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Abstract

The increasing predictive power of polygenic scores for education has led to their promotion by
some as a potential tool for genetically informed policy. How well polygenic scores predict
educational performance conditional on other phenotypic data is however not well understood.
Using data from a UK cohort study, we investigated how well polygenic scores for education
predicted pupils’ realised achievement over and above phenotypic data that are available to schools.
Across our sample, prediction of educational outcomes from polygenic scores were inferior to those
from parental socioeconomic factors. There was high overlap between the polygenic score and
achievement distributions, leading to weak predictive accuracy at the individual level. Furthermore,
conditional on prior achievement polygenic scores were not predictive of later achievement. Our
results suggest that while polygenic scores can be informative for identifying group level differences,
they currently have limited use for predicting individual educational performance or for personalised
education.
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Introduction

The increase in genetic discoveries from genomewide association studies (GWAS) has greatly
advanced scientific understanding of the way in which complex social and health outcomes may
arises. GWAS with sample sizes of over one million participants have identified hundreds of genetic
variants that associate with educational attainment and other social phenotypes'=. While individual
SNPs associate only very weakly with complex polygenic phenotypes in isolation - typically
accounting for less than 0.01% of variation - together they can explain a considerable proportion of
phenotypic variation. For example, in the most recent education GWAS the median per allele effect
size of lead variants related to an additional 1.7 weeks of schooling, but all identified variants
together explained up to 13% of the variance in years of education in prediction samples®. The
combination of multiple variants in polygenic scores* - measures that sum the estimated effects of
all individual genetic variants associated with a phenotype - are increasingly being used as indicators
of genetic propensity, and have been promoted as a potential tool for genetically informed policy>®.
It has been suggested that genetic information could be used prescriptively to provide personalised
medicine, education and even dating®’.

Personalisation refers to the tailoring of services away from a one-size-fits-all model to a customised
approach that focuses on the needs of an individual. The definition of personalised education has
been inconsistent, generally referring to either the tailoring of educational curriculums, learning
environments and teaching styles for individual students, or for groups of students within a
classroom®®. Personalised learning was adopted in national policy statements in England in 2004
with a focus on the needs of individual students!®!l. However, it was not mandated and was seen as
being conceptually ambiguous, leading to inconsistency in its implementation across schools*?.
Throughout, we refer to personalised education as administered at the individual level. There are
currently no policies in place that rely on educational prediction, but calls are increasingly being
made for genetic data to be used to personalise education'®*°. For example, a proposed benefit is
the potential to identify pupils in need of greater educational support®®. Polygenic scores
constructed using a GWAS of educational attainment (defined as completed years of education) in
over 1.1m individuals explained up to 13% of the variation in attainment and 9.2% of the variation in
achievement (defined as high school grade point average [GPA]) in US samples'. Given the social
complexity of educational attainment, these genetic scores associate with many aspects of

environment and schooling!®!’

, referred to as gene-environment correlation. Active gene-
environment correlation can be thought of as environment downstream of genotype; for example,
pupil’s selecting certain subjects based on their genotype. Passive gene-environment correlation can
be thought of as environment upstream of genotype; for example, children of highly educated
parents being more likely to inherit education associated environments as well as education
associated genes®® (also referred to as dynastic effects'®%°). That a person’s education polygenic
score associates with a range of phenotypic differences very early in life demonstrates that

polygenic scores capture a very broad range of information, not just their education.

The theoretical maximum bounds placed on the predictive ability of polygenic scores have been
discussed in detail elsewhere (see 2723). Briefly, polygenic scores are more predictive when genetic
factors play a larger role in a phenotype (as measured by heritability) and in the case of binary
phenotypes where prevalence in the outcome is higher?:23, For polygenic scores to be informative
for personalised education and provide actionable information to inform effective policy, the scores
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must not only explain sufficient variation in educational achievement (defined as performance in
educational tests), but they must also explain sufficient variation over and above other readily
available phenotypic data. Phenotypic measures that are predictive of educational achievement such

t242 are readily available to schools while other

as sex, month of birth and prior achievemen
measures such as parental education and socioeconomic position?%?’ are, in principle, simple and
inexpensive to collect. To date, few studies have investigated how well polygenic scores predict
individual level educational attainment or achievement conditional on observable phenotypes that
are easily available to educators. Here we investigate what information pupils’ genetics confers over

prior achievement and other phenotypic characteristics.

