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Abstract (233 words) 
In a commentary published in eNeuro, Gardner & Liu (2019) discuss the role of model 
specification in interpreting the output of complex models of neural data. As a case study, they 
suggest that one variant of such analyses, the inverted encoding model (IEM) analysis framework, 
should not be used to assay properties of “stimulus representations” because the ability to apply 
linear transformations at various stages of the analysis procedure renders results ‘arbitrary’. As 
we discuss, the specification of all models is arbitrary to the extent that an experimenter makes 
choices based on current knowledge of the model system. However, the results derived from any 
given model, such as the reconstructed channel response profiles obtained from an IEM analysis, 
are uniquely defined and are arbitrary only in the sense that changes in the model can predictably 
change results. Moreover, with knowledge of the model used for IEM analyses, the results remain 
informative as comparisons between reconstructed channel response profiles across task 
conditions using a fixed encoding model – the most common use of the IEM technique – can 
generally capture changes in population-level representation magnitude across linear 
transformations. Thus, changes in the magnitude of the response profiles across conditions are 
preserved, even across unprincipled linear transforms. IEM-based channel response profiles 
should therefore not be considered arbitrary when the model is clearly specified and guided by 
our best understanding of neural population representations in the brain regions being analyzed.  
Intuitions derived from this case study are important to consider when interpreting results from all 
model-based analyses, which are similarly contingent upon the specification of the models used.   
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Introduction 
In any model-based analysis framework, the modeling choices made by the researchers critically 
influence results of the modeling procedures. That is - it is impossible to interpret the results 
without knowledge of the details of the model used to generate those results. Moreover, altering 
the properties of the model should naturally change aspects of the results, sometimes in a 
predictable and straightforward way. This is true for all model-based analysis frameworks, 
including the popular single-voxel population receptive field (vRF) modeling approach (Dumoulin 
and Wandell, 2008; Wandell and Winawer, 2015; Vo et al., 2017b), fitting extremely high-
dimensional voxel-wise encoding models to densely-sampled datasets (Kay et al., 2008; 
Naselaris et al., 2009; Nishimoto et al., 2011; Huth et al., 2012; Çukur et al., 2013b; Huth et al., 
2016; Lescroart and Gallant, 2019), the inverted encoding model (IEM) technique (Brouwer and 
Heeger, 2009, 2011, 2013; Scolari et al., 2012; Foster et al., 2015), and even fitting standard 
GLMs to fMRI data (Friston et al., 1994).  
 
Typically, the IEM technique involves experimenters estimating a simplified model built of 
stimulus-selective feature channels (for orientation; color; motion direction; spatial position; polar 
angle), each tuned to specific feature values and tiling the full stimulus space (Freeman and 
Adelson, 1991). For example, one could build a model with 8 channels tuned to different stimulus 
orientations (Brouwer and Heeger, 2011; Ho et al., 2012; Scolari et al., 2012). The properties of 
these channels are typically inspired by our understanding of the visual system - there are 
populations of cells tuned to particular orientations; colors; motion directions; positions – and at 
least in early sensory areas, much is known about the characteristic shape of single-unit tuning 
functions. Then, based on these modeled channels, linear regression is used to estimate how 
such a model accounts for changes in activation in a given voxel across different stimulus 
conditions (fitting the ‘forward’ model). The best-fit model can then be inverted to infer the 
activation of each modeled channel - that is, the reconstructed channel response profile - given 
the previously-estimated model and new measured activation patterns across many voxels. The 
result, when channels are modeled as selective for a single stimulus value, is typically a channel 
response profile with a peaked response at the feature value(s) present in the stimulus. 
Importantly, the inversion step effectively summarizes the results by transforming modulations 
across all measured units (e.g. voxels/EEG electrodes) back into the model space. This is not the 
only means of aggregating information, but one of a family of approaches to interpret modulations 
at the level of large-scale activation patterns.  
 
