable of the nutrient – 

breast cancer association, and iii) affect breast cancer only through the nutrient being 

instrumented and not via any other pathway [35]. The strength of each instrument was 

measured using the F statistic calculated by the formula: � � 	�
� � 2�/
1 � 	��, 

where R2 is the proportion of the explained variance of the nutrient by the genetic 

instrument and N the sample size of the GWAS for the SNP-nutrient association [36]. 

The R2 was calculated using an already published formula [37]. 

Sensitivity analyses 

The second and third MR assumptions was examined by performing the 

following statistical analyses: Cochran’s Q [38], random effects IVW MR analysis 

[39], MR-Egger regression [40], weighted median [35], weighted mode approach 

(WMA) [41], the MR pleiotropy residual sum and outlier test (MR-PRESSO) [42], 

and a leave one SNP out analysis. More details are provided in the supplementary 

methods. We further evaluated whether the selected genetic instruments were 

associated with secondary phenotypes in Phenoscanner 

(http://www.phenoscanner.medschl.cam.ac.uk/) and GWAS catalog (last checked 

May 2018) [43, 44]. All analyses were implemented in the statistical software R 

version 3.4.3 using the package MendelianRandomization [45]. 

Results 

Mendelian randomization estimates 
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A SD (0.08 mmol/L) higher genetically determined concentration of 

magnesium was associated with a 17% (OR: 1.17, 95% CI: 1.10 to 1.22, P=9.10×10-7) 

and 20% (OR: 1.20, 95% CI: 1.11 to 1.30, P=3.17×10-6) higher risk of overall and 

ER+ve breast cancer, respectively. An inverse association was observed for a SD (0.50 

mg/dL) higher genetically determined phosphorus concentration and risk of ER-ve 

breast cancer (OR: 0.84, 95% CI: 0.72 to 0.98, P=0.03). A suggestive inverse 

association was observed for a SD (0.48 mg/dL) higher genetically determined 

calcium concentration and risk of overall breast cancer (OR: 0.91, 95% CI: 0.83 to 

1.00, P=0.06). There was little evidence that any of the other nutrients were 

associated with risk of breast cancer or its subtypes (Figure 1).  

Evaluation of Mendelian randomization assumptions 

The F-statistic was larger than 10 for all the included variants implying 

absence of weak instruments (minimum value=16, maximum value=420) 

(Supplementary Table S1).  

Cochran’s Q test was not significant for all analyses, except for vitamin B12 

and overall breast cancer risk (Cochran’s Q P= 0.02) however, no change was 

observed in the results after performing the random effects IVW MR (Supplementary 

Table 3). Additionally, some indication of horizontal pleiotropy was found in the 

analysis of calcium and overall breast cancer risk based on the MR-Egger test 

(intercept P= 0.02) (Supplementary Table S3). 

The MR-Egger regression, the weighted median and the weighted mode 

methods confirmed the IVW per a SD higher genetically determined magnesium 

concentrations for overall breast cancer (�	�������	=1.24, 95% CI: 1.01 to 1.53; 

�	
������ ������=1.20, 95% CI: 1.10 to 1.31, �	���=1.21, 95% CI: 1.12 to 1.39) 
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and ER+ve breast cancer (�	�������	=1.44, 95% CI: 1.05 to 1.97; 

�	
������ ������=1.19, 95% CI: 1.05 to 1.34, �	
������ ����=1.36, 95% CI: 1.16 

to 1.59) (Supplementary Table S4). A positive association was observed between 

genetically determined vitamin B12 concentrations and overall breast cancer risk 

based on the weighted median approach (OR: 1.08, 95% CI: 1.01 to 1.15). There was 

little evidence that any of the other nutrients were associated with risk of breast cancer 

in sensitivity analyses (Supplementary Table S4). Finally, the MR-PRESSO analysis 

did not reveal any outlying SNPs, which was also evident when we estimated and 

plotted the MR results for all nutrients by each separate SNP (Supplementary Figures 

S1-S10). 