In this paper we combine educational and genetic data from a UK cohort, the Avon Longitudinal
Study of Parents and Children (ALSPAC), to investigate the use of genotypic data in predicting pupil
achievement and their potential for personalised education. We answer three related questions: 1)
How predictive of realised educational achievement are polygenic scores? 2) Does polygenic
prediction outperform phenotypic prediction from family background measures available to
schools? 3) What incremental increase in predictive performance do polygenic scores offer over and
above phenotypic information?

Results

Group level polygenic score prediction

To investigate how predictive polygenic scores are of realised educational achievement, we created
two scores for education based on the results of the latest GWAS for educational attainment®. The
first used SNPs that reached genomewide significance (p<5x1072) and the second used all education
associated SNPs. Our measure of educational achievement was fine graded point scores from
educational exams taken at ages 7 and 16. The all SNP polygenic score was more strongly correlated
with educational achievement (r for age 16 = 0.37) than the genomewide significant polygenic score
(r for age 16 = 0.19) (Table 1). Children with higher polygenic scores, on average, had higher exam
scores than those with lower polygenic scores. Correlations were similar between achievement and
parents’ years of education and highest parental socioeconomic position. Correlations were
consistently stronger for age 16 than age 7 educational achievement.

Table 1: Correlation coefficients between educational achievement at ages 7 and 16 and the
genotypic and social predictors. Educational achievement measured using fine graded point scores
from educational exams at ages 7 and 16. Genotypic predictors measured using two polygenic scores
(PGS) built using only genome-wide significant SNPs (GWAS sig PGS) or all education associated SNPs
(all SNP PGS) from the largest GWAS of educational attainment?®. Parental educational attainment (EA)
was measured as average completed years of education. Parental socioeconomic position (SEP) was
measured as highest parental score on the Cambridge Social Stratification Score scale.

Achievementage 7  Achievement 16

GWASssig PGS  0.17 0.19
All SNP PGS 0.26 0.37
Mothers EA 0.28 0.39
Fathers EA 0.27 0.40
Parents SEP 0.30 0.40
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Next, we assessed the predictive power of polygenic scores for educational achievement at age 7.
We assessed this using the incremental gain in variance of educational achievement explained by the
polygenic scores over and above pupil characteristics available to schools (age, sex, Free School Meal
status, English as a Foreign Language status, Special Educational Needs status), parents years of
education, and parents socioeconomic position (Figure 1). Both the genomewide significant and the
all SNP polygenic scores accounted for a larger proportion of variance explained (R?) in achievement
than age and sex alone. Pupil characteristics outperformed polygenic scores in terms of explanatory
power, but together they explained up to 21.5% (95% Cl: 18.9 to 24.1) of the variation in age 7
achievement. Including information on the social background of pupils’ parents that is potentially
obtainable by schools further increased the explanatory power of the models up to a maximum R? of
26.3% (23.4 t0 29.2). The incremental R? of the polygenic scores over pupil characteristics were 1.8%
(-0.7 to 4.3) and 4.8 (2.1 to 7.3), suggesting that they provide some additional predictive information
over currently available or easily collectable data.