While channel response profiles1 often look qualitatively similar to neural tuning functions for 
single units, a point brought up by Gardner & Liu (2019), it is critical to understand that 
reconstructed channel response profiles cannot be used to draw conclusive inferences about any 
specific attributes of single-unit response properties (e.g. single unit gain or bandwidth changes, 
for more on this, see Sprague et al., 2018). Moreover, recovery of peaked channel response 
profiles does not demonstrate the accuracy (or inaccuracy) of the channel shapes in the encoding 
model used (Sprague et al., 2018a; Gardner and Liu, 2019).  

                                                
1 We note that Gardner & Liu (2019) use “channel response function” in their commentary, and others have 
used “channel tuning function”; we elect to refer to results from the IEM technique as channel response 
profiles, to further distance these results from single-neuron tuning functions. 
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In their commentary, Gardner & Liu (2019) argue that the channel response profiles resulting from 
the IEM technique are “arbitrary” because invertible linear transforms of the basis set will fit the 
data equally well. Hence, changing the model can predictably change the model fit, which in turn 
changes the shape of the reconstructed channel response profiles. This ability to apply invertible 
linear transforms means that any reported channel response profile’s shape is one from an infinite 
family of shapes (spanned by all invertible linear transforms that could be applied to the analysis). 
In their words, “the channel response function is only determined up to an invertible linear 
transform. Thus, these channel response functions are arbitrary, one of an infinite family and 
therefore not a unique description of population representation.” (Gardner and Liu, 2019; 
abstract). Thus, if a researcher used an unprincipled set of assumptions about the shape of the 
modeled channels – that is, ignoring known properties of visual selectivity – then these 
assumptions can be recapitulated in the reconstructed channel response profiles. For example, 
Gardner and Liu  (2019) showed that if orientation channels are presumed to be bimodal then the 
resulting reconstructed channel response profiles can also have a bimodal shape. Below we 
argue that all models are arbitrary, even those informed by biology, but the results of a model are 
not arbitrary once the model has been specified – this is true for both forward encoding models 
and inverted encoding models. Next, we show that even if poorly motivated models are used (or 
poorly motivated linear transforms are applied), differences between conditions are generally 
preserved. Finally, we discuss important considerations when interpreting IEM-based analyses 
and what we see as the place for this modelling approach in the context of other useful analysis 
methods.  
 
IEM-based channel response profiles are uniquely determined given a fixed model 
It is an unfortunate mischaracterization to imply that IEM-based results are “arbitrary” without 
specifying that they are uniquely determined and interpretable with knowledge of the modeled 
basis. Although one can generate many descriptions of a population representation, the result is 
not “arbitrary” if the channel response profile is interpreted in the context of the model used by 
the researchers. As a simple example, one invertible linear transform that could be applied to a 
basis and the resulting channel response profiles would ‘shift’ the columns of the predicted 
channel response matrix by one. This would result in each channel being mislabeled, but all other 
features of the analysis would proceed intact. With knowledge of this mislabeling (that is, 
knowledge of the original basis and the invertible linear transform), it is possible to ‘undo’ the 
transform and to achieve the intended understanding.  Likewise, if the experimenter reports their 
basis (as all IEM reports do, so far as we know), and the reconstructed channel responses or 
derived measures are computed in the context of that basis, then there are no concerns as to the 
arbitrariness of the channel response profile’s shape. Thus, even though it is true that if you 
change certain aspects of your model, you can predictably change aspects of your results, it does 
not follow that the reconstructed channel response profile is arbitrary – it is simply influenced by 
the choice of the model, just like the result of any model is influenced by its specification. So, 
rather than interpreting IEM results as the population representation, it is more appropriate to 
consider them one possible depiction of a population representation, as uniquely derived from a 
particular model. 
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Results from all models depend on properties of the model  
Importantly, the points the authors raise about applying invertible linear transforms (that is, 
changing the coordinate system of a linear model) apply to nearly all model-based analyses, even 
those that only compute a forward encoding model to predict responses of measured neural 
signals based on stimulus properties, without any attempt at “inversion” back into a stimulus-
referred space. We consider two trivial examples: spatial receptive fields measured via single-unit 
electrophysiology, and a general linear model (GLM) fit to a 2-condition fMRI experiment. When 
estimating the spatial RF of a neural measurement (either voxel or neuron), it is necessary to 
relate the observed neural response to changes in the stimulus. Under certain noise assumptions, 
one could even weight the stimulus aperture (in screen coordinates) by the observed neural 
signal. But even this procedure involves an implicit set of model assumptions, namely, that the 
‘basis’ for the stimulus model is in visual field coordinates (1 number for each location in the visual 
field). Thus, the same logic of coordinate transforms applies here: one could apply any number 
of invertible linear transforms to the image basis and to the estimated RF profile, and the resulting 
model would account for the same amount of variance because it is a linear transform of the 
original model. For instance, a 2D Fourier transform could be used to losslessly transform 
between a spatial basis and a Fourier basis. Does this mean we should consider RF (or feature 
tuning) models estimated in a similar way as arbitrary? Of course not. The existence of a potential 
coordinate transform does not render the original model invalid, it just means that one must know 
the model in order to interpret the results. 
 
