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Abstract 

 

Identification of key regulators and regulatory pathways is an important step in the discovery of 

genes involved in cancer. Here, we propose a method to identify key regulators in prostate 

cancer (PCa) from a network constructed from gene expression datasets of PCa patients. 

Overexpressed genes were identified using BioXpress, having a mutational status according to 

COSMIC, followed by the construction of PCa Interactome network using the curated genes. 

The topological parameters of the network exhibited power law nature indicating hierarchical 

scale-free properties and five levels of organization.  Highest degree hubs (k≥65) were selected 

from the PCa network, traced, and 19 of them were identified as novel key regulators, as they 

participated at all network levels serving as backbone. Of the 19 hubs, some have been reported 

in literature to be associated with PCa and other cancers. Based on participation coefficient 

values most of these are connector or kinless hubs suggesting significant roles in modular 

linkage. The observation of non-monotonicity in the rich club formation suggested the 

importance of intermediate hubs in network integration, and they may play crucial roles in 

network stabilization. The network was self-organized as evident from fractal nature in 

topological parameters of it and lacked a central control mechanism. 

Keywords: Prostate cancer; rich club; network theory; key regulator; personalized medicine 

 

 

 

 

 

Abbreviations: P(k): Probability of degree distribution, k: Degree, C(k): Clustering coefficients, 

CN(k): Node neighbourhood connectivity distribution, CB: Betweenness, CC: Closeness, CE: 

Eigenvector, CS: Subgraph centralities, Pi: Participation coefficient, Zi: Within module Z score  
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Introduction 
 

Prostate is a gland of the male reproductive system which secretes seminal fluid in human adult 

(1). According to World Health Report 2014, the cancer of prostate or Prostate cancer (PCa) in 

man is second most common cancer, after lung cancer, and is responsible for a fifth of cancer 

deaths in males worldwide (2). PCa, based on the type of origin in prostate, can be classified into 

five types: (i) acinar adenocarcinoma, (ii) ductal adenocarcinoma, (iii) transitional cell (or 

urothelial) cancer, (iv) squamous cell cancer and (v) small cell prostate cancer, with 

adenocarcinomas being the most common, even though metastasis is much quicker in other 

types (3, 4). 

 

In recent years, gene expression studies using high-throughput techniques namely next 

generation sequencing, microarray and proteomics have led to the identification of new genes 

and pathways in PCa. The identification of novel key regulators is important as the current 

therapeutic modalities against PCa, including the use of antiandrogens and blocking androgen 

synthetic pathway (5)  and using Luteinizing hormone-releasing hormone (LHRH) agonists and 

antagonists along with cytotoxic anticancer drugs, cause notable side effects (6,7)  . Moreover, 

PCa diagnosis, which is largely dependent on the Prostate specific antigen (PSA) and Digital 

rectal examination (DRE), has its own limitations (8,9). PSA is also elevated in benign prostatic 

hyperplasia and other noncancerous conditions (8). This necessitates the discovery of more 

reliable biomarkers for better and early diagnosis, as well as identification of new targets other 

than the genes involved in androgen metabolism for the discovery and development of new and 

more potent drugs which have less toxicity and lesser side effects. 

 

Genes are regulated in a coordinated way and the expression of one gene usually depends on the 

presence or absence of another gene (gene interaction). Network theory, which studies the 

relations between discrete objects through graphs as their representations, can be used to study 

complex gene regulatory networks which can have different types (random, scale-free, small 

world and hierarchical networks). The development of algorithms to study of these networks can 

provide an important tool to find/identify disease-associated genes in complex diseases such as 

cancer. Earlier, the network theory-based methods have been used to predict disease genes from 

networks generated using curated list of genes reported to be associated with the disease and 

mapping them to the human gene interaction network (HPRD database) (10). In such approach, 

the studies have been limited to the curated gene list forming the network not completely 
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representing the system and patient-specific information is not considered. Moreover, current 

studies on complex networks in human disease models to discover key disease genes rely mostly 

on clustering and identifying the high degree hubs or/and motif discovery from the networks 

(11,12). Therefore, the application of network theoretical methods to the PPI networks of cancer 

associated genes constructed from the corresponding genes by analyzing high-throughput gene 

expression datasets of human cancer patients may be used for better sensitivity and forecast in 

understanding the key regulating genes of the corresponding disease. The clinical impact of 

using patients’ gene expression data over gene expression data from cancer cell lines will also 

give a systematic insight in predicting key regulator genes expressed in cancer and 

understanding their roles in disease manifestation and progression. In this study, we have used 

the gene expression data (RNAseq) of PCa patients to construct complex PPI network and 

analyze it. The study gives equal importance to the hubs, motifs and modules of the network to 

identify the key regulators and regulatory pathways not restricting only to overrepresented motifs 

or hubs identification, establishing a relationship between them in gene-disease association 

studies using network theory. The method used in this study is new and takes a holistic approach 

for predicting key disease genes and their pathways within network theoretical framework using 

datasets of PCa patients. 

 

 

Materials and methods 
 

Identification and selection of PCa-associated genes 

 

BioXpress v3.0 (https://hive.biochemistry.gwu.edu/bioxpress), which uses TCGA (https://tcga-

data.nci.nih.gov/) RNA sequencing datasets derived from the human cancer patients (13,14), was 

used to differentiate the deregulated genes in cancer. The cancer browser tool of COSMIC 

(https://cancer.sanger.ac.uk/cosmic) (15)  was used for the mutational status and accordingly, 

non-redundant genes overexpressed in human PCa were identified.  

 

Construction of Protein-protein interaction (PPI) network 

 

After excluding the redundancy and redundant copies, out of 4,890 genes found to be 

significantly overexpressed (𝑭𝑪 > 1, adjusted 𝒑 < 0.05) in PCa patients from BioXpress, 3,871 

genes, which had mutational status in PCa according to COSMIC, were used to construct an 

interactome network using GeneMania app (16)  in Cytoscape 3.6.0 (17) . From the network, 

only the physical interaction network, which represented the Protein-protein network of PCa-
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associated genes, was extracted. After curation of the network (removal of isolated node/nodes), 

a PPI network of 2,960 nodes and 20,372 edges was finally constructed as Primary network 

representing a graph denoted by G(N,E), where, N is the set of nodes with N={ni}; i=1,2,.....,N 

and E the set of edges with  E={eij}; i,j=1,2,3,….,N.  

 

Method for detection of levels of organization 

 

Considering the size of the network and its sensitivity, Louvain method of modularity (Q) 

maximization was used for community detection (18). The first level of organization was 

established by the interaction of communities constructed from primary PPI network. The 

subcommunities constructed from all communities in the first level of organization constituted 

second level of organization. In the same way, successive levels were constructed until the level 

of motifs, thereby each smaller community had a minimum of one triangular motif defined by 

subgraph 𝐺(3,3). Since the triangular motif was overrepresented in PPI network and served as 

controlling unit in a network (19), we used motif 𝐺(3,3) as qualifying criteria for a 

community/subcommunity as a constituting member at a certain level of organization. Further, 

each community or smaller community landed up to different level of organization.  

 

Topological analyses of the networks 

Cytoscape plugins, NetworkAnalyzer (20) and CytoNCA (21) were used to analyse the 

topological properties of the network for centralities, degree distribution, clustering coefficients 

and neighbourhood connectivity. The highest degree nodes were identified as hubs of the PCa 

network. Top 103 hub proteins having degree 𝒌  65 were considered for tracing the key 

regulators of the network. Other topological parameters, viz., Rich club coefficients (Φ), 

Participation coefficients (Pi) and Within-module degree (Zi score) were calculated using Igraph 

package "brainGraph" (https://github.com/cwatson/brainGraph) in R. Another parameter 

subgraph centrality was calculated using Igraph functions.  

 

Degree (k): In the analysis of network, degree k indicates the total number of links established 

by a node in a network and is used to measure the local significance of a node in regulating the 

network. In a graph represented by 𝐺 =  (𝑁, 𝐸), where N denotes nodes and E the edges, the 

degree of 𝑖𝑡ℎ node (𝑘𝑖) is expressed as 𝑘𝑖 = ∑ 𝐴𝑖𝑗
𝑁
𝑖𝑗 , where 𝐴𝑖𝑗  denotes the adjacency matrix 

elements of the graph. 
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Probability of degree distribution 𝑷(𝒌): It is the probability of a random node to have a 

degree 𝒌 out of the total number of nodes in the network and is represented as fraction of nodes 

having degree (𝒌), as shown in Equation (1), where Nk is the total number of nodes with degree 

𝑘 and 𝑁, total nodes in the network. 

 

𝑷(𝒌) =
𝑵𝒌

𝑵
    (1) 

 

P(k) of random and small-world networks follow Poison distribution in degree distribution 

against degree, but most real-world networks, scale-free and hierarchical networks follow power 

law distribution P(k) ~ k
-
, where, 4    2

.
 In hierarchical networks,   ~ 2.26 (mean-field 

value) indicating a modular organization at different topological levels (22,23,24). Therefore, 

probability of degree distribution pattern defines the characteristic topology of a network.
 

 

Clustering coefficients C(k): The strength of internal connectivity among the nodes 

neighbourhoods which quantifies the inherent clustering tendency of the nodes in the network is 

characterised by the Clustering coefficient C(k), which is the ratio between the number of  

triangular motifs formed by a node with its nearest neighbours and the maximum possible 

number of triangular motifs in the network. For any node i having degree ki in an undirected 

graph, C(k) can be expressed as Equation (2), where mi is the total number of edges among its 

nearest-neighbours. In scale-free networks C(k) ~ constant, but it exhibit power law in 

hierarchical network against degree, C(k) ~ k
-α

, with α ~ 1 (22,23,24) . 
 

 

𝑪(𝒌) =
𝟐𝒎𝒊

𝒌𝒊 (𝒌𝒊−𝟏)
     (2) 

 

Neighbourhood connectivity CN(k). The node neighbourhood connectivity (average 

connectivity established by the nearest-neighbours of a node with degree k, represented by CN(k) 

can be expressed as shown in Equation (3), where, P(q|k) is conditional probability of the links 

of a node with k connections to another node having q connections.  