The genomewide significant and all SNP polygenic scores were more predictive of achievement in
exams sat at the end of compulsory education at age 16, explaining an additional 3.4% (1.7 to 5.0)
and 12.9% (10.6 to 15.3) of educational achievement over age and sex alone (Figure 2B). By
comparison, measures of parental education and socioeconomic position provided greater returns
to predictive power than the polygenic scores when unadjusted for prior achievement, explaining an
additional 19% (16.6 to 21.4) and 21.4% (18.8 to 23.9) respectively over age and sex (Figure 2B). As
with age 7 achievement, using both genotype and social background data explained the largest
amount of variation. At this stage of education schools also hold data on pupils' prior achievement,
and these prior achievement measures explained a large amount of variation in age 16 achievement.
For example, prior achievement at age 14 explained 65.1% (60.9 to 69.4) of the variation in age 16
achievement alongside age and sex (Figure 2A). Conditional on prior achievement data, the
polygenic scores provide very little discernible increase in predictive power (Figure 2B).
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Figure 1: Variance in age 7 educational achievement explained by the polygenic scores. Educational
achievement measured using fine graded point scores from educational exams at age 7. Polygenic
scores (PGS) built using only genome-wide significant SNPs (GWAS sig SNPs) or all education
associated SNPs (All SNP PGS) from the largest GWAS of educational attainment®. Pupil characteristics
available to schools include Free School Meals (FSM), English as a Foreign language (EFL) and Special
Educational Needs (SEN) status. Parental educational attainment was measured as average years of
completed education. Parental socioeconomic position (SEP) was measured as highest parental score
on the Cambridge Social Stratification Score scale. All analyses include adjustment for the first 20
principal components of population stratification. Parameter estimates in Supplementary Tables S2
and S3.
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Figure 2: Variance in age 16 achievement explained by the polygenic scores. Educational achievement
(EA) measured using fine graded point scores from educational exams at ages 7, 11, 14 and 16.
Polygenic scores (PGS) built using only genome-wide significant SNPs (GWAS sig SNPs) or all education
associated SNPs (All SNP PGS) from the largest GWAS of educational attainment®. Pupil characteristics
available to schools include Free School Meals (FSM), English as a Foreign language (EFL) and Special
Educational Needs (SEN) status. Parental educational attainment was measured as average years of
completed education. Parental socioeconomic position (SEP) was measured as highest parental score
on the Cambridge Social Stratification Score scale. All analyses include adjustment for the first 20
principal components of population stratification. Parameter estimates in Supplementary Tables S4
and S5.
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Individual level polygenic score prediction

We next investigated how well the polygenic scores could identify high achieving pupils, defined as
those with the highest 10% of educational test scores. Figure 3 shows the distributions of the two
polygenic scores for high achieving pupils at age 16 and all other pupils. The polygenic scores of high
achievers are - on average - higher than of other pupils, but there is near complete overlap in the
distributions between the groups. This suggests there would be a large proportion of
misclassification when trying to predict from genetic data whether a pupil will be in the top 10%. By
comparison, there is far less overlap in the distributions of prior achievement between high
achievers and other pupils (Supplementary Figure S1). Figure 4 displays this misclassification of
pupils; while some are correctly predicted from their genetic data to be high achievers, a greater
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proportion are erroneously predicted to be in the wrong group. This misclassification is similar for
parental education and socioeconomic position but lower for prior attainment (Supplementary
Figure S2). In each case, as a group the pupils predicted to be in the top 10% of achievers will on
average perform higher than other pupils in exams, but the large variability shows that many of the
pupils in this group will underperform. High levels of misclassification from the polygenic scores
compared to prior attainment were also evident when assessing agreement with quantiled
measures of educational achievement (Supplementary Table S1).

Figure 3: Distributions of polygenic scores between “high achievers” and all other pupils. High
achievers defined as pupils with age 16 educational exam scores in the top 10% of the sample.
Polygenic scores (PGS) built using only genome-wide significant SNPs (GWAS sig SNPs) or all education
associated SNPs (All SNP PGS) from the largest GWAS of educational attainment?.
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Figure 4: Correlation between realised and genetically predicted achievement. Educational
achievement measured using fine graded point scores from educational exams at age 16. Predicted
achievement at age 16 generated from a polygenic score built using all education associated SNPs (All
SNP PGS) from the largest GWAS of educational attainment?. Solid lines separate pupils above and
below the top decile of educational achievement at age 16 (high achievers) on the y axis and the top
decile of those predicted to be in the top decile of educational achievement at age 16 from genetic
data on the x axis. Dotted line represents best fit.
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Using polygenic scores to identify future pupil performance

