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Abstract 
The increasing predictive power of polygenic scores for education has led to their promotion by 

some as a potential tool for genetically informed policy. How well polygenic scores predict 

educational performance conditional on other phenotypic data is however not well understood. 

Using data from a UK cohort study, we investigated how well polygenic scores for education 

predicted pupils’ realised achievement over and above phenotypic data that are available to schools. 

Across our sample, prediction of educational outcomes from polygenic scores were inferior to those 

from parental socioeconomic factors. There was high overlap between the polygenic score and 

achievement distributions, leading to weak predictive accuracy at the individual level. Furthermore, 

conditional on prior achievement polygenic scores were not predictive of later achievement. Our 

results suggest that while polygenic scores can be informative for identifying group level differences, 

they currently have limited use for predicting individual educational performance or for personalised 

education.  
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Introduction 
The increase in genetic discoveries from genomewide association studies (GWAS) has greatly 

advanced scientific understanding of the way in which complex social and health outcomes may 

arises. GWAS with sample sizes of over one million participants have identified hundreds of genetic 

variants that associate with educational attainment and other social phenotypes1–3. While individual 

SNPs associate only very weakly with complex polygenic phenotypes in isolation - typically 

accounting for less than 0.01% of variation - together they can explain a considerable proportion of 

phenotypic variation. For example, in the most recent education GWAS the median per allele effect 

size of lead variants related to an additional 1.7 weeks of schooling, but all identified variants 

together explained up to 13% of the variance in years of education in prediction samples1. The 

combination of multiple variants in polygenic scores4 - measures that sum the estimated effects of 

all individual genetic variants associated with a phenotype - are increasingly being used as indicators 

of genetic propensity, and have been promoted as a potential tool for genetically informed policy5,6. 

It has been suggested that genetic information could be used prescriptively to provide personalised 

medicine, education and even dating5,7.  

Personalisation refers to the tailoring of services away from a one-size-fits-all model to a customised 

approach that focuses on the needs of an individual. The definition of personalised education has 

been inconsistent, generally referring to either the tailoring of educational curriculums, learning 

environments and teaching styles for individual students, or for groups of students within a 

classroom8,9. Personalised learning was adopted in national policy statements in England in 2004 

with a focus on the needs of individual students10,11. However, it was not mandated and was seen as 

being conceptually ambiguous, leading to inconsistency in its implementation across schools12. 

Throughout, we refer to personalised education as administered at the individual level. There are 

currently no policies in place that rely on educational prediction, but calls are increasingly being 

made for genetic data to be used to personalise education13–15. For example, a proposed benefit is 

the potential to identify pupils in need of greater educational support15. Polygenic scores 

constructed using a GWAS of educational attainment (defined as completed years of education) in 

over 1.1m individuals explained up to 13% of the variation in attainment and 9.2% of the variation in 

achievement (defined as high school grade point average [GPA]) in US samples1. Given the social 

complexity of educational attainment, these genetic scores associate with many aspects of 

environment and schooling16,17, referred to as gene-environment correlation. Active gene-

environment correlation can be thought of as environment downstream of genotype; for example, 

pupil’s selecting certain subjects based on their genotype. Passive gene-environment correlation can 

be thought of as environment upstream of genotype; for example, children of highly educated 

parents being more likely to inherit education associated environments as well as education 

associated genes18 (also referred to as dynastic effects19,20). That a person’s education polygenic 

score associates with a range of phenotypic differences very early in life demonstrates that 

polygenic scores capture a very broad range of information, not just their education.  

The theoretical maximum bounds placed on the predictive ability of polygenic scores have been 

discussed in detail elsewhere (see 21–23). Briefly, polygenic scores are more predictive when genetic 

factors play a larger role in a phenotype (as measured by heritability) and in the case of binary 

phenotypes where prevalence in the outcome is higher21–23. For polygenic scores to be informative 

for personalised education and provide actionable information to inform effective policy, the scores 
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must not only explain sufficient variation in educational achievement (defined as performance in 

educational tests), but they must also explain sufficient variation over and above other readily 

available phenotypic data. Phenotypic measures that are predictive of educational achievement such 

as sex, month of birth and prior achievement24,25 are readily available to schools while other 

measures such as parental education and socioeconomic position26,27 are, in principle, simple and 

inexpensive to collect. To date, few studies have investigated how well polygenic scores predict 

individual level educational attainment or achievement conditional on observable phenotypes that 

are easily available to educators. Here we investigate what information pupils’ genetics confers over 

prior achievement and other phenotypic characteristics.  