 

                 𝐶𝑁(𝑘) ∑ 𝑞𝑃(𝑞|𝑘)                                          (3)

𝑞
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In hierarchical network topology, CN(k) exhibit power law against degree k, that is, CN(k) ~ k
β
, 

where, β ~0.5 (25). Further, the positivity or negativity of the exponent β can be defined as, 

respectively, the assortivity or disassortivity nature of a network topology (26). 

 

Centrality measures. A node’s global functional significance in regulating a network through 

information processing is estimated by the basic Centrality measures—Closeness centrality CC, 

Betweenness centrality CB and Eigenvector centrality CE (27). Another centrality measure, 

Subgraph centrality CS is also used to describe the participation of nodes in other subgraphs in 

the network (28). These centrality measures collectively determine the cost effectiveness and 

efficiency of information processing in a network.  

 

The closeness centrality CC represents the total geodesic distance from a given node to all its 

other connected nodes. It represents the speed of spreading of information in a network from a 

node to other connected nodes (29). CC of a node 𝑖 in a network is calculated by the division of 

total number of nodes in the network, n by sum of geodesic path lengths between nodes 𝑖 and 

𝑗 which is represented by 𝑑𝑖𝑗 in Equation (4). 

 

𝑪𝑪(𝒌) =
𝒏

∑ 𝒅𝒊𝒋𝒋
    (4) 

 

Betweenness Centrality 𝑪𝑩 is the measure of a node which is the share of all shortest-path traffic 

from all possible routes through nodes i to j. Thus, it characterizes a node’s ability to benefit 

extraction from the information flow in the network (30) and its controlling ability of signal 

processing over other nodes in the network (31,32). If 𝑑𝑖𝑗(𝑣) denotes the number of geodesic 

paths from node 𝑖 to node 𝑗 passing through node 𝑣, then 𝐶𝐵(𝑣) of node 𝑣 can be obtained by 

Equation (5).  

 

 

𝐶𝑏(𝑣) ∑
𝑑𝑖𝑗(𝑣)

𝑑𝑖𝑗
                              (5)

𝑖,𝑗;𝑖≠𝑗≠𝑘

 

  

If M denotes the number of node pairs, excluding v, then normalized betweenness centrality is 

given by the Equation (6). 
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𝑪𝑩(𝒗) =
𝟏

𝑴𝑪𝒃(𝒗)
     (6) 

 

Eigenvector centrality CE is proportional to the sum of the centrality of all neighbours of a node 

and it reflects the intensity of these most prominent nodes influencing the signal processing in 

the network (33). If nearest neighbours of node i in the network is denoted by nn(i) with 

eigenvalue  and eigenvector vi of eigen-value equations, 𝐴𝑣𝑖 = 𝑣𝑖(𝑣) where, A is the network 

adjacency matrix, 𝑪𝑬 can be shown by the Equation (7), 

 

𝑪𝑬(𝒊) =
𝟏

𝝀
∑ 𝒗𝒋

𝒊=𝒏𝒏(𝒊)

                     (7) 

 

𝑪𝑬 score corresponds to maximum positive eigenvalue, max, of the principal eigenvector of A 

(34). Since a node’s 𝑪𝑬 function depends on the centralities of its neighbours, it varies across 

different networks association of high 𝑪𝑬 nodes; within closely connected locality of such nodes 

reduces the chances of isolation of nodes (33). Thus, 𝑪𝑬 becomes a powerful indicator of 

information transmission power of a node in the network. 

 

The subgraph centrality CS of a node calculates the number of subgraphs the node participates in 

a network. It can be calculated using eigenvalues and eigenvectors of adjacency matrix of the 

graph, as shown in Equation (8), where j is the j
th

 eigenvalue and vj(i), the i
th

 element of the 

associated eigenvector. The weightages are higher for smaller graphs. Higher subgraph centrality 

of a node corresponds to better efficiency of information transmission and increase in 

essentiality of the node in the network (28,35). 

 

𝐶𝑆(𝑖) = ∑ 𝑣𝑗(𝑖)2

𝑁

𝑗=1

𝑒𝜆𝑗                      (8) 

 

Within-module degree and Participation coefficients of the hubs 

In complex networks the characterization of hubs as high degree nodes with higher centrality 

values is incomplete without exploring the role of nodes at the modular levels (36) . The role of 

nodes at the modular level is determined through the participation of nodes in establishing links 

between the nodes within the module as well as outside the module and calculating the modular 
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degree of the nodes. Within-module degree or Z-score, Zi, signifies the connections of a node i 

in the modules and categorizes a node as modular hub-node with high (Zi ≥ 2.5) signifying more 

intra-module connectivity of the node than inter-module, whereas, lower Z values, Zi < 2.5, 

categorizes as non-hub nodes with less intra-module connectivity (36) . The Z-score can be 

calculated as shown in Equation (9), where ki represents the number of links of node i to other 

nodes in its modules si and 𝑘̅𝑠𝑖
, the average of degree (k) over all nodes in si; 𝜎𝑘̅𝑠𝑖

, is the 

standard deviation of k in si. 

 

𝑍𝑖 =
(𝑘𝑖−𝑘̅𝑠𝑖

)

𝜎𝑘𝑠𝑖

   (9) 

 

The participation coefficient, Pi determines the participation of the node i in linking the nodes 

inside and outside its module (36). Pi values lie in the range of 0-1 with higher values 

corresponding to the participation of nodes in establishing links outside the modules with 

homogeneous distribution of its links among all modules, and if kis is taken to represent the 

number of links of node i to nodes in modules s and ki, the total degree of node i, Pi can be 

calculated as in Equation (10), where, NM is the number of modules in the network.  

 

𝑃𝑖 = 1 − ∑ (
𝑘𝑖𝑠

𝑘𝑖
)

2
𝑁𝑀

𝑠=1

                        (10)    

Rich-club analysis 

Identification of hubs in a network generally is done through general centrality measures, 

especially higher degree nodes are commonly considered as hubs and existence of high degree 

nodes in a network correlate with the local regulatory roles of these high degree hubs in the 

network (37) . This phenomenon of formation of rich club connection between high degree hubs 

exhibit the robustness of the network and the resilience when the hubs are targeted (38). The 

existence of rich club phenomenon among hubs is investigated by calculating the Rich-club 

coefficients Φ(k) across the degree range (38). Φ(k) is equivalent to the clustering coefficient 

among a subgroup of nodes with degrees ≥ k. In order to remove the random interconnection 

probability factor, normalization of the rich club coefficients can be done by the Equation (11), 

where Φrand(k) is the rich-club coefficient of random networks with similar size and degree 

sequence and Φnorm(k)>1 indicating a rich-club formation. This rich club phenomenon is 
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associated with the assortivity nature of the networks and is important to understand the roles 

played by these hubs roles in the network integration and efficient transmission of signals (39). 

  

𝛷𝑛𝑜𝑟𝑚(𝑘) =
𝛷(𝑘)

𝛷𝑟𝑎𝑛𝑑(𝑘)
     (11) 

 

 

Tracking the key regulators in the networks 

The most influential genes in the PCa network was identified first through calculating the 

centrality measures. Since, higher degree nodes have higher centrality values, top 103 highest 

degree nodes (Degree k ≥ 65) were considered among the hub nodes of the network for tracing 

the key regulators which may play important role in regulating the network. Then tracing of 

nodes from the primary network up to motif level G(3,3) was done on the basis of representation 

of the respective nodes (proteins) across the sub modules obtained from Louvain method of 

community detection/ clustering. Finally, the hub-nodes (proteins) which were represented at the 

modules at every hierarchical level were considered as key regulators of the PCa network.  

 

Functional association analysis of modules 

The modules at all levels of hierarchy were analysed for their functional annotations with 

DAVID functional annotation tool (40,41). The functions and pathways with corrected p<0.05 

were considered statistically significant. 

 

Results 

 

PPI network in PCa follows hierarchical scale-free topology composed of modules at five 

levels of hierarchy 

From the interactome network of 3,871 PCa genes, the physical interacting PPI network of 2,960 

proteins with 2,960 nodes and 20,372 edges was constructed as the primary network (Figure 1). 

Analysis of this primary PCa network showed that the network followed power law distributions 

for probability of node degree distribution, P(k), clustering coefficient C(k) and neighbourhood 

connectivity distribution CN(k) against degree (k) with negative exponents (22) (Equation 12) 

(Figure 3). This power law feature indicates that the network exhibited hierarchical-scale free 

behaviour with systems level organization of modules/communities. Further, community finding 

using Louvain modularity optimization method (18) led to the detection of communities and 
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sub-communities at various levels of organization (Figure 2A). Thus, a total of 436 

communities and smaller communities were detected, out of which 38 reached up to level V, the 

level of motif G(3,3).  

 

Communities at the first hierarchical level also showed power law distribution for P(k), C(k) and 

CN(k) against degree distribution with negative exponents indicating further systems level 

organization of modules (Equation 12) except in case of communities C8, C10 and C15 where 

the CN(k) exhibit power law against degree k with positive exponents (β ~ 0.05,0.13,0.14 

respectively) (Figure 3). This indicates assortivity nature in the modules indicating the 

possibility of rich-club formation in these modules, where, hubs play significant role in 

maintaining network properties and stability (25). 

 

 

(

𝑃(𝑘)
𝐶(𝑘)

𝐶𝑁(𝑘)
) ~ (

𝑘−𝛾

𝑘−𝛼

𝑘−𝛽
) ; (

𝛾
𝛼
𝛽

) → (
0.82 − 2.52
0.15 − 0.67
0.02 − 0.57

)                 (12) 

 

Nineteen (19) novel regulators served as backbone of the network 

Centrality measures are used to assess the importance of the nodes in information processing in a 

network. Betweenness centrality CB, Closeness centrality CC, Eigenvector centrality CE and 

Subgraph centrality CS are various topological properties which can determine the efficiency of 

signal transmission in a network (28,42). In PCa network and modules at the first hierarchical 

level, these parameters also exhibited power law as a function of degree (k) with positive 

exponents where the centralities tend to increase with higher degree nodes (Equation 13) 

(Figure 3). This behaviour revealed the increase in efficiency of signal processing with higher 

degree nodes in the network showing the importance of these nodes in controlling the flow of 

information, thereby regulating and stabilizing the network. Hence, hub proteins had a 

significant influence in regulating the network and might be playing an important role in PCa. In 

order to identify the most influential key regulator proteins in the network, top 103 hub-proteins 

having degree (k) ≥ 65 were considered for identification of the key regulators through their 

representation at every topological level (Supplementary Table 1). After tracing hubs at every 

topological level, 19 (RPL11, RPL15, RPL19, RPL23A, RPL3, RPL5, RPL6, RPLP0, RPS11, 

RPS8, RPSA, HSPA5, NOP2, RANBP2, SNU13, CUL7, CCT4, ASHA1 and EIF3A) (Table 1 

& 2) were found to be the backbone of the network. These key regulators along with their 
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partners forming the motifs (Figure 2B), might be playing the most important roles in regulating 

and maintaining the stability (network integrity, optimization of signal processing, dynamics etc) 

of the network.  