A similar logic applies to a simple 2-condition fMRI experiment using univariate statistical 
approaches (i.e. voxel-wise analysis with a GLM; Friston et al., 1994). Consider the case where 
a participant is sometimes pressing a left button and sometimes a right button. The experimenter 
can build a GLM with predictors for BOLD activation associated with pressing the left and right 
button, appropriately convolved with a model hemodynamic response function. In turn, the 
experimenter could apply the invertible linear transform P = [0 1; 1 0] to the model basis (and 
thus, the resulting GLM regressors), which would result in flipped estimated beta weights: the 
beta weight originally corresponding to right now corresponds to left, and vice versa. But, of 
course, you know the ‘original’ layout of the regressors, so you could just update your labels of 
the weights accordingly. While the ability to perform this coordinate transform in principle means 
the resulting beta weights are arbitrarily defined, they remain uniquely and informatively defined 
given an understanding of the original model. This fact should not be used to label model-based 
estimates as “arbitrary”, but instead emphasizes the importance of understanding the model used 
to derive conclusions about a dataset. 
 
Differences between conditions are preserved across linear transforms of the basis 
At a high level, the IEM technique is a form of model-based dimensionality reduction. This 
approach estimates a transform from idiosyncratic measurement space (e.g. activation in voxels 
in V1; alpha power at EEG scalp electrodes) into a principled, manipulable, model-based 
“information” space. Perhaps most importantly, many studies using IEMs seek to compare 
channel response profiles, or basis-weighted ‘image’ reconstructions, across task conditions or 
timepoints in a trial. As described by Sprague et al (2018), these studies employ a fixed encoding 
model, such that activation patterns from different conditions are transformed into the same 
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modeled information space, using a single common estimated encoding model (and often that 
encoding model is estimated using data from a completely different training task, e.g. Sprague et 
al., 2014, 2016, 2018b). In this case, the criticisms raised by Liu et al (2018) and Gardner & Liu  
(2019) do not apply: any arbitrary linear transforms would be applied equivalently to the results 
from each condition; and differences between conditions would be transformed from participant- 
and stimulus-specific measurement space into the same model-based ‘information’ space. 
Invertible transforms would serve only to adjust the axes of the modeled information space, 
providing a different ‘view’ of the same data. (Note that there may be cases where a transform 
renders differences between conditions invisible, but this would be exceedingly rare in cases 
where stimulus features span a feature space) 
 