In this paper we combine educational and genetic data from a UK cohort, the Avon Longitudinal 

Study of Parents and Children (ALSPAC), to investigate the use of genotypic data in predicting pupil 

achievement and their potential for personalised education. We answer three related questions: 1) 

How predictive of realised educational achievement are polygenic scores? 2) Does polygenic 

prediction outperform phenotypic prediction from family background measures available to 

schools? 3) What incremental increase in predictive performance do polygenic scores offer over and 

above phenotypic information? 

Results 

Group level polygenic score prediction 
To investigate how predictive polygenic scores are of realised educational achievement, we created 

two scores for education based on the results of the latest GWAS for educational attainment1. The 

first used SNPs that reached genomewide significance (p<5x10-8) and the second used all education 

associated SNPs. Our measure of educational achievement was fine graded point scores from 

educational exams taken at ages 7 and 16. The all SNP polygenic score was more strongly correlated 

with educational achievement (𝑟 for age 16 = 0.37) than the genomewide significant polygenic score 

(𝑟 for age 16 = 0.19) (Table 1). Children with higher polygenic scores, on average, had higher exam 

scores than those with lower polygenic scores. Correlations were similar between achievement and 

parents’ years of education and highest parental socioeconomic position. Correlations were 

consistently stronger for age 16 than age 7 educational achievement.  

 

Table 1: Correlation coefficients between educational achievement at ages 7 and 16 and the 

genotypic and social predictors. Educational achievement measured using fine graded point scores 

from educational exams at ages 7 and 16. Genotypic predictors measured using two polygenic scores 

(PGS) built using only genome-wide significant SNPs (GWAS sig PGS) or all education associated SNPs 

(all SNP PGS) from the largest GWAS of educational attainment1. Parental educational attainment (EA) 

was measured as average completed years of education. Parental socioeconomic position (SEP) was 

measured as highest parental score on the Cambridge Social Stratification Score scale. 

 Achievement age 7 Achievement 16 

GWAS sig PGS 0.17 0.19 

All SNP PGS 0.26 0.37 

Mothers EA 0.28 0.39 

Fathers EA 0.27 0.40 

Parents SEP 0.30 0.40 
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Next, we assessed the predictive power of polygenic scores for educational achievement at age 7. 

We assessed this using the incremental gain in variance of educational achievement explained by the 

polygenic scores over and above pupil characteristics available to schools (age, sex, Free School Meal 

status, English as a Foreign Language status, Special Educational Needs status), parents years of 

education, and parents socioeconomic position (Figure 1). Both the genomewide significant and the 

all SNP polygenic scores accounted for a larger proportion of variance explained (R2) in achievement 

than age and sex alone. Pupil characteristics outperformed polygenic scores in terms of explanatory 

power, but together they explained up to 21.5% (95% CI: 18.9 to 24.1) of the variation in age 7 

achievement. Including information on the social background of pupils’ parents that is potentially 

obtainable by schools further increased the explanatory power of the models up to a maximum R2 of 

26.3% (23.4 to 29.2). The incremental R2 of the polygenic scores over pupil characteristics were 1.8% 

(-0.7 to 4.3) and 4.8 (2.1 to 7.3), suggesting that they provide some additional predictive information 

over currently available or easily collectable data.  

The genomewide significant and all SNP polygenic scores were more predictive of achievement in 

exams sat at the end of compulsory education at age 16, explaining an additional 3.4% (1.7 to 5.0) 

and 12.9% (10.6 to 15.3) of educational achievement over age and sex alone (Figure 2B). By 

comparison, measures of parental education and socioeconomic position provided greater returns 

to predictive power than the polygenic scores when unadjusted for prior achievement, explaining an 

additional 19% (16.6 to 21.4) and 21.4% (18.8 to 23.9) respectively over age and sex (Figure 2B). As 

with age 7 achievement, using both genotype and social background data explained the largest 

amount of variation. At this stage of education schools also hold data on pupils' prior achievement, 

and these prior achievement measures explained a large amount of variation in age 16 achievement. 