 

(

𝐶𝐶

𝐶𝐵

𝐶𝐸

𝐶𝑆

) ~ (

𝑘𝜀

𝑘𝜂

𝑘𝛿

𝑘𝜁

) ; (

𝜀
𝜂
𝛿
𝜁

) → (

0.09 − 0.14
0.89 − 2.00
0.90 − 1.44
0.07 − 3.20

)    (13) 

 

 

Modules of the network were associated with specific functions 

Community detection of the network using Louvain modularity optimization method leads to 

clustering of the primary PCa network up to the level of motifs (Figure 2A). This clustering 

showed that Modularity (Q) of the networks exhibited an increasing pattern with topological 

levels with highest average Modularity (𝑸 =  0.5527) seen at the first hierarchical level, and 

lowest (Q = 0.0013) at the level V, the motif level (43,44).  

 

In complex PPI network the modules have biological meanings relating to functions and gene 

ontology analyses have revealed enrichment of certain known functions and pathways in the 

modules (45). Our primary PCa-network was composed of 14 modules deduced from the 

community detection and their mean clustering coefficients C(k) ~ 0.094 - 0.392 (Table 3). 

Among these, modules C12 and C13 which were the largest and had the highest mean clustering 

coefficients C(k)=0.392 and 0.218, respectively, showing a functional homogeneity in the 

modules. These modules were analysed for their functional annotations with DAVID functional 

annotation tool (40,41) to reveal association with different functions (Table 3).  

 

Hubs in the PCa network coordinate the modules acting as modular hubs 

In complex hierarchical networks, the modularity of sub-communities and the roles played by 

the nodes in the modules is defined with the nodes Within-module Z score, Zi along with their 

Participation coefficients Pi (36). Zi gives the degree of the nodes within their modules, and Pi 

describes the influence of a node inside the module, as well outside it, in terms of signal 

processing as well as maintaining network stabilization. Hence, Zi and Pi were calculated for 

each node in the modules using Equations (9) & (10), respectively. Accordingly, within-module 

Z score, the nodes are classified as follows: 
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(1) Modular non-hub nodes Zi < 2.5: (R1) Ultraperipheral nodes: The nodes linking all 

other nodes within their modules, Pi ≤ 0.05 (R2) Peripheral nodes: nodes linking most 

other nodes in their module, 0.05 < Pi ≤ 0.62; (R3) non-hub connector nodes: nodes 

linking many nodes in other modules, 0.62 < Pi ≤ 0.80; and (R4) Non-hub kinless nodes: 

nodes linking all other modules, Pi > 0.80.  

 

(2) Modular hubs Zi > 2.5: (R5) Provincial hubs; hub nodes linking vast majority nodes 

within their modules, Pi ≤ 0.30; (R6) Connector hubs; hubs linking most the other 

modules, 0.30 < Pi ≤0.75; and (R7) Kinless hubs; hubs linking among all modules, Pi > 

0.75. 

 

In the PCa network in this study, many hub-proteins were acting as modular hubs, helping in 

establishing connection between the modules at different hierarchical levels. For example, CUL7 

and RANBP2 were among important key regulator protein hubs in PCa which also acted as 

modular kinless and connector hubs of module C3 and C5 at the first hierarchical level (Figure 

4B). P53, E2F1 and c-MYC acted as kinless global hubs of module C9 connecting with all the 

modules and other proteins in the network. NOP56, FBL, RNF2 and NPM1 also acted as 

connector modular hubs of module C12, connecting other modules at the same level (Figure 4A 

& 4C). 

 

PCa network exhibited non-monotonicity in rich-club formation across the hierarchy 

Identification of rich club nodes is another common feature to study the influence of hubs in the 

network forming a strong connection among them which is done by calculating normalized rich 

club coefficient Φnorm across the degree range k (Equation 11). Normalized rich-club coefficient 

Φnorm > 1 indicates the existence of rich club among the nodes which play key role in network 

integration, increasing its stability and improving the efficiency of transmission of information 

among hub proteins. Since, PCa network is hierarchical and shows disassortativity in nature with 

node neighbourhood connectivity CN(k) following power law distribution against degree (k) 

with negative value of exponent β (Equation 13), rich club formation among the hub proteins is 

quite unlikely (38,46) . Although rich club formation is not exhibited among high degree hub 

proteins, the moderate intermediate degree protein with degree (k) ~ 19 - 104 showed higher rich 

club coefficients than the hubs in PCa network (Figure 5). In the PCa network across the 

hierarchy, different patterns of rich club coefficients were exhibited among the modules (Figure 

5), showing the phenomenon of non-monotonic behaviour at different hierarchical levels. With 
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respect to modules C12 and C13 at first hierarchical level, they exhibit rich club formation 

between the high degree nodes but the pattern changes moving at the lower levels. However, in 

the modules 𝐶8, 𝐶10 and 𝐶15, the topological properties of these modules exhibit assortativity 

nature due to (i) the node neighbourhood connectivity 𝑪𝑵(𝒌) in these modules follow power law 

with positive β exponents, (ii) Փ increases monotonically with degree k, and (iii) 𝜱𝒏𝒐𝒓𝒎 

approximately increases with degree k with values of 𝜱𝒏𝒐𝒓𝒎 > 1 (Figure 6), indicating the 

possibility of rich club formation among the high degree nodes (Figure 6A). Considering the 

nodes with degrees whose 𝜱𝒏𝒐𝒓𝒎 is larger than one, the approximate range of degrees of nodes 

forming rich-club in these three modules are 61  𝑘  14 (𝐶8), 

52   𝑘  6 (𝐶10), 37 𝑘  6 (𝐶15), and clearly show rich-club formations in the respective 

network modules (red coloured nodes in the respective modules in Figure 6.  

 

Discussion 

The real-world complex networks generally have hierarchically organized community structure, 

which is evident from fractal studies and scaling behaviour of these networks (22). Even though 

there is no specific definition of communities or modules in a network, each community/module 

is established by densely interconnected nodes forming clusters around the hub nodes which 

generally have their own local properties and organization (43). The hubs have highest 

interactions in the network due to their high-degree, constitute both intra- and inter-

communities’ interactions in the network in a hierarchical manner, and thus play a central role in 

information processing in the network (37). The primary PPI PCa network constructed in this 

study for tracking the hubs up to the level of motifs led to the identification of 19 key regulators 

(hubs) from 3,871 genes found to be significantly overexpressed in human prostate 

adenocarcinomas. 

 

There have been limited community finding methods in complex networks, among which the 

Newman and Girvan leading eigenvector algorithm (47), is commonly used. However, in 

comparatively large complex networks, Louvain method, which is based on modularity, Q 

maximization/optimization (18), is the most suitable, sensitive and comparatively faster. In our 

study, considering the size of the network and its sensitivity, we used Louvain method for 

community detection and while giving equal importance to the hubs, motifs and modules of the 

network, we identified the novel key regulators. 11 key regulators 

(𝑅𝑃𝐿11, 𝑅𝑃𝐿15, 𝑅𝑃𝐿19, 𝑅𝑃𝐿23𝐴, 𝑅𝑃𝐿3, 𝑅𝑃𝐿5, 𝑅𝑃𝐿6, 𝑅𝑃𝐿𝑃0, 𝑅𝑃𝑆11, 𝑅𝑃𝑆8 𝑎𝑛𝑑 𝑅𝑃𝑆𝐴) 
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belong to the family of ribosomal proteins (RPs) which are involved in ribosomal biosynthesis 

and other eight predicted regulators 

(𝐻𝑆𝑃𝐴5, 𝑁𝑂𝑃2, 𝑅𝐴𝑁𝐵𝑃2, 𝑆𝑁𝑈13, 𝐶𝑈𝐿7, 𝐶𝐶𝑇4, 𝐴𝑆𝐻𝐴1 𝑎𝑛𝑑 𝐸𝐼𝐹3𝐴) have other important 

functions and also reported to be associated with various other cancers. Moreover, at the level of 

motifs these key regulators interact with other proteins which may also be playing important 

roles in PCa and establishing themselves to be the candidate disease-genes along with key PCa 

regulators (Figure 2B). 

 

The emergence of 11 RPs as key regulators in PCa is an important finding in this study. It could 

be due to the crucial role of RPs in cell growth and proliferation propagated through protein 

synthesis. In cancers, ribosomal biosynthesis increases to meet the requirement of rapidly 

growing/proliferating cells (48). Some RPs take part in extra-ribosomal functions involved in 

tumorigenesis, immune cell signalling, and development and regulating diseases through 

translocation across the nuclear pore complex (49). RPs have been associated with tumorigenesis 

either as oncoproteins or tumour suppressors, with differential roles being reported in different 

cancers. During ribosomal or nucleolar stress such as hypoxia, lack of nutrient, starvation, 

deregulation of genes etc., RPs modulate the p53-mediated apoptosis. The association of RPs 

with cancers as discussed in Table 2 suggests a potential unexplored function of these proteins 

in PCa, both as therapeutic target and as predictive biomarker. An understanding of the functions 

and the pathways of key RPs, for example their role in stabilizing p53 during ribosomal stress 

and role in cell growth/proliferation in PCa patients is of immense significance as it provides 

new insights into the control and prevention of PCa. 