When we iteratively excluded one SNP at a time from all genetic instruments 

to further probe into potential SNP outliers, the positive association between 

genetically determined magnesium concentrations and risk of overall and ER+ve breast 

cancer remained significant (Supplementary Table S5). However, when rs4072037 

was removed from the genetic instrument for magnesium concentrations, the 

associations for risk of overall (OR: 1.11, 95% CL: 1.02 to 1.21) and ER+ve breast 

cancer (OR: 1.09, 95% CL: 0.98 to 1.21) were slightly attenuated. There was little 

evidence that any of the other nutrients were associated with risk of breast cancer in 

the leave one out analysis with the exceptions described below. The inverse 

association observed in the IVW analysis between genetically determined phosphorus 

concentration and the risk of ER-ve breast cancer was not present after removal of 

rs1697421, rs947583 or rs297818. When rs1801725 was excluded from the genetic 

instrument of calcium concentrations, a protective effect was observed for overall 

(OR: 0.79, 95% CI: 0.68 to 0.91) and ER+ve breast cancer (OR: 0.82, 95% CL: 0.69 to 

0.98). 
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Several genome-wide significant associations of the genetic instruments with 

secondary traits were observed (Supplementary Table S6). Some of these may be 

associated with breast cancer and are potential causes of horizontal pleiotropy, namely 

associations with diabetes, height, insulin resistance, C-reactive protein, glycosylated 

haemoglobin, and age at menarche. However, when the SNPs that were associated 

with the latter secondary phenotypes were excluded in the leave one out analysis, the 

observed associations of the genetic instruments with breast cancer did not change 

(Supplementary Table S5).  

Discussion 

In this comprehensive MR analysis of 11 nutrient concentrations with risk of 

breast cancer, a positive association was observed for genetically elevated 

concentrations of circulating magnesium and risk of total and ER+ve breast cancer, 

which was robust to sensitivity analyses. Potential inverse associations of circulating 

phosphorus and calcium concentrations with ER-ve and overall breast cancer, 

respectively, were observed in the main analysis, but were not robust to sensitivity 

analyses. 

The literature on the association of dietary or circulating magnesium and the 

risk of breast cancer is scarce and inconclusive. Only one cohort study, involving 

12,902 women aged 35-64 years at baseline with 415 breast cancers developed during 

a mean follow-up of 11 years, has reported on dietary magnesium in association with 

overall breast cancer risk. This study reported little evidence for an association 

(hazard ratio [HR]: 0.97, 95% CI: 0.69 to 1.35) comparing the 1st to the 4th quartile of 

magnesium consumption [46]. In a cross-sectional study of 725 women, urinary 

magnesium levels were positively associated with breast density, although the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/668186doi: bioRxiv preprint 

https://doi.org/10.1101/668186


13 

 

interpretation of this finding is unclear, as breast density is a risk factor for breast 

cancer but it may also obscure detection of the disease [47-49]. The genetic 

instruments used in our analysis affect magnesium homeostasis and mechanistic 

studies suggest that increased concentrations of magnesium within breast cancer cells 

can lead to tumour progression through the regulation of enzymes involved in energy 

generation, and its presence is also needed for cell adhesion and cancer metastasis 

[50, 51]. Evidence from animal studies suggests that magnesium has a protective 

effect in the early phases of chemical carcinogenesis but promotes tumour growth 

[52]. There are no magnesium supplementation trials assessing relevant cancer 

outcomes. Our finding of a positive association between genetically determined 

magnesium concentrations and risk of breast cancer should be further evaluated in 

humans and animals using observational and interventional designs. 