To investigate the potential performance of polygenic scores for correctly identifying individual high
achieving students from all other pupils, we used Receiver Operating Characteristic (ROC) curves to
calculate Area Under the Curve (AUC). ROC curves assess the sensitivity (the true positive rate, in our
case the probability that a high achieving pupil will be correctly identified as a high achiever) and the
specificity (the true negative rate, in our case the probability that that all other pupils will be
correctly identified as not being high achievers) of a classifier its discrimination threshold is varied.
Compared to measures of parental socioeconomic position (AUCs: 0.70 for both years of education
and social class), the polygenic scores have a lower AUC and therefore poorer sensitivity and
specificity to discriminate high achievers at age 7 (AUCs: 0.63 for the GWAS PGS; 0.68 for the all SNP
PGS) (Figure 5). The trade-off in sensitivity and specificity for each of the measures at different
classification thresholds is also poor; high sensitivity comes at the cost of low specificity (and vice
versa). This means that in order to accurately identify most of the pupils who will go on to be in the
top 10% of achievers, one would have to set the classification at the point where almost all students
would be identified. These results were consistent when other cut-offs were used to determine the
high achieving group (Supplementary Figure S3), suggesting that the results do not reflect our
definition of high achievers.
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Figure 5: ROC curve for being a high achieving student (defined as the top 10% of pupils) at age 7.
High achievers defined as pupils with age 16 educational exam scores in the top 10% of the sample.
Parental educational attainment (EA) was measured as average years of completed education.
Parental socioeconomic position (SEP) was measured as highest parental score on the Cambridge
Social Stratification Score scale. Polygenic scores (PGS) built using only genome-wide significant SNPs
(GWAS sig SNPs) or all education associated SNPs (All SNP PGS) from the largest GWAS of educational
attainment?®. All PGS analyses include adjustment for the first 20 principal components of population
stratification. Note that x axis displays 1-specificty.

o

Q_
—

0.75
1

Sensitivity
0.50
1

[T}
o~
S —o6—— GWAS sig PGS
All SNP PGS
—=©6—— Parents EA
= —=©&—— Parents SEP
=] T T T T T
0.00 0.25 0.50 0.75 1.00
1-Specificity

For educational achievement at age 16 when prior achievement data are available, Figure 6a
displays that these measures provide far higher sensitivity and specificity than the polygenic scores
(AUCs: 0.83 to 0.95 for prior achievement compared to 0.61 to 0.70 for the polygenic scores). That
is, there is a far better trade-off between sensitivity and specificity for prior achievement at age 14
than for either polygenic score. For example, a classification point can be set for prior achievement
at age 14 where roughly 85% of students in both groups are accurately identified. For the polygenic
scores, the best classification point would result in roughly two thirds of students being misclassified
in both groups. As with achievement at age 7, the ROC curve for the all SNP polygenic score was
similar to the ROC curves for parent’s years of education and socioeconomic position (Figure 6b). To
investigate the use of polygenic scores above phenotypic data, we calculated ROC curves for the
polygenic scores on educational achievement at age 16 residualised on age, sex, prior achievement,
and pupil characteristics to test the added value of polygenic scores above other phenotypic data.
The results (Figure 6¢) demonstrated that after accounting for the phenotypic information already
available to schools, the polygenic scores do not reliably identify high achievers (AUC: 0.51 and 0.56
for the polygenic scores). The results were consistent had these predictions been made earlier in
schooling where later measures of prior attainment were unavailable (Supplementary Figure S4;
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AUC’s: 0.54 to 0.61). As with achievement at age 7, these results were consistent when other cut-
offs were used to determine the high achieving group (Supplementary Figure S5).