For example, prior achievement at age 14 explained 65.1% (60.9 to 69.4) of the variation in age 16 

achievement alongside age and sex (Figure 2A). Conditional on prior achievement data, the 

polygenic scores provide very little discernible increase in predictive power (Figure 2B).  

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 11, 2019. ; https://doi.org/10.1101/645218doi: bioRxiv preprint 

https://doi.org/10.1101/645218
http://creativecommons.org/licenses/by/4.0/


 

6 
 

Figure 1: Variance in age 7 educational achievement explained by the polygenic scores. Educational 

achievement measured using fine graded point scores from educational exams at age 7. Polygenic 

scores (PGS) built using only genome-wide significant SNPs (GWAS sig SNPs) or all education 

associated SNPs (All SNP PGS) from the largest GWAS of educational attainment1. Pupil characteristics 

available to schools  include Free School Meals (FSM), English as a Foreign language (EFL) and Special 

Educational Needs (SEN) status. Parental educational attainment was measured as average years of 

completed education. Parental socioeconomic position (SEP) was measured as highest parental score 

on the Cambridge Social Stratification Score scale. All analyses include adjustment for the first 20 

principal components of population stratification. Parameter estimates in Supplementary Tables S2 

and S3.  
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Figure 2: Variance in age 16 achievement explained by the polygenic scores. Educational achievement 

(EA) measured using fine graded point scores from educational exams at ages 7, 11, 14 and 16. 

Polygenic scores (PGS) built using only genome-wide significant SNPs (GWAS sig SNPs) or all education 

associated SNPs (All SNP PGS) from the largest GWAS of educational attainment1. Pupil characteristics 

available to schools include Free School Meals (FSM), English as a Foreign language (EFL) and Special 

Educational Needs (SEN) status. Parental educational attainment was measured as average years of 

completed education. Parental socioeconomic position (SEP) was measured as highest parental score 

on the Cambridge Social Stratification Score scale. All analyses include adjustment for the first 20 

principal components of population stratification. Parameter estimates in Supplementary Tables S4 

and S5.  

 

  

 

Individual level polygenic score prediction 
We next investigated how well the polygenic scores could identify high achieving pupils, defined as 

those with the highest 10% of educational test scores. Figure 3 shows the distributions of the two 

polygenic scores for high achieving pupils at age 16 and all other pupils. The polygenic scores of high 

achievers are - on average - higher than of other pupils, but there is near complete overlap in the 

distributions between the groups. This suggests there would be a large proportion of 

misclassification when trying to predict from genetic data whether a pupil will be in the top 10%. By 

comparison, there is far less overlap in the distributions of prior achievement between high 

achievers and other pupils (Supplementary Figure S1). Figure 4 displays this misclassification of 

pupils; while some are correctly predicted from their genetic data to be high achievers, a greater 
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proportion are erroneously predicted to be in the wrong group. This misclassification is similar for 

parental education and socioeconomic position but lower for prior attainment (Supplementary 

Figure S2). In each case, as a group the pupils predicted to be in the top 10% of achievers will on 

average perform higher than other pupils in exams, but the large variability shows that many of the 

pupils in this group will underperform. High levels of misclassification from the polygenic scores 

compared to prior attainment were also evident when assessing agreement with quantiled 

measures of educational achievement (Supplementary Table S1).  

 

Figure 3: Distributions of polygenic scores between “high achievers” and all other pupils. High 

achievers defined as pupils with age 16 educational exam scores in the top 10% of the sample. 

Polygenic scores (PGS) built using only genome-wide significant SNPs (GWAS sig SNPs) or all education 

associated SNPs (All SNP PGS) from the largest GWAS of educational attainment1. 
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Figure 4: Correlation between realised and genetically predicted achievement. Educational 

achievement measured using fine graded point scores from educational exams at age 16. Predicted 

achievement at age 16 generated from a polygenic score built using all education associated SNPs (All 

SNP PGS) from the largest GWAS of educational attainment1. Solid lines separate pupils above and 

below the top decile of educational achievement at age 16 (high achievers) on the y axis and the top 

decile of those predicted to be in the top decile of educational achievement at age 16 from genetic 

data on the x axis. Dotted line represents best fit.  