An inverse association was observed in our analysis between concentrations of 

phosphorus and ER-ve breast cancer. We found only one relevant cohort study 

involving 186,620 women, where 4,925 incident breast cancers developed during a 

mean follow-up of 13 years, reporting that a SD (0.17 mmol/L) increase in serum 

inorganic phosphate levels were inversely associated with total breast cancer risk 

(HR: 0.93, 95% CI: 0.90 to 0.96), but these estimates were not adjusted for potentially 

important confounders such as alcohol consumption and smoking status [53]. Our 

analysis did not confirm this association for total breast cancer (OR: 0.96, 95% CI: 

0.88 to 1.04), but found an inverse association for ER-ve disease (OR: 0.84, 95% CI: 

0.72 to 0.98). Studies have linked estrogen levels with negative regulation of 

circulating inorganic phosphate and high levels of estrogen are strongly positively 

associated with breast cancer [54], but this mechanism is more relevant for ER+ve than 

ER-ve breast cancer. 
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Our primary analysis suggested an inverse association of calcium with breast 

cancer (OR: 0.91, 95% CI: 0.83 to 1.00). After the exclusion of rs1801725, this 

association stregthened for overall (OR: 0.79, 95% CI: 0.68 to 0.91) and ER+ve breast 

cancer (OR: 0.82, 95% CI: 0.69 to 0.98). Rs1801725 is located in the calcium-sensing 

receptor (CaSR) gene, which plays an important role in calcium metabolism and has 

been suggested to act as an oncogene for several cancers including breast [55]. 

However, results from GWAS indicate that rs1801725 is also associated with 

immunoglobulin E (IgE), bone mineral density, childhood obesity and adiponectin 

concentrations (all P<0.005) [56-59], which might reflect pleiotropic actions of this 

genetic variant. A recent meta-analysis of three prospective studies also reported an 

inverse association between serum calcium and breast cancer risk (RR: 0.80, 95% CI: 

0.66 to 0.97, per 1 mmol/L increase in serum calcium) [60]. In addition, the third 

expert report from WCRF also reported an inverse association of dietary calcium with 

pre-menopausal (relative risk [RR] for 300mg/day increase of dietary calcium intake: 

0.87, 95% CI: 0.76 to 0.99) and post-menopausal breast cancer (RR: 0.96, 95% CI: 

0.94 to 0.99), but the evidence has been graded as limited-suggestive [3]. Possible 

mechanistic explanations could be that increased cytosolic levels of calcium might 

affect cell cycle processes and apoptosis through Ras and β-catenin pathways [61, 

62].  

Our main analysis showed little evidence of an association between 

genetically determined circulating vitamin B12 concentrations with risk of breast 

cancer, although one of the vitamin B12 SNPs, rs778805, was associated with risk of 

overall breast cancer in the BCAC GWAS and the result of the weighted median 

analysis was significant for overall breast cancer. A recent meta-analysis of four 

observational studies concluded that there was no association between serum vitamin 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/668186doi: bioRxiv preprint 

https://doi.org/10.1101/668186


15 

 

B12 and the risk of overall breast cancer (RR: 0.73, 95% CI: 0.44 to 1.22) comparing 

the highest vs lowest categories [63].  

The main strengths of the current MR study are the ability to circumvent 

biases that often plague observational studies and the utilization of data from large-

scale genetic consortia. Potential limitations should be also considered in the 

interpretation of our findings. Conducting an MR analysis using summary association 

data does not allow for stratified analyses by covariates of interest such as 

menopausal status and body mass index. Moreover, our analysis was underpowered to 

identify associations of small magnitude between some nutrients and risk of breast 

cancer. Specifically, a minimum R2 value of 1.5% was required in our study to capture 

an OR of 1.10 per SD increase in nutrient concentrations with 0.8 power, and this 

cutoff point was not met for folate (R2 =1%), vitamin B6 (1%), calcium (0.8%) and 

phosphorus (1.2%). Larger GWASs of nutrients are required to enable the 

construction of better genetic instruments for these nutrients. Some of the sensitivity 

analyses such as the MR-Egger regression are underpowered when a small number of 

genetic instruments are used. We did not correct for multiple comparisons, but if a 

more conservative significance threshold based on Bonferroni correction 

(0.05/11=0.0045) would have been applied, then only the results for magnesium 

would remain statistically significant. 