To make more concrete the point that differences between conditions can be preserved across 
linear transforms of the basis, we simulated an fMRI dataset for an experiment that contained two 
conditions, with one condition evoking a multiplicatively-larger response at the underlying neural 
level than the other (e.g., contrast, as in Liu et al., 2018; code [to be] available at: 
github.com/JohnSerences/iem_sim or github.com/tommysprague/iem_sim). Briefly, the response 
of each of 100 simulated voxels was computed as the sum of the responses of simulated neurons 
within each voxel, with each simulated neuron having a circular Gaussian tuning function across 
the feature space (with pseudo-randomly determined tuning bandwidth and amplitude, Figure 
1A). The activity of the neurons within each voxel was computed in response to a set of 8 stimulus 
orientations across two experimental conditions, with multiplicative gain applied to the simulated 
neural responses in Condition 2 compared to Condition 1. One half of the data, balanced across 
stimulus type and experimental condition, were designated as a training set and the other half of 
the data were designated as a testing set. Using data in the training set, we next fit the voxel-wise 
forward encoding model comprised of 8 basis functions that span the feature space using either 
a standard set of raised cosine basis functions, tuned to specific feature values spanning the 
orientation space, or a set of raised cosine basis functions that were linearly transformed via an 
appropriately designed matrix into bimodal basis functions (termed the ‘xform’ matrix, Figure 1B; 
mirroring Gardner & Liu’s [2019] Fig. 2; the ‘P’ matrix in their notation). We then inverted both 
forward models, and used those inverted encoding models to reconstruct channel response 
profiles from the same held-out test data. Within each condition, channel response profiles 
mirrored the basis function used to estimate the corresponding model (Figure 2C, mirroring 
Gardner and Liu’s Figure 3). However, even though the shape of the channel response profiles 
is constrained predictably by the choice of the basis functions, differences between conditions are 
preserved: Condition 2 shows larger-amplitude channel response profiles regardless of the basis 
used. Importantly, because the transformation is linear and invertible, the bimodal channel 
response profiles from each condition can be losslessly converted back into unimodal channel 
response profiles via multiplication with the inverse of the original transformation matrix (Figure 
1C, and note that this holds across a variety of gain modulations and with noise added at the level 
of simulated neurons, Figure 1D). Thus, one can apply arbitrary linear transforms to the basis set, 
and rather than rendering the data ‘arbitrary’, they remain interpretable given knowledge of the 
encoding model.   
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Figure 1 Differences between conditions can be preserved across invertible linear transforms (A) We 
simulated voxel-level fMRI data where each voxel’s response was generated based on the sum of simulated 
responses across a population of simulated neurons with randomly centered tuning preferences (here, n=number of 
neurons, set to 100, although only 10 neural tuning functions are shown for clarity). Noise is added to the neural 
responses and then the gain factor (g) was applied to the data from each condition (Condition 1: g = 1, Condition 2: 
g = 1.8). For display purposes the noise (N) was set to 0 for panels A-C (following Fig. 3 in Gardner & Liu, 2019) 
and was set to 10 for panel D. (B) We analyzed data using two different formats of channel basis functions, mirroring 
those used by Gardner & Liu (2019). Importantly, the two bases are related by an invertible linear transform (xform). 
(C) Reconstructed channel response profiles differ in similar ways – Condition 2 has a higher ‘amplitude’ than 
Condition 1 – regardless of the basis set used, and the bi-modal channel response profiles are related by the inverse 
of the linear transform  that was used to create the bimodal basis in the first place (xform-1). (D) Modeled gain 
compared to measured gain between Conditions 2 and 1, computed using both the raised cosine basis set and the 
transformed bi-modal version of the cosine basis set. Because there is not a straightforward way to quantify 
‘amplitude’ for the channel response profiles computed from the bimodal basis, we instead implemented a model-
free quantification scheme in which we computed the ratio of the area under each channel response profile (i.e. ratio 
of area under the curve in Condition 2 compared to Condition 1).   

 
 
As shown in Figure 1, even though the shape of the channel response profiles is different due to 
the application of an invertible linear transform, the difference between conditions is preserved. 
This follows from the fact that, because the end result of the IEM procedure is a linear mapping 
from signal space into channel space, some differences in measured signals can be detected 
even across arbitrary basis transforms.  
 
Thus, if the goal is to determine whether the amplitude of the channel response profiles increased, 
then the application of an invertible linear transform should not impact the general conclusions. 
Of course, this is true so long as one can accurately quantify or parameterize the resulting shape 
of the channel response profiles, which may be difficult if a random or oddly-shaped basis is used. 
Similarly, the process of aligning or re-centering channel response profiles on the correct feature 
can become vaguely defined if poorly motivated basis functions are used: typically, a unimodal 
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channel is centered at the feature value to which it is tuned; but a bimodal or other oddly-shaped 
channel cannot be easily related to a particular feature value, further rendering data presentation 
and interpretation tricky in such cases. But again, we emphasize that, when channel response 
profiles are interpreted within the context of the model used to compute them, there is no sense 
in which the reported result is arbitrary.  
 