 

Besides, other non-ribosomal predicted key regulators identified in this study, 

𝑆𝑁𝑈13, 𝐶𝐶𝑇4, 𝐴𝐻𝑆𝐴1, 𝐶𝑈𝐿7, 𝐸𝐼𝐹3𝐴, 𝐻𝑆𝑃𝐴5, 𝑁𝑂𝑃2 𝑎𝑛𝑑 𝑅𝐴𝑁𝐵𝑃2, are also vital in cell 

physiology and are equally important for their involvement in cell growth and proliferation in 

one way or another. The NHP2-like protein 1 (SNU13) identified in this study as another key 

regulator, is a component of the spliceosome complex (50) which interacts with several RPs and 

strengthens the role of RPs in cancers. CCT4, Chaperonin containing TCP1 subunit 4, is a 

chaperone which when mutated is associated with hereditary sensory neuropathy (51).  

 

AHSA1, the Activator of HSP90 ATPase Activity 1, is a positive regulator of the heat shock 

protein 90 (HSP90) (52). The activated HSP90 forms a complex with HSP70 and helps in either 

binding of the tumour suppressor p53 to DNA, or its degradation by ubiquitination (53). In 
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cancers, activated HSP90 stabilizes the mutated p53 which decreases its DNA binding activity 

and degradation through binding with its inhibitor MDM2, thus promoting tumour progression 

(54,55). The activation and transportation of steroid hormones (androgen receptor, AR and 

oestrogen receptor, ER) to the nucleus is also mediated by HSP90 (56); thus, AHSA1 activation 

of HSP90 may influence the androgen metabolism in PCa. Moreover, AHSA1 is a regulator of 

the cell growth, apoptosis, migration and invasion through Wnt/β-catenin signaling pathway 

(57,58), which suggests its role as a candidate-disease gene in PCa. 

 

CUL7, Culin7, is a component of an E3 ubiquitin-protein ligase complex and interacts with p53, 

CUL9 and FBXW8, and is reported to be an antiapoptotic oncogene (59). CUL7 has been 

associated with various cancer types, but its promotion of epithelial-mesenchymal transition in 

metastasis and its regulation of ERK-SNAI2 signalling affecting the expression of cell adhesion 

proteins, E-cadherins, fibronectin, N-cadherin and vimentin in cancer is well studied (60). CUL7 

inhibits apoptosis in lung cancer through inhibition of p53 which regulates c-MYC cell cycle 

progression (59). CUL7 regulates cell cycle progression through Cyclin A overexpression, and 

also affects the cell migration, which is a hallmark of cancer, affecting microtubule dynamics in 

breast cancer (61). Therefore, the targeted knockdown and silencing of CUL7 has led to a 

decrease in cell proliferation, weaker -tubulin accumulation in microtubules, promoting their 

stability and decreasing cell migration (in breast, liver and lung carcinoma cells) and has been 

suggested as a potential therapeutic target in various cancers (59,61,62,63) .  

 

The Eukaryotic translation initiation factor 3 subunit A (EIF3A) forms 43S Pre-initiation 

complex (43S PIC) with other initiation factors and 40S ribosome and initiates the protein 

synthesis process. This translates mainly genes involved in cell proliferation, cell differentiation, 

apoptosis etc. and exerts transcriptional activation/repression through forming different forms of 

stem loop binding with the mRNAs (64, 65). Dysregulation of translation initiation and the role 

of EIF3 has been studied in cancers (66,67,68). Moreover, involvement of EIF3 complex in 

regulation of mTOR pathway, which is associated with many cancers (69,70), makes it an 

interesting protein to study for its regulatory role in PCa.  

 

The Heat shock protein family A (HSP70) member 5 (HSPA5) or glucose-regulated protein 

78kDa (GRP78), is a chaperone localized in endoplasmic reticulum (ER) and involved in folding 

and assembly of proteins and plays an active role in unfolded protein response in ER stress, 
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promoting cell survival which is a common process of escaping cell death in cancers (71,72,73). 

Due to this activity, HSPA5 is an emerging therapeutic drug target for cancer. 

 

NOP2 (p120) is a putative RNA methyl transferase protein and its expression is detectable in 

proliferating normal and tumour cells, but undetectable in non-proliferating normal cells 

(74,75,76). Its role in regulating cell cycle progression from G1 to S phase and transformation of 

normal fibroblast cells (77,78)  makes NOP2 an interesting protein which can be used as 

biomarker for cell transformation. The Ran binding protein 2 (RANBP2) is another key regulator 

identified in this study which is involved in the SUMOylation of Topioisomerase II- before the 

onset of anaphase, helping in separation of chromatids from the centromere and its under-

expression, mutation or deficiency has been observed in various cancers specially lung cancer 

and myelomocytic leukemia acting as tumor suppressor genes (79,80,81,82,83). Since 

SUMOylation plays an important role in tumour progression (84), the p150/importin /RANBP2 

pathway may also play a significant role in PCa progression.  

 

In PCa, p53 and AR are the most mutated genes reported according to COSMIC (15). 

Association of mutation in the androgen receptor gene (AR) which causes the mutated receptor 

to be always in activated state and continue to maintain androgen receptor mediated downstream 

signalling even in lower level of circulating androgens leading to discovery of androgen 

independency in prostate cancer (85). A recent report suggests several mutations in the AR gene 

in different metastatic castration-resistance (CRPC) patients in prostate cancer suggesting AR 

mutants as a good biomarker candidate (86). β-catenin and GSK-3β are other co-regulators of 

Androgen receptor and phosphorylation of AR by GSK-3β which inhibit AR driven 

transcription, but in prostate cancer, the increase in the activity of Akt suppression of GSK-3β 

due to phosphorylation helps in PCa progression (87,88). Out of the 19 key regulators identified 

in this study, 13 

(𝐶𝑈𝐿7, 𝐻𝑆𝑃𝐴5, 𝐶𝐶𝑇4, 𝑅𝑃𝐿19, 𝑅𝑃𝐿11, 𝑅𝑃𝐿3, 𝑅𝑃𝐿6, 𝑅𝑃𝐿𝑃0, 𝑅𝑃𝐿5, 𝑅𝐴𝑁𝐵𝑃2, 𝑅𝑃𝑆8, 𝑅𝑃𝐿23𝐴  

𝑎𝑛𝑑 𝑅𝑃𝐿15) interact directly with p53 and other key regulators through them (Figure 2C). In 

the PCa network, AR interacted with these key regulators through p53 and GSK-3, which is its 

upstream regulator (87,88). The observations suggest an important regulatory role of the 

reported key regulators in regulating the functions mediated through p53 and AR in PCa. The 

findings reiterate the putative roles of these hubs in PCa manifestation and progression. This 
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study may prove fundamental in characterizing the potential therapeutic targets and biomarkers 

for sensitive intervention and diagnosis of PCa.  

 

It is to be noted that in this study the PCa PPI network follows Hierarchical scale free topology. 

Along with the conventional centrality measures, CB,CC,CE and CS, probability degree 

distribution P(k), clustering coefficient C(k) and node neighbourhood connectivity distribution 

CN(k) are used to characterize a network whether one is scale-free, random, small-network or 

hierarchical network (22,24,42). PCa PPI network follows power law distributions for 

probability of node degree distribution, P(k), clustering coefficient, C(k), and neighbourhood 

connectivity distribution against degree k with negative exponents (22) (Equation 12) (Figure 

3), indicating the network falls in hierarchical-scale free behaviour which can exhibit systems 

level organization of modules/communities. 

 

Since, node neighbourhood connectivity distribution CN(k) as a function of degree k obeys power 

law with negative exponent β, it shows its disassortative nature indicating that there is no 

signature of rich club formation among high degree nodes in the network (38). Degree centrality 

is the most commonly used centrality measure used to define the hubs which are the high degree 

nodes in the network. This disassortivity may be due to the sparse distribution of the hubs among 

the modules playing key roles in coordinating specific function within each module as well as 

establishing the connections among the modules (38). Furthermore, we used Louvain modularity 

optimization method (18) to detect, find communities and subcommunities and their 

organization at various levels of organization (Figure 2A). The communities/subcommunities at 

various hierarchically organized levels also exhibited hierarchical scale-free topology, as was the 

case in the primary PCa network (Figure 3). This hierarchical organization shows the systematic 

coordinating role of the emerged modules/communities and hubs in regulating and maintaining 

the properties of the network (10). In such type of networks, the centrality-lethality rule (37) is 

not obeyed which indicates that disturbing the hub/hubs in the network will not cause the whole 

network collapse.  

 

Another important feature we found in PCa network is the observation of the nonmonotonic 

behaviour in the rich club formation in the PCa PPI network and across its hierarchy (Figure 5). 

The intermediate nodes in PCa network shows higher rich club coefficients than the highest 

degree hubs, indicating an important role of these intermediate nodes in regulating the network 

organization and maintaining stability through formation of key links between the low degree 
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nodes and high degree hubs. Formation of rich club among the high degree nodes in the 

communities C8, C10 and C15 (Figure 6A) indicating an increase in sensitivity of these hubs on 

being targeted hence take significant roles in regulating in their respective modular functions, 

i.e., endocytosis, proteosome and DNA repair mechanisms (Table 3). These high degree hubs in 

these modules fall among the intermediate degree nodes in the primary PCa PPI network 

(Figure 6B).Thus the varying pattern of rich club signatures across the hierarchy may possibly 

relate to the change in popularity of the proteins at different levels of organization, and hence 

hub-proteins preserve their level-dependent influence across the hierarchy (10). Such behaviour 

in the PPIs networks can be correlated to their weaker resilience and instability at 

subsystem/modular level which may be critical for certain functional modules due to 

malfunctions in the key regulator hub-proteins. 

 

The Centrality measures are used to assess the importance of the nodes in information 

processing in the network. Betweenness centrality CB, closeness centrality CC, Eigenvector 

centrality CE and subgraph centrality CS are the topological properties which can determine 

efficiency of signal transmission in a network (28,42). The behaviour of these parameters 

exhibiting power law as a function of degree k with positive exponents, where the centralities 

tend to increase with higher degree nodes (Equation 13) (Figure 3), reveals the increase in 

efficiency of signal processing with higher degree nodes in PCa network, showing the 

importance of hubs in controlling the flow of information, thereby regulating and stabilizing the 

network organization. Therefore, hub-proteins have a significant influence in regulating the 

network although they do not control the whole network completely, thereby increasing the risk 

of being targeted in the network. Hence, the certain hubs might be acting as key regulators in 

PCa and the 19 predicted key regulators might serve as a backbone of the network. 