If a school headteacher or principal wanted to use polygenic scores as a selection criterion to select
the highest performing students, would they identify a group that has higher educational attainment
at age 16 than when that selection had been made on other criteria? If they selected the students
with the top 10% of polygenic scores, they would on average only sample 24% of the top 10%
highest achievers at age 16, and 76% of those not in the top 10%. In contrast, if the principal or
policy maker used phenotypic measures from age 11, they would sample 51% of the top 10% highest
achievers at age 16, and 49% of those not in the top 10%. This suggests that polygenic scores cannot
be used to identify high achieving students more accurately than available phenotypic measures.
The group of pupils with the highest polygenic scores do - on average - have higher achievement, but
the predictive information provided from the polygenic scores is inferior to that provided by
phenotypic predictors. Supplementary Figure S2 demonstrates the variability in age 16 educational
achievement for pupils predicted to be in the top 10% from each of the genotypic and phenotypic
predictors.
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Figure 6: ROC curves for being a high achievement student (pupils with age 16 educational exam
scores in the top 10% of the sample) at age 16. Panel A: Independent ROC curves for deciled
measures of prior achievement and polygenic scores (PGS) predicting high educational achievement
(EA) at age 16. Panel B: Independent ROC curves for deciled measures of parental education and
socioeconomic position predicting high educational achievement (EA) at age 16. Panel C: ROC curves
for deciled polygenic scores predicting high educational achievement (EA) at age 16 residualised on
age, sex, prior achievement, and pupil characteristics available to schools. Parental educational
attainment was measured as average years of completed education. Parental socioeconomic position
(SEP) was measured as highest parental score on the Cambridge Social Stratification Score scale.
Polygenic scores (PGS) built using only genome-wide significant SNPs (GWAS sig SNPs) or all education
associated SNPs (All SNP PGS) from the largest GWAS of educational attainment®. All PGS analyses
include adjustment for the first 20 principal components of population stratification. Note that x axis
displays 1-specificty.
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Discussion

We investigated how predictive polygenic scores for education were of realised achievement and
the incremental increase in predictive power that they offered over and above readily available
phenotypic measures. Our results demonstrated that the polygenic scores were predictive of
educational achievement, accounting for 3.4% and 12.9% of variance (above age and sex) across our
sample at age 7 and 16 respectively. The age 16 prediction is higher than the 9.2% reported for high
school GPA in the original GWAS?. For informative education predictions at the individual level, the
most predictive measure was prior achievement. This reflects some current schooling practices
whereby pupils are streamed into different classes based upon ability. Conditional on prior
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achievement there was little incremental gain in the predictive power of polygenic scores for
subsequent achievement, suggesting that when prior achievement data are available, polygenic
scores are of little utility to providing accurate predictions of a child’s future achievement. When
children start school and prior achievement data are unavailable, or in cases where pre-intervention
characteristics are limited?, the scores may provide a small amount of predictive power. However,
parental socioeconomic position and education were more strongly predictive of achievement than
a pupil’s genome. Genetic data from individuals therefore provided little information on their future
achievement over phenotypic data that is either available or easily obtainable by educators. This is
consistent with results from the only other study we are aware of to assess incremental variance
explained over parental social characteristics, which observed higher variance explained in years of
education by parental education (18% to 21.3%) than the polygenic score (10.6% to 12.7%) in two US
samplest.

The lack of genotypic predictive power that we observed over and above phenotypic data may be
because prior achievement mediates the effects of the genotypes on educational outcomes; genetic
variants that affect educational achievement at earlier ages are likely to also affect achievement at
later ages. More powerful polygenic scores may allow for better prediction of educational
achievement in the future. It has been suggested that for complex phenotypes, accurate prediction
at the individual level may require a polygenic score that explains up to 75% of the total genetic
variance of the phenotype?’. It is therefore possible that polygenic scores for education will require
greater explanatory power for accurate individual prediction. However, our polygenic scores were
constructed using results from a GWAS of over a million people, meaning that far larger samples will
be required. While future studies may lead to polygenic scores that explain a greater amount of
variation in education, these may still not provide useful returns to personalised interventions. High
incremental variance explained is a necessary pre-requisite for successful intervention, but it is not a
guarantee that an actionable intervention will have a large effect. Furthermore, to provide
actionable evidence for personalisation at a given age, polygenic scores need to explain variation in
educational outcomes over and above available phenotypic at that age. If most or all the educational
differences associated with the polygenic score are phenotypically expressed at a given age, then the
score is unlikely to be useful for personalisation.