In conclusion, we conducted the first comprehensive two-sample MR study to 

investigate whether genetically determined concentrations of 11 micro-nutrients are 

associated with risk of breast cancer. An increased risk of overall and ER+ve disease 

was observed for genetically higher concentrations of magnesium that was robust to 

several different sensitivity analyses. Future studies are warranted to replicate this 

finding and to disentangle the potential underlying pathways. 
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Figure legends 

Figure1. Forest plot showing results from the Mendelian randomization study to 

evaluate potential causal associations between 11 nutrients and breast cancer both 

overall and by estrogen receptor status. The odds ratios (OR) were calculated using the 

inverse variance weighted (IVW) method and correspond to a 1-SD increase in the 

concentration of the nutrients. 

 

Supplementary Figure S1: Forest plots showing MR analyses by each SNP separately 

and the pooled MR result for calcium and breast cancer risk, overall and by estrogen 

receptor status. The odds ratios (OR) were calculated using the inverse variance weighted 

(IVW) method and correspond to a 1-SD increase in the concentration of calcium. 

Supplementary Figure S2: Forest plots showing MR analyses by each SNP separately 

and the pooled MR result for copper and breast cancer risk, overall and by estrogen 

receptor status. The odds ratios (OR) were calculated using the inverse variance weighted 

(IVW) method and correspond to a 1-SD increase in the concentration of copper. 

Supplementary Figure S3: Forest plots showing MR analyses by each SNP separately 

and the pooled MR result for folate and breast cancer risk, overall and by estrogen 

receptor status. The odds ratios (OR) were calculated using the inverse variance weighted 

(IVW) method and correspond to a 1-SD increase in the concentration of folate. 

Supplementary Figure S4: Forest plots showing MR analyses by each SNP separately 

and the pooled MR result for iron and breast cancer risk, overall and by estrogen 

receptor status. The odds ratios (OR) were calculated using the inverse variance weighted 

(IVW) method and correspond to a 1-SD increase in the concentration of iron. 

Supplementary Figure S5: Forest plots showing MR analyses by each SNP separately 

and the pooled MR result for magnesium and breast cancer risk, overall and by 

estrogen receptor status. The odds ratios (OR) were calculated using the inverse variance 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/668186doi: bioRxiv preprint 

https://doi.org/10.1101/668186


26 

 

weighted (IVW) method and correspond to a 1-SD increase in the concentration of 

magnesium. 

Supplementary Figure S6: Forest plots showing MR analyses by each SNP separately 

and the pooled MR result for phosphorus and breast cancer risk, overall and by 

estrogen receptor status. The odds ratios (OR) were calculated using the inverse variance 

weighted (IVW) method and correspond to a 1-SD increase in the concentration of 

phosphorus. 

Supplementary Figure S7: Forest plots showing MR analyses by each SNP separately 

and the pooled MR result for selenium and breast cancer risk, overall and by estrogen 

receptor status. The odds ratios (OR) were calculated using the inverse variance weighted 

(IVW) method and correspond to a 1-SD increase in the concentration of selenium. 

Supplementary Figure S8: Forest plots showing MR analyses by each SNP separately 

and the pooled MR result for vitamin B6 and breast cancer risk, overall and by estrogen 

receptor status. The odds ratios (OR) were calculated using the inverse variance weighted 

(IVW) method and correspond to a 1-SD increase in the concentration of vitamin B6. 

Supplementary Figure S9: Forest plots showing MR analyses by each SNP separately 

and the pooled MR result for vitamin B12 and breast cancer risk, overall and by 

estrogen receptor status. The odds ratios (OR) were calculated using the inverse variance 

weighted (IVW) method and correspond to a 1-SD increase in the concentration of vitamin 

B12. 

Supplementary Figure S10: Forest plots showing MR analyses by each SNP separately 

and the pooled MR result for zinc and breast cancer risk, overall and by estrogen 

receptor status. The odds ratios (OR) were calculated using the inverse variance weighted 

(IVW) method and correspond to a 1-SD increase in the concentration of zinc. 
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