 

Community detection of the network using Louvain modularity optimization method leads to 

clustering of the primary PCa network up to the level of motifs (Figure 2A). This clustering 

shows that modularity, Q, of the networks exhibit an increasing pattern with the topological 

levels with highest average modularity (Q = 0.5527) seen at the first hierarchical level of PCa 

network and lowest (Q = 0.0013) at level V, that is, at the motif level (43,44). In complex PPI 

network the modules have biological meanings and gene ontology analyses have revealed 

enrichment of certain known functions and pathways in the modules (45). The functional 

homogeneity in the modules of PCa network has been correlated to their mean clustering 

coefficients as modules with higher mean clustering coefficients have better chance to be 
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associated with specific functions (89,90). Moreover, in disease interactome, the disease 

modules which are unique modules representing the interaction between disease genes and their 

neighbourhood, overlaps with the topological modules derived from the network and functional 

modules associated with functions and are interrelated (91). Primary PCa network is composed 

of 14 modules deduced from the community detection method with their mean clustering 

coefficients 𝑪(𝒌)~0.094 − 0.392 (Table 3). Among them modules 𝐶12 and 𝐶13 which were 

the largest had the highest mean clustering coefficients 𝑪(𝒌)  =  0.392 & 0.218, respectively, 

showing a functional homogeneity in these modules. These modules have been analysed for their 

functional annotations with DAVID functional annotation tool (40,41)  which revealed 

association with different functions (Table 3). Modules 𝐶12 and 𝐶13 are represented with 

ribosomal biosynthesis and transcriptional regulation, respectively. This suggests a bigger role of 

RPs in PCa which is also evident from the representation of various RPs (𝑅𝑃𝐿3,5,6,11,15,19 

etc) as key regulators in PCa network. Transcriptional regulation is the most important level of 

gene regulation which is accomplished mainly through interaction of transcription factors along 

with their cofactors to the promoter regions of many genes. The tumour suppressor transcription 

factor (TF) p53 gene—the most mutated among all PCa—is one of the hub proteins represented 

in this community. Another important TF, c-MYC—an oncogene acting as a regulator of the cell 

cycle progression and cell division—is also represented in this community. Moreover, reports on 

regulations of p53 with the key ribosomal proteins (𝑅𝑃𝐿5, 𝑅𝑃𝐿6, 𝑅𝑃𝐿11 etc) and c-MYC key 

regulator CUL7 through p53 in several cancers suggest a critical association of transcriptional 

regulation in PCa.  

 

Since the study of complex hierarchical networks is incomplete without understanding the 

modularity of subcommunities and the roles played by the nodes in the modules, our study 

applied the approach to characterize the nodes in PCa network through defining their within-

module Z score Zi with their participation coefficients Pi  (36). In the PCa network many hub 

proteins act as modular kinless hubs or connector modular hubs maintaining the links within the 

modules as well as connecting other modules at the same level (Figure 4A,4B,4C). This shows 

the importance of the hub-proteins in the hierarchical organization of the network exhibiting 

their involvement in establishing links among the nodes in each module as well as among the 

modules in the network which are associated with  specific functions. 

 

Conclusions 
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This paper introduces a new method for finding key regulators in prostate adenocarcinomas 

using biological networks constructed from high throughput datasets of Prostate cancer patients. 

The Network theoretical approach used here placed equal emphasis on the hubs, motifs and 

modules of the network to identify key regulators/regulatory pathways, not restricting only to 

overrepresented motifs or hubs. It established a relationship between hubs, modules and motifs. 

The network used all genes associated with the disease, rather than using manually curated 

datasets. Highest degree hubs (𝑘 ≥ 65) were identified, out of which 19 were novel key 

regulators. The network, as evident from fractal nature in topological parameters, was a self-

organized network and lacked a central control mechanism. Identification of novel key 

regulators in prostate cancer, particularly ribosomal proteins add new dimension to the 

understanding of PCa and its treatment and predicting key disease genes/pathways within 

network theoretical framework. This method can be used to any networks constructed from 

patients’ datasets which follow hierarchical topology.  

 

 

Acknowledgements 

IRM acknowledges Deshbandhu College, University of Delhi for study leave to pursue doctoral 

research. MZM was financially supported by the Department of Health and Research, Ministry 

of Health and Family Welfare, Government of India under young scientist FTS No. 3146887. 

SA acknowledges DBT, Ministry of Science and Technology, Government of India for 

Bioinformatics BIF grant under the Biotechnology Information System Network (BTISNET), 

sanction number BT/BI/25/062/2012(BIF). RKBS acknowledges financial support by UPE-II 

under sanction no. 101, India. 

 

Author Contributions 

RKBS, SA, IRM and MZM conceived the model and conducted numerical experiments. IRM 

and MZM prepared figures of the numerical results. IRM, MZM, OK, SA and RKBS analysed 

and interpreted the simulation results and wrote the manuscript. 

 

Competing financial interests: The authors declare no competing financial interests. 

 

References 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                 

1. Aaron, L., T., Franco, O., E., Hayward, S., W. (2016). Review of Prostate Anatomy and 

Embryology and the etiology of Benign Prostatic Hyperplasia. Urologic Clinics. 43(3); 

279–288 

2. World Cancer Report 2014. World Health Organization. pp. Chapter 5.11. ISBN 

9283204298. 

3. Tobias, J. and Hochhauser, D. (2015). Cancer and its management (7th edition). Wiley-

Blackwell, West Sussex, UK 

4. Edge, S.B., Byrd, D., R., Carducci, M.,A., et al, eds. (2009). American Joint Committee 

on Cancer (AJCC). Cancer Staging Manual. 7th ed. Springer, New York, USA 

5. Mateo.J., Smith, A., Ong, M., de Bono, J.S. (2014). Novel drugs targeting the androgen 

receptor pathway in prostate cancer. Cancer metastasis reviews. 33:567–579. 

6. Ritch, C., R., Cookson, M., S. (2016). Advances in the management of castration 

resistant prostate cancer. BMJ, 355:i4405 

7. Erdogan, B., Kostek, O., Bekirhacioglu, M. (2018). Enzalutamide in Prostate Cancer, A 

Review on Enzalutamide and cancer. EJMO, 2(3):121–129  

8. Saini, S., (2016). PSA and beyond: alternative prostate cancer biomarkers. Cellular 

Oncology.39(2);97–106 

9. Naji, L., Randhawa, H., Sohani, Z., Dennis, B., Lautenbach, D., Kavanagh, O., et al. 

(2018). Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A 

Systematic Review and Meta-Analysis.  Ann Fam Med. 16(2); 149-154  

10. Ali, S., Malik, M. Z., Singh, S. S., Chirom, K., Ishrat, R., & Singh, R. K. B. (2018). 

Exploring novel key regulators in breast cancer network.PLOS ONE, 13(6), e0198525. 

11. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U. (2002). 

Network Motifs: Simple Building Blocks of Complex Networks. Science, 298(5594), 

824–827 

12. Alon U. (2007) Network motifs: theory and experimental approaches. NATURE 

REVIEWS, GENETICS, volume 8; 450-461 

13. Dingerdissen, H,M., Torcivia-Rodriguez, J., Hu, Y., Chang, TC., Mazumder, R., Kahsay, 

R. (2017). BioMuta and BioXpress: mutation and expression knowledgebases for cancer 

biomarker discovery. Nucleic Acids Research, gkx907. 

14. Wan, Q., Dingerdissen, H., Fan, Y., Gulzar, N., Pan, Y., Wu, T-J., Yang, C., Zhang, H., 

and Mazumder, R. (2015) BioXpress: An integrated RNA-seq derived gene expression 

database for pan-cancer analysis. Database (Oxford). 28. pii: bav019. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                                                                                                                             

15. Tate, J. G., Bamford, S., Jubb, H. C., Sondka, Z., Beare, D. M., Bindal, N., et al. (2018). 

COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research. 

16. Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., et al. 

(2010). The GeneMANIA prediction server: biological network integration for gene 

prioritization and predicting gene function. Nucleic Acids Research, 38, W214–W220. 

17. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., 

Schwikowski, B., Ideker, T. (2003) Cytoscape: a software environment for integrated 

models of biomolecular interaction networks. Genome Research, 13(11):2498-504 

18. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of 

communities in large networks. Journal of Statistical Mechanics: Theory and 

Experiment, 10, P10008. 

19. Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R. Y., et al. 

(2004). Network motifs in integrated cellular networks of transcription-regulation and 

protein-protein interaction. PNAS, 101(16), 5934–5939.  

20. Assenov, Y., Ramírez, F., Schelhorn, S.E., Lengauer, T., Albrecht, M. (2008) Computing 

topological parameters of biological networks. Bioinformatics, 24(2):282-284, 2008.  

21. Tang, Y., Li, M., Wang, J., Pan, Y., \& Wu, F.-X. (2015). CytoNCA: A cytoscape plugin 

for centrality analysis and evaluation of protein interaction networks.Biosystems, 127, 

67–72. 

22.  Ravasz, E., \& Barabási, A.-L. (2003). Hierarchical organization in complex networks. 

Physical Review E, 67(2). 

23.  Barabási, A.-L., Ravasz, E., & Vicsek, T. (2001). Deterministic scale-free networks. 

Physica A: Statistical Mechanics and Its Applications, 299(3-4), 559–564. 

24. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. \& Barabsi, A. L. (2002). 

Hierarchical organization of modularity in metabolic networks.Science, 297(5586), 

1551-1555. 

25. Pastor-Satorras, R., Vzquez, A. \& Vespignani, A. (2001). Dynamical and correlation 

properties of the Internet. Physical review letters, 87(25), 258701  

26. Barrat, A., Barthelemy, M., Pastor-Satorras, R. \& Vespignani, A. (2004). The 

architecture of complex weighted networks. PNAS, USA, 101(11), 3747-3752. 

27. Newman, M. E. J., \& Girvan, M. (2004). Finding and evaluating community structure in 

networks. Physical Review E, 69(2) 026113.   

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                                                                                                                             

28. Estrada, E., \& Rodríguez-Velázquez, J. A. (2005). Subgraph centrality in complex 

networks. Physical Review E, 71(5), 056103-1-9  

29. Canright, G. \& Engo-Monsen, K. (2004). Roles in networks. Science of Computer 

Programming, 53(2), 195-214 

30. Borgatti, S. P. \& Everett, M. G. (2006). A graph-theoretic perspective on 

centrality.Social networks, 28(4), 466-484. 