At the individual level, polygenic scores and parental social background provided similar, but
relatively imprecise predictions of achievement within our sample. This reflects a wider issue of the
different challenges in analysing group and individual level differences?®: while stochastic events will
be averaged out at the group level, they are important in determining outcomes at the individual
level. There was a large amount of overlap in the polygenic score distribution between pupils in the
top 10% of achievers and all others; while pupils with a high polygenic score are more likely to be
high achievers, genetics did not determine high achievement. High academic achievement is due to
both environmental and genetic factors, including social background?®, teacher bias3®3!, the home
and school environment®23, and luck?. It is also possible that the quality of family and school
environments may constrain or support pupils’ ability to exploit their genetic propensity to
education. For example, without the means to attend university, it does not matter what an
individual’s genotype is. In this, it is the combination of nature, nurture and chance that is
important343°,
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In fields such as medicine, where genetic risk can be of clinical significance for some diseases®®,
personalisation based on genotype may offer actionable intervention at the individual level.
However, our results demonstrate that even for the purpose of identifying groups of pupils who will
be high achievers, polygenic scores offer limited prediction value above phenotypic data in
education. The usefulness of genetic data for educational research however lies in investigating
group level differences. This has been previously demonstrated for example in assessing the
effectiveness of teachers and schools!”3; selection differences between schools®”8; social mobility
over time and space®’, and, in a different context, for performing Mendelian randomization studies
of the effects of education on various outcomes*®*!, Our results demonstrate that while polygenic
scores are useful for investigating group differences such as these, they do not provide suitable
value for routine use by teachers and schools to predict a pupil’s future achievement. There is a wide
range of non-genetic information available to teachers as part of their day to day interactions with
pupils that are used to inform and personalise teaching. This may include knowledge of what the
pupil responds well to, any stressful life events that they have recently experienced, and their
physical and mental health. To the extent that this knowledge captures genotypic information of the
pupil (through its expression in phenotype), it is unclear what novel information genotype would
offer to teachers. Finally, genetic studies are focused heavily on samples of European ancestry*.
Polygenic scores built from these studies do not perform well when applied to other ancestry
groups®, meaning that their system-wide application to all pupils in an education system could lead
to systematic prediction errors and inequalities in schooling.

This study has several limitations. First, the ALSPAC cohort is not fully representative of the UK
population and as such our results may not be generalisable to all UK pupils. Other studies, such as
the Millennium Cohort Study are more representative and therefore could provide further evidence
about personalised education for the broader UK population. Second, the educational achievement
polygenic score that we use was based on a GWAS of years of education rather than exam scores.
Years of education can be considered a more social measure of education than exam performance,
and previous work has demonstrated that the educational attainment polygenic score strongly
reflects parental social position (and through this access to further or higher education)*. Future
research could investigate this possibility by conducting a GWAS on detailed standardized exam
scores on a large sample. Furthermore, it is possible that polygenic scores from a GWAS conducted
on change in test scores throughout education may provide higher prediction accuracy over and
beyond phenotypic data if there are genetic factors associated with differences in educational
progress. Third, while the educational attainment polygenic score accounts for around 13% of the
variance in years of education in our data, increases to this from future meta-analyses will provide
greater power. Twin studies have estimated that the heritability of educational attainment is around
40%*, which limits the predictive power of genetic measures for education over some other
phenotypes?. Finally, issues from confounding biases caused by population level phenomena such
as population stratification, assortative mating and dynastic effects (genetic nurture)!®2%4447 may
have impacted our results. These biases can lead to social and family differences being masked as
genetic differences between individuals, inflating associations between polygenic scores and
educational achievement in between individual analyses. Family data are required to further
investigate the impact of these baises.

In conclusion, our results suggest that currently available genetic scores are unlikely to provide
additional information about how well a pupil will perform in school over and above more readily
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available and easily collected phenotypic data, except where prior achievement measures are
unavailable. The greatest value of genetic data may lie instead for researchers investigating
performance differences between groups of pupils, teachers and schools and for novel analyses into
socioeconomic inequalities in education achievement and attainment.