 

 

Using polygenic scores to identify future pupil performance 
To investigate the potential performance of polygenic scores for correctly identifying individual high 

achieving students from all other pupils, we used Receiver Operating Characteristic (ROC) curves to 

calculate Area Under the Curve (AUC). ROC curves assess the sensitivity (the true positive rate, in our 

case the probability that a high achieving pupil will be correctly identified as a high achiever) and the 

specificity (the true negative rate, in our case the probability that that all other pupils will be 

correctly identified as not being high achievers) of a classifier its discrimination threshold is varied. 

Compared to measures of parental socioeconomic position (AUCs: 0.70 for both years of education 

and social class), the polygenic scores have a lower AUC and therefore poorer sensitivity and 

specificity to discriminate high achievers at age 7 (AUCs: 0.63 for the GWAS PGS; 0.68 for the all SNP 

PGS) (Figure 5). The trade-off in sensitivity and specificity for each of the measures at different 

classification thresholds is also poor; high sensitivity comes at the cost of low specificity (and vice 

versa). This means that in order to accurately identify most of the pupils who will go on to be in the 

top 10% of achievers, one would have to set the classification at the point where almost all students 

would be identified. These results were consistent when other cut-offs were used to determine the 

high achieving group (Supplementary Figure S3), suggesting that the results do not reflect our 

definition of high achievers.  
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Figure 5: ROC curve for being a high achieving student (defined as the top 10% of pupils) at age 7. 

High achievers defined as pupils with age 16 educational exam scores in the top 10% of the sample. 

Parental educational attainment (EA) was measured as average years of completed education. 

Parental socioeconomic position (SEP) was measured as highest parental score on the Cambridge 

Social Stratification Score scale. Polygenic scores (PGS) built using only genome-wide significant SNPs 

(GWAS sig SNPs) or all education associated SNPs (All SNP PGS) from the largest GWAS of educational 

attainment1. All PGS analyses include adjustment for the first 20 principal components of population 

stratification. Note that x axis displays 1-specificty.  

 

 

For educational achievement at age 16 when prior achievement data are available, Figure 6a 

displays that these measures provide far higher sensitivity and specificity than the polygenic scores 

(AUCs: 0.83 to 0.95 for prior achievement compared to 0.61 to 0.70 for the polygenic scores). That 

is, there is a far better trade-off between sensitivity and specificity for prior achievement at age 14 

than for either polygenic score. For example, a classification point can be set for prior achievement 

at age 14 where roughly 85% of students in both groups are accurately identified. For the polygenic 

scores, the best classification point would result in roughly two thirds of students being misclassified 

in both groups. As with achievement at age 7, the ROC curve for the all SNP polygenic score was 

similar to the ROC curves for parent’s years of education and socioeconomic position (Figure 6b). To 

investigate the use of polygenic scores above phenotypic data, we calculated ROC curves for the 

polygenic scores on educational achievement at age 16 residualised on age, sex, prior achievement, 

and pupil characteristics to test the added value of polygenic scores above other phenotypic data. 

The results (Figure 6c) demonstrated that after accounting for the phenotypic information already 

available to schools, the polygenic scores do not reliably identify high achievers (AUC: 0.51 and 0.56 

for the polygenic scores). The results were consistent had these predictions been made earlier in 

schooling where later measures of prior attainment were unavailable (Supplementary Figure S4; 
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AUC’s: 0.54 to 0.61). As with achievement at age 7, these results were consistent when other cut-

offs were used to determine the high achieving group (Supplementary Figure S5). 

If a school headteacher or principal wanted to use polygenic scores as a selection criterion to select 

the highest performing students, would they identify a group that has higher educational attainment 

at age 16 than when that selection had been made on other criteria? If they selected the students 

with the top 10% of polygenic scores, they would on average only sample 24% of the top 10% 

highest achievers at age 16, and 76% of those not in the top 10%. In contrast, if the principal or 

policy maker used phenotypic measures from age 11, they would sample 51% of the top 10% highest 

achievers at age 16, and 49% of those not in the top 10%. This suggests that polygenic scores cannot 

be used to identify high achieving students more accurately than available phenotypic measures. 