31. Brandes, U. (2001) A faster algorithm for betweenness centrality.J. Math. Sociol., 25, 

163-177. 

32. Mason, O. \& Verwoerd, M. (2007). Graph theory and networks in biology. IET systems 

biology, 1(2), 89-119. 

33. Canright, G. S. \& Engo-Monsen, K. (2006). Spreading on networks: a topographic view. 

Complexus, 3(1-3), 131-146. 

34. Bonacich, P. (1987). Power and centrality: A family of measures. American journal of 

sociology, 1170-1182 

35. Costa, L. da F., Rodrigues, F. A., Travieso, G., \& Villas Boas, P. R. (2007). 

Characterization of complex networks: A survey of measurements. Advances in Physics, 

56(1), 167–242. 

36. Guimerà, R., \& Nunes Amaral, L. A. (2005). Functional cartography of complex 

metabolic networks. Nature, 433(7028), 895–900. 

37. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. (2001). Lethality and centrality in protein 

networks. Nature 411: 41–42. 

38. Colizza, V., Flammini, A., Serrano, M. A., \& Vespignani, A. (2006). Detecting rich-club 

ordering in complex networks. Nature Physics, 2(2), 110–115. 

39. Rubinov, M., \& Sporns, O. (2010). Complex network measures of brain connectivity: 

Uses and interpretations. NeuroImage, 52(3), 1059–1069. 

40. Huang DW, Sherman BT, Lempicki RA. (2009) Systematic and integrative analysis of 

large gene lists using DAVID Bioinformatics Resources. Nature Protoc.;4(1):44-57. 

41. Huang DW, Sherman BT, Lempicki RA. (2009) Bioinformatics enrichment tools: paths 

toward the comprehensive functional analysis of large gene lists. Nucleic Acids 

Res.;37(1):1-13. 

42.   Newman, M. E. J. (2003). The Structure and Function of Complex Networks.SIAM 

Review, 45(2), 167–256 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                                                                                                                             

43. Newman, M., E., J., (2006). Modularity and community structure in networks.PNAS, 

103(23), 8577–8582. 

44. Cannistraci, C. V., Alanis-Lobato, G., \& Ravasi, T. (2013). From link-prediction in 

brain connectomes and protein interactomes to the local-community-paradigm in 

complex networks. Scientific Reports, 3(1);1613. 

45. Dong, J., \& Horvath, S. (2007). Understanding network concepts in modules. BMC 

Systems Biology, 1(1), 24. 

46. Zhou, S., \& Mondragon, R. J. (2004). The Rich-Club Phenomenon in the Internet 

Topology. IEEE Communications Letters, 8(3), 180–182.  

47. Girvan, M., \& Newman, M. E. J. (2002). Community structure in social and biological 

networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.  

48. Dolezal, J. M., Dash, A. P., \& Prochownik, E. V. (2018). Diagnostic and prognostic 

implications of ribosomal protein transcript expression patterns in human cancers. BMC 

Cancer, 18:275 

49. Zhou, X., Liao, W.-J., Liao, J.-M., Liao, P., \& Lu, H. (2015). Ribosomal proteins: 

functions beyond the ribosome. Journal of Molecular Cell Biology, 7(2), 92–104.  

50. Bertram, K., Agafonov, D. E., Dybkov, O., Haselbach, D., Leelaram, M. N., Will, C. L., 

et al. (2017). Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for 

Activation.Cell, 170(4), 701–713.e11.  

51. Sergeeva, O. A., Tran, M. T., Haase-Pettingell, C., \& King, J. A. (2014). Biochemical 

Characterization of Mutants in Chaperonin Proteins CCT4 and CCT5 Associated with 

Hereditary Sensory Neuropathy. Journal of Biological Chemistry, 289(40), 27470–

27480.  

52. Li, J., Soroka, J., \& Buchner, J. (2012). The Hsp90 chaperone machinery: 

Conformational dynamics and regulation by co-chaperones. Biochimica et Biophysica 

Acta (BBA) - Molecular Cell Research, 1823(3), 624–635.  

53. Müller, L., Schaupp, A., Walerych, D., Wegele, H., \& Buchner, J. (2004). Hsp90 

Regulates the Activity of Wild Type p53 under Physiological and Elevated 

Temperatures. Journal of Biological Chemistry, 279(47), 48846–48854.  

54. Peng, Y., Chen, L., Li, C., Lu, W., \& Chen, J. (2001). Inhibition of MDM2 by hsp90 

Contributes to Mutant p53 Stabilization. Journal of Biological Chemistry, 276(44), 

40583–40590 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                                                                                                                             

55. Li, D., Marchenko, N. D., \& Moll, U. M. (2011). SAHA shows preferential cytotoxicity 

in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-

Hsp90 chaperone axis. Cell Death \& Differentiation, 18(12), 1904–1913. 

56. Ratajczak, T., Cluning, C., Ward, BK. (2015). Steroid Receptor-Associated 

Immunophilins: A Gateway to Steroid Signalling. Clin Biochem Rev.;36(2):31-52 

57. Shao, J., Wang, L., Zhong, C., Qi, R., \& Li, Y. (2016). AHSA1 regulates proliferation, 

apoptosis, migration, and invasion of osteosarcoma. Biomedicine \& Pharmacotherapy, 

77, 45–51. 

58. Okayama, S., Kopelovich, L., Balmus, G., Weiss, R. S., Herbert, B.-S., Dannenberg, A. 

J., \& Subbaramaiah, K. (2014). p53 Protein Regulates Hsp90 ATPase Activity and 

Thereby Wnt Signaling by Modulating Aha1 Expression.Journal of Biological 

Chemistry, 289(10), 6513–6525. 

59. Kim, S. S., Shago, M., Kaustov, L., Boutros, P. C., Clendening, J. W., Sheng, Y., et al 

(2007). CUL7 Is a Novel Antiapoptotic Oncogene. Cancer Research, 67(20), 9616–9622 

60. Tian, P., Liu, D., Sun, L., Sun, H. (2018). Cullin7 promotes epithelial‑mesenchymal 

transition of esophageal carcinoma via the ERK‑SNAI2 signaling pathway. Molecular 

Medicine Reports, 17(4):5362-5367 

61. Qiu, N., He, Y., Zhang, S., Hu, X., Chen, M., \& Li, H. (2017). Cullin7 is a predictor of 

poor prognosis in breast cancer patients and is involved in the proliferation and invasion 

of breast cancer cells by regulating the cell cycle and microtubule stability. Oncology 

Reports, 39: 603-610 

62. Yan, J., Yan, F., Li, Z., Sinnott, B., Cappell, K. M., Yu, Y., et al. (2014). The 3M 

Complex Maintains Microtubule and Genome Integrity. Molecular Cell, 54(5), 791–804  

63. Zhang, D., Yang, G., Li, X., Xu, C., \& Ge, H. (2016). Inhibition of Liver Carcinoma 

Cell Invasion and Metastasis by Knockdown of Cullin7 In Vitro and In Vivo.Oncology 

Research Featuring Preclinical and Clinical Cancer Therapeutics, 23(4), 171–181.  

64. Lee, A. S. Y., Kranzusch, P. J., \& Cate, J. H. D. (2015). eIF3 targets cell-proliferation 

messenger RNAs for translational activation or repression. Nature, 522(7554), 111–114. 

65. Lee, A. S. Y., Kranzusch, P. J., Doudna, J. A., \& Cate, J. H. D. (2016). eIF3d is an 

mRNA cap-binding protein that is required for specialized translation initiation. Nature, 

536(7614), 96–99. 

66. Watkins, S.J., and Norbury, C.J. (2002) Translation initiation and its deregulation during 

tumorigenesis. British Journal of Cancer 86, 1023–1027 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                                                                                                                             

67. Yin, Y., Long, J., Sun, Y., Li, H., Jiang, E., Zeng, C., \& Zhu, W. (2018). The function 

and clinical significance of eIF3 in cancer. Gene, 673, 130–133.  

68. Xu, T.-R., Lu, R.-F., Romano, D., Pitt, A., Houslay, M. D., Milligan, G., & Kolch, W. 

(2011). Eukaryotic Translation Initiation Factor 3, Subunit a, Regulates the Extracellular 

Signal-Regulated Kinase Pathway. Molecular and Cellular Biology, 32(1), 88–95. 

69. Schipany, K., Rosner, M., Ionce, L., Hengstschläger, M. and Kovacic, B. (2015). eIF3 

controls cell size independently of S6K1-activity. Oncotarget 6, 24361-24375. 

70. Pópulo, H., Lopes, J. M., & Soares, P. (2012). The mTOR Signalling Pathway in Human 

Cancer. International Journal of Molecular Sciences, 13(2), 1886–1918. 

71. Wang, M., Wey, S., Zhang, Y., Ye, R., & Lee, A. S. (2009). Role of the Unfolded 

Protein Response Regulator GRP78/BiP in Development, Cancer, and Neurological 

Disorders.Antioxidants & Redox Signaling, 11(9), 2307–2316.  

72. Wang, J., Lee, J., Liem, D., & Ping, P. (2017). HSPA5 Gene encoding Hsp70 chaperone 

BiP in the endoplasmic reticulum. Gene, 618, 14–23.  

73. Cerezo, M., & Rocchi, S. (2016). New anti-cancer molecules targeting HSPA5/BIP to 

induce endoplasmic reticulum stress, autophagy and apoptosis.Autophagy, 13(1), 216–

217. 

74. de Beus E., Brockenbrough J. S., Hong B., Aris J. P. (1994). Yeast NOP2 encodes an 

essential nucleolar protein with homology to a human proliferation marker. J. Cell Biol. 

127:1799–1813 

75. Freeman, J. W., Busch, R. K., Gyorkey, F., Gyorkey, P., Ross, B. E., and Busch, H. 

(1988) Identification and characterization of a human proliferation-associated nucleolar 

antigen with a molecular weight of 120,000 expressed in early GI phase. Cancer Res..48: 

1244-1251, 1988. 

76. Kosi, N., Alić, I., Kolačević, M., Vrsaljko, N., Jovanov Milošević, N., Sobol, M., … 

Mitrečić, D. (2015). Nop2 is expressed during proliferation of neural stem cells and in 

adult mouse and human brain. Brain Research, 1597, 65–76. 