Materials and methods

Study sample

Participants were children from the Avon Longitudinal Study of Parents and Children (ALSPAC).
Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31
December 1992 were invited to take part in the study. The initial number of pregnancies enrolled
was 14,541. When the oldest children were approximately 7 years of age, an attempt was made to
bolster the initial sample with eligible cases who had failed to join the study originally. This
additional recruitment resulted in a total sample of 15,454 pregnancies, resulting in 14,901 children
who were alive at one year of age. From this sample genetic data was available for 7,988 after
quality control and removal of related individuals. For full details of the cohort profile and study
design see *>*°, Please note that the study website contains details of all the data that is available
through a fully searchable data dictionary and variable search tool at
http://www.bristol.ac.uk/alspac/researchers/our-data/. The ALSPAC cohort is largely representative

of the UK population when compared with 1991 Census data; there is under representation of some
ethnic minorities, single parent families, and those living in rented accommodation®. Ethical
approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local
Research Ethics Committees. Following listwise deletion of cases with missing data our final
analytical sample was 3,453 (Supplementary Figure S6).

Genetic data

DNA of the ALSPAC children was extracted from blood, cell line and mouthwash samples, then
genotyped using references panels and subjected to standard quality control approaches. ALSPAC
children were genotyped using the Illumina HumanHap550 quad chip genotyping platforms by
23andme subcontracting the Wellcome Trust Sanger Institute, Cambridge, UK and the Laboratory
Corporation of America, Burlington, NC, US. The resulting raw genome-wide data were subjected to
standard quality control methods. Individuals were excluded on the basis of gender mismatches;
minimal or excessive heterozygosity; disproportionate levels of individual missingness (>3%) and
insufficient sample replication (< 0.8). Population stratification was assessed by multidimensional
scaling analysis and compared with Hapmap Il (release 22) European descent (CEU), Han Chinese,
Japanese and Yoruba reference populations; all individuals with non-European ancestry were
removed. SNPs with a minor allele frequency of < 1%, a call rate of < 95% or evidence for violations
of Hardy-Weinberg equilibrium (P < 5x107) were removed. Cryptic relatedness was measured as
proportion of identity by descent (IBD) > 0.1. Related subjects that passed all other quality control
thresholds were retained during subsequent phasing and imputation. 9,115 participants and 500,527
SNPs passed these quality control filters. ALSPAC mothers were genotyped using the Illumina
human660W-quad array at Centre National de Génotypage (CNG) and genotypes were called with
[llumina GenomeStudio. PLINK (v1.07) was used to carry out quality control measures on an initial
set of 10,015 subjects and 557,124 directly genotyped SNPs. SNPs were removed if they displayed
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more than 5% missingness or a Hardy-Weinberg equilibrium P value of less than 1.0e-06.
Additionally SNPs with a minor allele frequency of less than 1% were removed. Samples were
excluded if they displayed more than 5% missingness, had indeterminate X chromosome
heterozygosity or extreme autosomal heterozygosity. Samples showing evidence of population
stratification were identified by multidimensional scaling of genome-wide identity by state pairwise
distances using the four HapMap populations as a reference, and then excluded. Cryptic relatedness
was assessed using an IBD estimate of more than 0.125 which is expected to correspond to roughly
12.5% alleles shared IBD or a relatedness at the first cousin level. Related subjects that passed all
other quality control thresholds were retained during subsequent phasing and imputation. 9,048
subjects and 526,688 SNPs passed these quality control filters.

We combined 477,482 SNP genotypes in common between the sample of mothers and sample of
children. We removed SNPs with genotype missingness above 1% due to poor quality (11,396 SNPs
removed) and removed a further 321 subjects due to potential ID mismatches. This resulted in a
dataset of 17,842 subjects containing 6,305 duos and 465,740 SNPs (112 were removed during
liftover and 234 were out of HWE after combination). We estimated haplotypes using ShapelT
(v2.r644) which utilises relatedness during phasing. The phased haplotypes were then imputed to
the Haplotype Reference Consortium (HRCr1.1, 2016) panel of approximately 31,000 phased whole
genomes. The HRC panel was phased using Shapelt v2, and the imputation was performed using the
Michigan imputation server. This gave 8,237 eligible children and 8,196 eligible mothers with
available genotype data after exclusion of related subjects using cryptic relatedness measures
described previously. Principal components were generated by extracting unrelated individuals (IBS
< 0.05) and independent SNPs with long range LD regions removed, and then calculating using the "--
pca’ command in plink1.90.