The group of pupils with the highest polygenic scores do - on average - have higher achievement, but 

the predictive information provided from the polygenic scores is inferior to that provided by 

phenotypic predictors. Supplementary Figure S2 demonstrates the variability in age 16 educational 

achievement for pupils predicted to be in the top 10% from each of the genotypic and phenotypic 

predictors.  
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Figure 6: ROC curves for being a high achievement student (pupils with age 16 educational exam 

scores in the top 10% of the sample) at age 16. Panel A: Independent ROC curves for deciled 

measures of prior achievement and polygenic scores (PGS) predicting high educational achievement 

(EA) at age 16. Panel B: Independent ROC curves for deciled measures of parental education and 

socioeconomic position predicting high educational achievement (EA) at age 16. Panel C: ROC curves 

for deciled polygenic scores predicting high educational achievement (EA) at age 16 residualised on 

age, sex, prior achievement, and pupil characteristics available to schools. Parental educational 

attainment was measured as average years of completed education. Parental socioeconomic position 

(SEP) was measured as highest parental score on the Cambridge Social Stratification Score scale. 

Polygenic scores (PGS) built using only genome-wide significant SNPs (GWAS sig SNPs) or all education 

associated SNPs (All SNP PGS) from the largest GWAS of educational attainment1. All PGS analyses 

include adjustment for the first 20 principal components of population stratification. Note that x axis 

displays 1-specificty. 

 

 

Discussion 
We investigated how predictive polygenic scores for education were of realised achievement and 

the incremental increase in predictive power that they offered over and above readily available 

phenotypic measures. Our results demonstrated that the polygenic scores were predictive of 

educational achievement, accounting for 3.4% and 12.9% of variance (above age and sex) across our 

sample at age 7 and 16 respectively. The age 16 prediction is higher than the 9.2% reported for high 

school GPA in the original GWAS1. For informative education predictions at the individual level, the 

most predictive measure was prior achievement. This reflects some current schooling practices 

whereby pupils are streamed into different classes based upon ability. Conditional on prior 
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achievement there was little incremental gain in the predictive power of polygenic scores for 

subsequent achievement, suggesting that when prior achievement data are available, polygenic 

scores are of little utility to providing accurate predictions of a child’s future achievement. When 

children start school and prior achievement data are unavailable, or in cases where pre-intervention 

characteristics are limited28, the scores may provide a small amount of predictive power. However, 

parental socioeconomic position and education were more strongly predictive of achievement than 

a pupil’s genome. Genetic data from individuals therefore provided little information on their future 

achievement over phenotypic data that is either available or easily obtainable by educators. This is 

consistent with results from the only other study we are aware of to assess incremental variance 

explained over parental social characteristics, which observed higher variance explained in years of 

education by parental education (18% to 21.3%) than the polygenic score (10.6% to 12.7%) in two US 

samples1. 

The lack of genotypic predictive power that we observed over and above phenotypic data may be 

because prior achievement mediates the effects of the genotypes on educational outcomes; genetic 

variants that affect educational achievement at earlier ages are likely to also affect achievement at 

later ages. More powerful polygenic scores may allow for better prediction of educational 

achievement in the future. It has been suggested that for complex phenotypes, accurate prediction 

at the individual level may require a polygenic score that explains up to 75% of the total genetic 

variance of the phenotype22. It is therefore possible that polygenic scores for education will require 

greater explanatory power for accurate individual prediction. However, our polygenic scores were 

constructed using results from a GWAS of over a million people, meaning that far larger samples will 

be required. While future studies may lead to polygenic scores that explain a greater amount of 

variation in education, these may still not provide useful returns to personalised interventions. High 

incremental variance explained is a necessary pre-requisite for successful intervention, but it is not a 

guarantee that an actionable intervention will have a large effect. Furthermore, to provide 

actionable evidence for personalisation at a given age, polygenic scores need to explain variation in 

educational outcomes over and above available phenotypic at that age. If most or all the educational 

differences associated with the polygenic score are phenotypically expressed at a given age, then the 

score is unlikely to be useful for personalisation.  