77. Perlaky, L., Valdez, B.C., Busch, R.K., Larson, R.G., Jhiang, S.M., Zhang, W.W., 

Brattain, M., Busch, H. (1992) Increased growth of NIH/3T3 cells by transfection with 

human p120 complementary DNA and inhibition by a p120 antisense construct. Cancer 

Research,52(2):428–436. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                                                                                                                             

78. Fonagy, A., Swiderski, C., Wilson, A., Bolton, W., Kenyon, N., & Freeman, J. W. 

(1993). Cell cycle regulated expression of nucleolar antigen P120 in normal and 

transformed human fibroblasts.Journal of Cellular Physiology, 154(1), 16–27.  

79. Arnaoutov, A., Azuma, Y., Ribbeck, K., Joseph, J., Boyarchuk, Y., Karpova, T., et al. 

(2005). Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nature Cell Biology, 

7(6), 626–632 

80. Dawlaty, M. M., Malureanu, L., Jeganathan, K. B., Kao, E., Sustmann, C., Tahk, S., et al. 

(2008). Resolution of Sister Centromeres Requires RanBP2-Mediated SUMOylation of 

Topoisomerase IIα. Cell, 133(1), 103–115. 

81. Navarro, M. S., & Bachant, J. (2008). RanBP2: A Tumor Suppressor with a New Twist 

on TopoII, SUMO, and Centromeres. Cancer Cell, 13(4), 293–295. 

82. Lim, J.-H., Jang, S., Park, C.-J., Cho, Y.-U., Lee, J.-H., Lee, K.-H., et al. (2014). 

RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia. 

Cancer Genetics, 207(1-2), 40–45. 

83. Packham, S., Warsito, D., Lin, Y., Sadi, S., Karlsson, R., Sehat, B., Larsson, O. (2015) 

Nuclear translocation of IGF-1R via p150 and an importin-beta/RanBP2-dependent 

pathway in cancer cells. Oncogene;34:2227–2238 

84. Eifler, K., & Vertegaal, A. C. O. (2015). SUMOylation-Mediated Regulation of Cell 

Cycle Progression and Cancer. Trends in Biochemical Sciences, 40(12), 779–793. 

85. De Marzo, A. M., DeWeese, T. L., Platz, E. A., Meeker, A. K., Nakayama, M., Epstein, 

J. I., et al (2004). Pathological and molecular mechanisms of prostate carcinogenesis: 

Implications for diagnosis, detection, prevention, and treatment. Journal of Cellular 

Biochemistry, 91(3), 459–477. 

86. Lallous, N., Volik, S. V., Awrey, S., Leblanc, E., Tse, R., Murillo, J. et al. (2016). 

Functional analysis of androgen receptor mutations that confer anti-androgen resistance 

identified in circulating cell-free DNA from prostate cancer patients. Genome Biology, 

17(1).  

87. Salas, T. R., Kim, J., Vakar-Lopez, F., Sabichi, A. L., Troncoso, P., Jenster, G., et al. 

(2004). Glycogen Synthase Kinase-3β Is Involved in the Phosphorylation and 

Suppression of Androgen Receptor Activity. Journal of Biological Chemistry, 279(18), 

19191–19200. 

88. Li, Y., Wang, Z., Kong, D., Murthy, S., Dou, Q. P., Sheng, S., … Sarkar, F. H. (2007). 

Regulation of FOXO3a/β-Catenin/GSK-3β Signaling by 3,3′-Diindolylmethane 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                                                                                                                             

Contributes to Inhibition of Cell Proliferation and Induction of Apoptosis in Prostate 

Cancer Cells. Journal of Biological Chemistry, 282(29), 21542–21550  

89. Colizza, V., Flammini, A., Maritan, A., & Vespignani, A. (2005). Characterization and 

modeling of protein–protein interaction networks. Physica A: Statistical Mechanics and 

Its Applications, 352(1), 1–27. 

90. Lewis, A. C., Jones, N. S., Porter, M. A., & Charlotte, D. M. (2010). The function of 

communities in protein interaction networks at multiple scales. BMC Systems Biology, 

4(1), 100 

91. Barabási, A. L., Gulbahce, N., Loscalzo, J. (2011) Network medicine: a network-based 

approach to human disease. Nature Reviews Genetics. 12 (1): 56–68. 

92. Bai, D., Zhang, J., Xiao, W., & Zheng, X. (2013). Regulation of the HDM2-p53 pathway 

by ribosomal protein L6 in response to ribosomal stress. Nucleic Acids Research, 42(3), 

1799–1811 

93. Golomb, L., Volarevic, S., Oren, M. (2014) p53 and ribosome biogenesis stress: the 

essentials. FEBS Lett 588: 1–9. 

94. Zhou, X., Hao, Q., Zhang, Q., Liao, J., Ke, J., Liao, P., et al. (2014). Ribosomal proteins 

L11 and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death & 

Differentiation, 22(5), 755–766. 

95. Meng, X., Tackmann, N. R., Liu, S., Yang, J., Dong, J., Wu, C., et al. (2016). RPL23 

Links Oncogenic RAS Signaling to p53-Mediated Tumor Suppression. Cancer Research, 

76(17), 5030–5039. 

96. Dai, M.-S., Arnold, H., Sun, X.-X., Sears, R., & Lu, H. (2007). Inhibition of c-Myc 

activity by ribosomal protein L11. The EMBO Journal, 26(14), 3332–3345.  

97. Gou Y., Shi Y., Zhang Y., Nie Y., Wang J., et al. (2010) Ribosomal protein L6 promotes 

growth and cell cycle progression through upregulating cyclin E in gastric cancer cells. 

Biochemical and Biophysical Research Communications 393: 788–793. 

98. Du, J., Shi, Y., Pan, Y., Jin, X., Liu, C., Liu, N., Han, Q., Lu, Y., Qiao, T., Fan, D. (2005) 

Regulation of multidrug resistance by ribosomal protein L6 in gastric cancer cells. 

Cancer Biology & Therapy, 4:2, 250-255. 

99. Wu, Q., Gou, Y., Wang, Q., Jin, H., Cui, L., et al. (2011) Downregulation of RPL6 by 

siRNA Inhibits Proliferation and Cell Cycle Progression of Human Gastric Cancer Cell 

Lines. PLoS ONE 6(10): e26401 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                                                                                                                             

100. Chen, R., Dawson, D. W., Pan, S., Ottenhof, N. A., de Wilde, R. F., Wolfgang, C. L., et 

al (2014). Proteins associated with pancreatic cancer survival in patients with resectable 

pancreatic ductal adenocarcinoma. Laboratory Investigation, 95(1), 43–55 

101. hang, Y.Z., Zhang, L.H., Gao, Y., Li, C.H., Jia, S.Q., et al. (2011) Discovery and 

validation of prognostic markers in gastric cancer by genome-wide expression profiling. 

World J Gastroenterol 17: 1710–1717. 

102. Mao-De, L., and Jing, X. (2007) Ribosomal Proteins and Colorectal Cancer. Current 

Genomics, 8, 43-49 

103. Callari, M., Cappelletti, V., De Cecco, L., Musella, V., Miodini, P., Veneroni, S., 

Gariboldi, M., Pierotti, M.A., Daidone, M.G. (2011). Gene expression analysis reveals a 

different transcriptomic landscape in female and male breast cancer. Breast Cancer Res 

Treat. 127: 601-10. 

104. Kato, Y., Uzawa, K., Saito, K., Nakashima, D., Kato, M., Nimura, Y., et al. (2006). Gene 

expression pattern in oral cancer cervical lymph node metastasis. Oncology Reports, 16: 

1009-1014. 

105. Teller, A., Jechorek, D., Hartig, R., Adolf, D., Reißig, K., Roessner, A., & Franke, S. 

(2015). Dysregulation of apoptotic signaling pathways by interaction of RPLP0 and 

cathepsin X/Z in gastric cancer. Pathology - Research and Practice, 211(1), 62–70. 

106. Artero-Castro, A., Castellvi, J., García, A., Hernández, J., Cajal, S. R. y, & LLeonart, M. 

E. (2011). Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic 

tumors.Human Pathology, 42(2), 194–203. 

107. Jamieson, K. V., Wu, J., Hubbard, S. R., & Meruelo, D. (2007). Crystal Structure of the 

Human Laminin Receptor Precursor.Journal of Biological Chemistry, 283(6), 3002–3005. 

108. DiGiacomo, V., & Meruelo, D. (2015). Looking into laminin receptor: critical discussion 

regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biological Reviews, 

91(2), 288–310. 

109. Zhang, S-C., Jin, W., Liu, H., Jin, M-J., Chen, X-Z., et al. (2013). RPSA Gene Mutants 

Associated with Risk of Colorectal Cancer among the Chinese Population. Asian Pac J 

Cancer Prev, 14 (12), 7127-7131. 

110. Jiang, G., Zhang, X., Zhang, Y., Wang, L., Fan, C., Xu, H., et al. (2015). A novel 

biomarker C6orf106 promotes the malignant progression of breast cancer.Tumor Biology, 

36(10), 7881–7889. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                                                                                                                             

111. Yong, W. H., Shabihkhani, M., Telesca, D., Yang, S., Tso, J. L., Menjivar, J. C., et al. 

(2015). Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of 

Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma 

Patients. PLOS ONE, 10(10), e0141334. 

112. Sethi, M. K., Thaysen-Andersen, M., Kim, H., Park, C. K., Baker, M. S., Packer, N. H., 

et al. (2015). Quantitative proteomic analysis of paired colorectal cancer and non-

tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC 

progression and metastasis. Journal of Proteomics, 126, 54–67. 

113. Bee, A., Ke, Y., Forootan, S., Lin, K., Beesley, C., Forrest, S.E., Foster, C.S., (2006). Ribosomal 

Protein L19 Is a Prognostic Marker for Human Prostate Cancer. Clinical Cancer Research, 12(7), 

2061–2065. doi:10.1158/1078-0432.ccr-05-2445. 

114. Pagliara, V., Saide, A., Mitidieri, E., d’Emmanuele di Villa Bianca, R., Sorrentino, R., Russo, G., 

Russo, A. (2016). 5-FU targets rpL3 to induce mitochondrial apoptosis via cystathionine-β-

synthase in colon cancer cells lacking p53. Oncotarget, 7, 50333–50348. 