Comparison of IEM and Bayesian approaches to stimulus decoding  
Gardner and Liu  (2019) also make several other points. First, they highlight many positive aspects 
of the Bayesian decoding approach introduced by van Bergen et al (2015). We agree - van Bergen 
et al’s (van Bergen et al., 2015; van Bergen and Jehee, 2018) use of a forward model combined 
with a Bayesian readout rule is an innovative and promising technique, and thoughtfully analyzing 
data in different ways, especially when employing complex models, is always a good idea. In 
particular, the Bayesian decoding approach can provide complementary information about the 
uncertainty with which the activation pattern represents a feature value using an independently-
estimated noise model, which is especially useful when trying to link trial-by-trial readouts of 
neural uncertainty with behavioral measures (van Bergen et al., 2015).  
 
However, there are scenarios when directly comparing responses of modeled information 
channels can be informative: for example, Brouwer & Heeger (2011) compared responses at 
specific channels across contrast and stimulus conditions to evaluate the impact of cross-
orientation suppression, and Ho et al (2012) and Scolari et al (2012) compared responses in 
channels tuned nearby the stimulus orientation across task (emphasize speed vs accuracy) and 
attention (target left vs target right) conditions. These types of analyses require estimating a full 
response profile across modeled channels, which is not easily accomplished with decoding 
analyses that generate a point estimate of the most likely stimulus feature (with or without a 
corresponding estimate of uncertainty). Moreover, when trying to disentangle responses 
associated with simultaneously presented stimuli, specifying an appropriate model in the 
Bayesian framework is not necessarily straightforward.  
 
We also believe that each method, as well as other modeling approaches in this general domain, 
such as representational similarity analysis (RSA; Kriegeskorte et al., 2008; Kriegeskorte and 
Kievit, 2013), detailed voxel-wise encoding modeling using naturalistic stimuli (Kay et al., 2008; 
Naselaris et al., 2009; Nishimoto et al., 2011; Huth et al., 2012, 2016; Çukur et al., 2013a; 
Lescroart and Gallant, 2019), and simplified voxel RF modeling using focused stimulus sets 
(Dumoulin and Wandell, 2008; Serences et al., 2009; Saproo and Serences, 2010; Brouwer and 
Heeger, 2013; Wandell and Winawer, 2015; Mackey et al., 2017; Vo et al., 2017a), should be 
thoughtfully used to provide different insights into how information is encoded across a variety of 
task and stimulus conditions.  
 
Units of channel response profiles 
Gardner and Liu (2019) also point out that the units of model-based reconstructions are arbitrary. 
This is a point that was noted in one of the original papers to use an IEM (Brouwer and Heeger, 
2011). We agree that – reconstructed channel response levels are in arbitrary units, and we 
recommend researchers report them as such going forward. This, combined with the use of unit-
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normalized modeled channels (i.e., those used to predict channel responses when fitting the 
forward model), will render channel response estimates more comparable across studies. That 
said, it is essential to note that these units have no impact on the inferences that can be drawn 
when comparing channel response functions between conditions under a fixed encoding model. 
Thus, Gardner and Liu’s (2019) concerns about the arbitrary nature of this scale are not 
particularly germane to the interpretation of such results: one could scale all units by 42 without 
impacting the difference between conditions. Thus, so long as all model-based reconstructions 
that are compared head-to-head are on the same initial footing, then the comparisons are valid 
regardless of the conventions used to label the units of this analysis. However, when different 
models are trained for different conditions, it is less certain how to interpret differences in 
reconstructed channel response profiles across conditions: did the best-fit model, fit individually 
to each condition, change? Did the data used to reconstruct channel response profiles change? 
Did both change? By holding at least one aspect constant (the model, estimated with a neutral 
task or in a balanced fashion across conditions), it is possible to better ascertain how certain 
properties of neural response patterns change based on stimulus or task conditions as the units 
can be compared on equal footing (Sprague et al., 2018a). 
 