At the individual level, polygenic scores and parental social background provided similar, but 

relatively imprecise predictions of achievement within our sample. This reflects a wider issue of the 

different challenges in analysing group and individual level differences29: while stochastic events will 

be averaged out at the group level, they are important in determining outcomes at the individual 

level. There was a large amount of overlap in the polygenic score distribution between pupils in the 

top 10% of achievers and all others; while pupils with a high polygenic score are more likely to be 

high achievers, genetics did not determine high achievement. High academic achievement is due to 

both environmental and genetic factors, including social background26, teacher bias30,31, the home 

and school environment32,33, and luck29. It is also possible that the quality of family and school 

environments may constrain or support pupils’ ability to exploit their genetic propensity to 

education. For example, without the means to attend university, it does not matter what an 

individual’s genotype is. In this, it is the combination of nature, nurture and chance that is 

important34,35.  
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In fields such as medicine, where genetic risk can be of clinical significance for some diseases36, 

personalisation based on genotype may offer actionable intervention at the individual level. 

However, our results demonstrate that even for the purpose of identifying groups of pupils who will 

be high achievers, polygenic scores offer limited prediction value above phenotypic data in 

education. The usefulness of genetic data for educational research however lies in investigating 

group level differences. This has been previously demonstrated for example in assessing the 

effectiveness of teachers and schools17,31; selection differences between schools37,38; social mobility 

over time and space39, and, in a different context, for performing Mendelian randomization studies 

of the effects of education on various outcomes40,41. Our results demonstrate that while polygenic 

scores are useful for investigating group differences such as these, they do not provide suitable 

value for routine use by teachers and schools to predict a pupil’s future achievement. There is a wide 

range of non-genetic information available to teachers as part of their day to day interactions with 

pupils that are used to inform and personalise teaching. This may include knowledge of what the 

pupil responds well to, any stressful life events that they have recently experienced, and their 

physical and mental health. To the extent that this knowledge captures genotypic information of the 

pupil (through its expression in phenotype), it is unclear what novel information genotype would 

offer to teachers. Finally, genetic studies are focused heavily on samples of European ancestry42. 

Polygenic scores built from these studies do not perform well when applied to other ancestry 

groups43, meaning that their system-wide application to all pupils in an education system could lead 

to systematic prediction errors and inequalities in schooling.  

This study has several limitations. First, the ALSPAC cohort is not fully representative of the UK 

population and as such our results may not be generalisable to all UK pupils. Other studies, such as 

the Millennium Cohort Study are more representative and therefore could provide further evidence 

about personalised education for the broader UK population. Second, the educational achievement 

polygenic score that we use was based on a GWAS of years of education rather than exam scores. 

Years of education can be considered a more social measure of education than exam performance, 

and previous work has demonstrated that the educational attainment polygenic score strongly 

reflects parental social position (and through this access to further or higher education)44. Future 

research could investigate this possibility by conducting a GWAS on detailed standardized exam 

scores on a large sample. Furthermore, it is possible that polygenic scores from a GWAS conducted 

on change in test scores throughout education may provide higher prediction accuracy over and 

beyond phenotypic data if there are genetic factors associated with differences in educational 

progress. Third, while the educational attainment polygenic score accounts for around 13% of the 

variance in years of education in our data, increases to this from future meta-analyses will provide 

greater power. Twin studies have estimated that the heritability of educational attainment is around 

40%45, which limits the predictive power of genetic measures for education over some other 

phenotypes46. Finally, issues from confounding biases caused by population level phenomena such 

as population stratification, assortative mating and dynastic effects (genetic nurture)18,20,44,47 may 

have impacted our results. These biases can lead to social and family differences being masked as 

genetic differences between individuals, inflating associations between polygenic scores and 

educational achievement in between individual analyses. Family data are required to further 

investigate the impact of these baises48.  

In conclusion, our results suggest that currently available genetic scores are unlikely to provide 

additional information about how well a pupil will perform in school over and above more readily 
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available and easily collected phenotypic data, except where prior achievement measures are 

unavailable. The greatest value of genetic data may lie instead for researchers investigating 

performance differences between groups of pupils, teachers and schools and for novel analyses into 

socioeconomic inequalities in education achievement and attainment.  