Educational achievement

We use average fine graded point scores at four major Key Stages of education in the UK. These are
Key Stage 1 (age 7), Key Stage 2 (age 11), Key Stage 3 (age 14), and Key Stage 4 (age 16). We use
scores for performance at the end of each Key Stage and a score at entry to Key Stage 1, which
represents the start of schooling. At the time the ALSPAC cohort were at school, the age 16 Key
Stage 4 exams represented final compulsory schooling examinations. Scores were obtained through
data linkage to the UK National Pupil Database (NPD), which represents the most accurate record of
individual educational achievement available in the UK. We used data from the Key Stage 1 and Key
Stage 4 files. The Key Stage 4 database provides a larger sample size than Key Stage 2 and 3
databases and contains data for each.

Educational attainment polygenic scores

Two educational attainment polygenic scores were generated using the software package PRSice®!
based upon the list of SNPs identified to associate with years of education in the largest GWAS of
education to date’. The polygenic scores were generated using GWAS results which had removed
ALSPAC and 23andMe participants from the meta-analysis (n=763,468), and as such are not perfectly
comparable to those reported in the published meta-analysis. SNPs were weighted by their effect
size in the replication cohort of the GWAS, and these sizes were summed using allelic scoring. PRSice
was used to thin SNPs according to linkage disequilibrium through clumping, where the SNP with the
smallest P-value in each 250kb window was retained and all other SNPs in linkage disequilibrium
with an 2 of >0.1 were removed. The first polygenic score (GWAS sig PGS) was created from the
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1,271 independent SNPs that associated with years of education at genome-wide levels of
significance (p<5x107®). The second (all SNP PGS) was created from all genome-wide SNPs reported in
the meta-analysis.

Covariates

We selected covariates that are easily available to schools in the UK. These include the study
participants sex and month of birth, and their status on three pupil characteristics that are available
to schools the NPD: eligibility for Free School Meals (FSM); Special Education Needs (SEN); and
English as a foreign language (EFL). FSM is a proxy for low income as only children from low income
families are eligible. We use years of parental education, coded as basic formal education (7 years),
certificate of secondary education (10 years), O-levels and vocational qualifications (11 years), A-
level (13 years), and degree (16 years). For dual parent families we use the average of the two
parents’ years of education, while for single parent families we use the mother’s years of education.
Finally, we use a continuous measure of socioeconomic position (SEP), the Cambridge Social
Stratification Score (CAMSIS). For dual parent families we used the highest of either parents score,
while for single parent families we use the mother’s score. Parental years of education and CAMSIS
were measured when the study participants were in utero.

Statistical analysis

To examine the predictive ability of polygenic scores for educational achievement we ran a series of
regression analyses of the polygenic scores on achievement each controlling for sex, month of birth,
and the first 20 principal components of inferred population structure. Principal components are
included to adjust estimates for population stratification; systematic differences in allele frequencies
between subpopulations due to ancestral differences. Predictive ability of the polygenic scores was
determined by the incremental increase in variance explained (R?) in educational achievement above
age and sex; pupil characteristics; and prior achievement. Bootstrapping with 1000 replications was
used to estimate confidence intervals for R? values. To compare the predictive power of polygenic
scores to additional phenotypic data that schools could collect we repeated the regression analyses
controlling for parental years of education, grandparental years of education and parental
socioeconomic position. Sensitivity and specificity were calculated using selection into the top 10%
of educational achievers at age 16 from the whole cohort as the ‘diagnosis’. Receiver Operating
Characteristic (ROC) curves were used to visually compare models and to calculate the Area Under
the Curve (AUC).
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