115. Russo, A., Pagliara, V., Albano, F., Esposito, D., Sagar, V., Loreni, F., et al. (2015). Regulatory 

role of rpL3 in cell response to nucleolar stress induced by Act D in tumor cells lacking functional 

p53. Cell Cycle, 15(1), 41–51.  

116. Bee, A., Brewer, D., Beesley, C., Dodson, A., Forootan, S., Dickinson, T., et al (2011). siRNA 

Knockdown of Ribosomal Protein Gene RPL19 Abrogates the Aggressive Phenotype of Human 

Prostate Cancer. PLoS ONE, 6(7), e22672.  

List of table captions 

Table 1. Key regulators and their topological properties. 

Table 2. The key regulators identified in this study and their key functions in disease condition. 

Table 3. Average Clustering coefficients of the PCa modules at first hierarchical level. 

Supplementary Table 1. Top 103 hubs. 

 

List of figure captions 

Figure 1:  Flowchart of the methodology. 

 

Figure 2:  A. Communities/modules of PCa PPI network. B. Interacting partners of the 19 key 

regulators at motif level. C. Interaction of key regulators with p53, AR and GSKβ. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


                                                                                                                                                             

Figure 3: Topological properties of PCa and the modules/communities at the first hierarchical 

level. Degree distribution probability (𝑃(𝑘)), clustering coefficient (𝐶(𝑘)), neighbourhood 

connectivity (𝐶𝑁(𝐾)) as function of degree (𝑘) and centrality measurement closeness (𝐶𝐶(𝑘)), 

betweenness centrality (𝐶𝐵(𝑘)), eigenvector centrality ((𝐶𝐸(𝑘)), subgraph centrality (𝐶𝑆) as a 

function of degree. 

 

Figure 4: Identification of modular hubs A. In the primary PCa network and the modules at first 

Hierarchical level with within module 𝑍 score 𝑍𝑖 , and their participation coefficients Pi. B. 

Identification of modular hubs among 19 key regulators. C. Participation coefficient vs degree in 

PCa primary network and the modules at first hierarchical level. 

 

Figure 5: Rich club analysis of PCa PPI network and the communities upto the last motif level. 

Figure 6: A. Rich formation in C8, C10 and C15 in first hierarchal level of PCa. B. Degree 

maximum and minimum degrees of rich club forming hubs. 
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61≥ k ≥ 14

52 ≥ k ≥ 6

37 ≥ k ≥ 6

A. B.
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Table 1. Key regulators and their topological properties 

Sl. 

No. 

ID Gene Function Degree 

(k) 

Closeness 

centrality 

(CC) 

Betweenness 

centrality 

(CB) 

Eigenvector 

centrality 

(CE) 

Subgraph 

centrality 

(CS) 

1.  AHSA1 Activator of Hsp90 ATPase 

activity 1 

Positive regulation of ATPase 75 0.379262 0.00331 0.054588 2.47E+23 

2.  CCT4 Chaperonin containing 

TCP1 subunit 4 

Protein folding 66 0.384435 0.003334 0.033523 9.29E+22 

3.  CUL7 Cullin 7 Ubiquitin-dependent protein 

catabolism 

270 0.435916 0.034463 0.151248 1.89E+24 

4.  EIF3A Eukaryotic translation 

initiation factor 3 subunit A 

Translation pre-initiation complex 

formation 

85 0.37006 0.002209 0.079073 5.18E+23 

5.  HSPA5 Heat shock protein family A 

(Hsp70) member 5 

Activation of signaling protein 

activity involved in unfolded 

protein response 

111 0.408758 0.012349 0.062591 3.24E+23 

6.  NOP2 NOP2 nucleolar protein rRNA base methylation, 68 0.375317 0.001319 0.076741 4.88E+23 

7.  RANBP2 RAN binding protein 2 Protein sumoylation 72 0.386242 0.004881 0.031476 8.19E+22 

8.  RPL11 Ribosomal protein L11 Ribosomal large subunit assembly 83 0.383638 0.001239 0.114333 1.08E+24 

9.  RPL15 Ribosomal protein L15 Nuclear-transcribed mRNA 

catabolic process 

79 0.382201 0.001289 0.109354 9.91E+23 

10.  RPL19 Ribosomal protein L19 Nuclear-transcribed mRNA 

catabolic process 

78 0.381856 0.000469 0.113259 1.06E+24 

11.  RPL23A Ribosomal protein L23a Ribosomal large subunit assembly 84 0.379602 0.001182 0.109817 9.99E+23 

12.  RPL3 Ribosomal protein L3 Ribosomal large subunit assembly 67 0.385588 0.000788 0.100707 8.41E+23 

13.  RPL5 Ribosomal protein L5 Ribosomal large subunit assembly 92 0.383141 0.001438 0.114815 1.09E+24 

14.  RPL6 Ribosomal protein L6 Ribosomal large subunit assembly 113 0.39809 0.003601 0.129049 1.38E+24 

15.  RPLP0 Ribosomal protein lateral 

stalk subunit P0 

Nuclear-transcribed mRNA 

catabolic process 

88 0.394955 0.002486 0.110764 1.02E+24 

16.  RPS11 Ribosomal protein S11 Nuclear-transcribed mRNA 

catabolic process 

74 0.376943 0.000751 0.102129 8.64E+23 

17.  RPS8 Ribosomal protein S8 Nuclear-transcribed mRNA 

catabolic process 

120 0.394218 0.004481 0.126136 1.32E+24 

18.  RPSA Ribosomal protein SA Ribosomal small subunit 

assembly 

79 0.378002 0.002864 0.094957 7.47E+23 

19.  SNU13 SNU13 homolog, small 

nuclear ribonucleoprotein 

(U4/U6, U5) 

mRNA splicing, via spliceosome 87 0.370245 0.003088 0.072649 4.37E+23 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/643643doi: bioRxiv preprint 

https://doi.org/10.1101/643643


Table 2. The key regulator identified in this study and their key functions in disease condition 

 

Genes Function/mechanism Disease Reference 

Ribosomal protein genes 

RPL5, 

RPL6, 

RPL11 

Stabilizes p53/TAp73 (by binding to the MDM2/ MDMX/ 

HDM2) and inhibits ubiquitination of p53/TAp73 

Arrests cell growth arrest, promote apoptosis (92,93,94) 

RPL23A Stabilizes p53 and inhibits RAS-mediated tumorigenesis Arrests cell growth arrest, promote apoptosis (95)  

RPL11 Either prevents the binding of co-activator TRRAP to MYC 

promoter, or act via miR-24/miRISC silencing complex 

Inactivates c-MYC transcription, or promote its 

degradation 

(96)  

 

RPL6 Upregulates Cyclin E, promoting cell growth and cell cycle 

progression; inhibition is reported to downregulate Cyclin E, 

arresting cell cycle at G1 

Gastric cancer and Multi drug resistance gastric 

cancer 

(97,98,99) 

RPS8 Overexpression Pancreatic ductal carcinoma, gastric, colorectal, 

breast and oral cancers 

(100,101, 

102,103, 

104) 

RPLP0 The gene product RPLP0 interacts with Cathepsin X; 

knockdown arrests cell cycle at G1, increasing apoptosis 

Gastric, ovarian and endometrial cancers (105,106) 

 

RPSA A cell surface receptor (binding to lamin), facilitates cell 

adhesion and activation of signal transduction pathways; 

overexpression linked to tumor aggression and metastasis 

Colorectal cancer  (107,108,109

,110) 

RPS11, 

RPL19, 

RPL15, 

RPL3 

Overexpression. RPL19 overexpression serve as a Prognostic 

marker in PCa 

 

Glioblastoma, colorectal, gastric, lung, and prostate 

cancers 

(111,112,113

,114,115,116

) 

 

 

Non-ribosomal protein genes 

SNU13 Interacts with several RPs Strengthens the role of RPs  (50) 

CCT4 Mutated Hereditary sensory neuropathy  (51) 

AHSA1 Wnt/β-catenin signaling pathway Cell growth, apoptosis, migration and invasion (57,58)  

CUL7 ERK-SNAI2 signalling, affecting cell adhesion inhibition of p53; 

Cyclin A overexpression and affecting microtubule dynamics by 

increasing -tubulin accumulation 

Epithelial-mesenchymal transition in metastasis,  

inhibits apoptosis,  cycle progression, cell 

proliferation and  migration  lung, breast cancer etc. 

(59,60,61)  

 

EIF3A Translation initiation and regulation of mTOR pathway Translation of genes involved in cell proliferation, 

cell differentiation, apoptosis 

(66,67,68,69,

70)  

 

HSPA5 Unfolded protein response in ER stress Escaping cell death in cancers (71,72,73) 

NOP2 Regulates cell cycle progression from G1 to S phase Biomarker for cell transformation (77,78) 

RANBP2 Involved in SUMOylation of topioisomerase II-α and  the 

p150/importin /RANBP2 pathway 

Lung cancer and myelomocytic leukemia (79,80,81,82,

83)  
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Table 3. Average Clustering coefficients of the PCa modules at first hierarchical level 

Sl. 

No. 

Modules Most enriched function Avg. Clustering 

coefficient 

Corrected p-

value 

1.   C2 RNA mediated gene silencing 0.114 2.07E-07 

2.   C3 Unfolded protein folding 0.209 4.12E-16 

3.   C4 ATP/nucleotide binding 0.171 2.64E-14 

4.   C5 MRNA transport 0.165 2.25E-15 

5.   C6 Transcription initiation 0.374 2.68E-12 

6.   C7 Endoplasmic reticulum membrane 

proteins 

0.094 0.019 

7.   C8 Endocytosis 0.14 2.67E-09 

8.   C9 Mitocondrial proteins 0.124 6.75E-33 

9.   C10 Proteosome 0.182 1.02E-16 

10.    C11 Ubiquitin protein ligase activity 0.107 1.13E-10 

11.    C12 Ribonucleoprotein 0.392 7.50E-104 

12.    C13 Transcription regulation 0.218 6.11E-74 

13.    C14 Transmembrane helix 0.096 4.07E-04 

14.    C15 DNA repair 0.31 6.61E-08 
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