 

Materials and methods 

Study sample 
Participants were children from the Avon Longitudinal Study of Parents and Children (ALSPAC). 

Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st 

December 1992 were invited to take part in the study. The initial number of pregnancies enrolled 

was 14,541. When the oldest children were approximately 7 years of age, an attempt was made to 

bolster the initial sample with eligible cases who had failed to join the study originally. This 

additional recruitment resulted in a total sample of 15,454 pregnancies, resulting in 14,901 children 

who were alive at one year of age. From this sample genetic data was available for 7,988 after 

quality control and removal of related individuals. For full details of the cohort profile and study 

design see 49,50. Please note that the study website contains details of all the data that is available 

through a fully searchable data dictionary and variable search tool at 

http://www.bristol.ac.uk/alspac/researchers/our-data/. The ALSPAC cohort is largely representative 

of the UK population when compared with 1991 Census data; there is under representation of some 

ethnic minorities, single parent families, and those living in rented accommodation49. Ethical 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees. Following listwise deletion of cases with missing data our final 

analytical sample was 3,453 (Supplementary Figure S6).  

Genetic data 
DNA of the ALSPAC children was extracted from blood, cell line and mouthwash samples, then 

genotyped using references panels and subjected to standard quality control approaches. ALSPAC 

children were genotyped using the Illumina HumanHap550 quad chip genotyping platforms by 

23andme subcontracting the Wellcome Trust Sanger Institute, Cambridge, UK and the Laboratory 

Corporation of America, Burlington, NC, US. The resulting raw genome-wide data were subjected to 

standard quality control methods. Individuals were excluded on the basis of gender mismatches; 

minimal or excessive heterozygosity; disproportionate levels of individual missingness (>3%) and 

insufficient sample replication (< 0.8). Population stratification was assessed by multidimensional 

scaling analysis and compared with Hapmap II (release 22) European descent (CEU), Han Chinese, 

Japanese and Yoruba reference populations; all individuals with non-European ancestry were 

removed. SNPs with a minor allele frequency of < 1%, a call rate of < 95% or evidence for violations 

of Hardy-Weinberg equilibrium (P < 5x10-7) were removed. Cryptic relatedness was measured as 

proportion of identity by descent (IBD) > 0.1. Related subjects that passed all other quality control 

thresholds were retained during subsequent phasing and imputation. 9,115 participants and 500,527 

SNPs passed these quality control filters. ALSPAC mothers were genotyped using the Illumina 

human660W-quad array at Centre National de Génotypage (CNG) and genotypes were called with 

Illumina GenomeStudio. PLINK (v1.07) was used to carry out quality control measures on an initial 

set of 10,015 subjects and 557,124 directly genotyped SNPs. SNPs were removed if they displayed 
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more than 5% missingness or a Hardy-Weinberg equilibrium P value of less than 1.0e-06. 

Additionally SNPs with a minor allele frequency of less than 1% were removed. Samples were 

excluded if they displayed more than 5% missingness, had indeterminate X chromosome 

heterozygosity or extreme autosomal heterozygosity. Samples showing evidence of population 

stratification were identified by multidimensional scaling of genome-wide identity by state pairwise 

distances using the four HapMap populations as a reference, and then excluded. Cryptic relatedness 

was assessed using an IBD estimate of more than 0.125 which is expected to correspond to roughly 

12.5% alleles shared IBD or a relatedness at the first cousin level. Related subjects that passed all 

other quality control thresholds were retained during subsequent phasing and imputation. 9,048 

subjects and 526,688 SNPs passed these quality control filters. 

We combined 477,482 SNP genotypes in common between the sample of mothers and sample of 

children. We removed SNPs with genotype missingness above 1% due to poor quality (11,396 SNPs 

removed) and removed a further 321 subjects due to potential ID mismatches. This resulted in a 

dataset of 17,842 subjects containing 6,305 duos and 465,740 SNPs (112 were removed during 

liftover and 234 were out of HWE after combination). We estimated haplotypes using ShapeIT 

(v2.r644) which utilises relatedness during phasing. The phased haplotypes were then imputed to 

the Haplotype Reference Consortium (HRCr1.1, 2016) panel of approximately 31,000 phased whole 

genomes. The HRC panel was phased using ShapeIt v2, and the imputation was performed using the 

Michigan imputation server. This gave 8,237 eligible children and 8,196 eligible mothers with 

available genotype data after exclusion of related subjects using cryptic relatedness measures 

described previously. Principal components were generated by extracting unrelated individuals (IBS 

< 0.05) and independent SNPs with long range LD regions removed, and then calculating using the `--

pca` command in plink1.90.  

Educational achievement 
We use average fine graded point scores at four major Key Stages of education in the UK. These are 

Key Stage 1 (age 7), Key Stage 2 (age 11), Key Stage 3 (age 14), and Key Stage 4 (age 16). We use 

scores for performance at the end of each Key Stage and a score at entry to Key Stage 1, which 

represents the start of schooling. At the time the ALSPAC cohort were at school, the age 16 Key 

Stage 4 exams represented final compulsory schooling examinations. Scores were obtained through 

data linkage to the UK National Pupil Database (NPD), which represents the most accurate record of 

individual educational achievement available in the UK. We used data from the Key Stage 1 and Key 

Stage 4 files. The Key Stage 4 database provides a larger sample size than Key Stage 2 and 3 

databases and contains data for each.  

Educational attainment polygenic scores 
Two educational attainment polygenic scores were generated using the software package PRSice51 

based upon the list of SNPs identified to associate with years of education in the largest GWAS of 

education to date1. The polygenic scores were generated using GWAS results which had removed 

ALSPAC and 23andMe participants from the meta-analysis (n=763,468), and as such are not perfectly 

comparable to those reported in the published meta-analysis. SNPs were weighted by their effect 

size in the replication cohort of the GWAS, and these sizes were summed using allelic scoring. PRSice 

was used to thin SNPs according to linkage disequilibrium through clumping, where the SNP with the 

smallest P-value in each 250kb window was retained and all other SNPs in linkage disequilibrium 

with an 𝑟2 of >0.1 were removed. The first polygenic score (GWAS sig PGS) was created from the 
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1,271 independent SNPs that associated with years of education at genome-wide levels of 

significance (p<5x10-8). The second (all SNP PGS) was created from all genome-wide SNPs reported in 

the meta-analysis.  

Covariates 
We selected covariates that are easily available to schools in the UK. These include the study 

participants sex and month of birth, and their status on three pupil characteristics that are available 

to schools the NPD: eligibility for Free School Meals (FSM); Special Education Needs (SEN); and 

English as a foreign language (EFL). FSM is a proxy for low income as only children from low income 

families are eligible. We use years of parental education, coded as basic formal education (7 years), 

certificate of secondary education (10 years), O-levels and vocational qualifications (11 years), A-

level (13 years), and degree (16 years). For dual parent families we use the average of the two 

parents’ years of education, while for single parent families we use the mother’s years of education. 

Finally, we use a continuous measure of socioeconomic position (SEP), the Cambridge Social 

Stratification Score (CAMSIS). For dual parent families we used the highest of either parents score, 

while for single parent families we use the mother’s score. Parental years of education and CAMSIS 

were measured when the study participants were in utero.  

Statistical analysis 
To examine the predictive ability of polygenic scores for educational achievement we ran a series of 

regression analyses of the polygenic scores on achievement each controlling for sex, month of birth, 

and the first 20 principal components of inferred population structure. Principal components are 

included to adjust estimates for population stratification; systematic differences in allele frequencies 

between subpopulations due to ancestral differences. Predictive ability of the polygenic scores was 

determined by the incremental increase in variance explained (R2) in educational achievement above 

age and sex; pupil characteristics; and prior achievement. Bootstrapping with 1000 replications was 

used to estimate confidence intervals for R2 values. To compare the predictive power of polygenic 

scores to additional phenotypic data that schools could collect we repeated the regression analyses 

controlling for parental years of education, grandparental years of education and parental 

socioeconomic position. Sensitivity and specificity were calculated using selection into the top 10% 

of educational achievers at age 16 from the whole cohort as the ‘diagnosis’. Receiver Operating 

Characteristic (ROC) curves were used to visually compare models and to calculate the Area Under 

the Curve (AUC).  
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