IEMs, and other analyses applied to voxel-based measurements, cannot be used to infer 
properties of single-unit tuning 
Finally, Gardner and Liu (2019) and Liu et al (2018) imply that one of the goals of the IEM is to 
make inferences about single neuron response properties. Making inferences about the response 
properties of single-neurons is not possible using the IEM or any related model that operates at 
the scale of aggregate neural signals such as voxels, as different types of single-unit modulations 
can give rise to identical modulations at the level of a voxel (Sprague et al., 2018a). Thus, making 
such inferences is not the goal of the IEM or related measures, including the Bayesian decoding 
approach of van Bergen et al (2015). Instead, a fundamentally different approach that likely 
requires adopting a different measurement/analysis paradigm, such as parallel measurement of 
response properties measured across different scales (e.g., fMRI BOLD signal and single-unit 
electrophysiology; Keliris et al., 2019) would be needed to overcome the ill-posed many-single-
neurons-to-voxel mapping problem.  
 
Defining terms 
In the spirit of Gardner and Liu’s (2019) and Liu et al’s (2018) efforts to delineate the appropriate 
uses of IEMs, we want to more precisely define several terms related to the IEM technique to help 
clarify future reports. The IEM technique involves estimating an encoding model that best 
accounts for observed voxel activation responses given stimuli that are transformed into a 
modeled ‘channel space’ (and under the assumption of linearity such that the response of a given 
voxel is a linear combination of each of several modeled channels). Once an encoding model is 
estimated separately for each voxel, that encoding model can be inverted and used to reconstruct 
channel response profiles given new measured activation patterns across those same voxels. 
Those activation patterns are often measured in response to some kind of stimulus (either visual, 
or something attended, or held in working memory), and the resulting reconstructed channel 
response profiles typically contain representations of the stimulus/stimuli. To be clear, the result 
is not strictly a ‘stimulus reconstruction’, but a model-based reconstructed channel response 
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profile. As an example, reconstructed channel response profiles for stimulus orientation are not 
literally an oriented grating. Instead, they describe the activation of modeled channels in response 
to a given stimulus, and this description is in a stimulus-referred space. Reconstructed channel 
response profiles can be used for several purposes, including decoding (recovering the most likely 
feature value(s) represented, and/or, with the use of an appropriate noise model, their uncertainty) 
and quantification (characterizing the shape of the channel response profile, including ‘width’, 
‘amplitude’, etc., which should never be confused with the width or amplitude of single-neuron 
responses). Of course, all quantification of channel response profiles must be considered in 
concert with the encoding model used, but if a fixed encoding model is used for reconstructing 
channel response profiles across several experimental conditions, their properties can be 
compared in the context of the model. 
 
Conclusions 
In this reply to Gardner and Liu  (2019) commentary, we hope to have clarified some 
mischaracterizations of how the IEM approach is carried out (see also: Sprague et al., 2018a). To 
be clear, we are not arguing that the IEM or related approaches are not without serious limitations 
- the model specification is key, as is understanding what inferences can and cannot be supported 
by the results (Sprague et al., 2015, 2018a). As Gardner and Liu (2019) point out, these limitations 
are especially important to recognize when modelling signals in feature spaces that are not well-
understood, such as those for complex shapes or for higher-order cognitive or social functions. In 
these situations, an IEM may still be able to quantify differences between conditions and could 
thus be used to make inferences about changes in the information content of population-level 
response patterns. However, drawing links between the shape of IEM-derived channel response 
profiles and the properties of population-level neural representations is not appropriate. Instead, 
we agree with the suggestions of Gardner & Liu (2019) that careful comparison of forward models 
that are not related by an invertible linear transform is better suited for this purpose (e.g., Brouwer 
and Heeger, 2009; Nishimoto et al., 2011; Lescroart and Gallant, 2019). That said, IEM-based 
channel response profiles are not arbitrary when the model choice is based on principled 
assumptions about neural population representations and, more importantly, channel response 
profiles are uniquely determined given knowledge of the modeled basis, whatever that basis may 
be.  
 
We believe the IEM method is most useful when comparing reconstructed channel response 
profiles across manipulations of stimulus properties (e.g., contrast) or task conditions (e.g., 
attention), or combinations thereof (Sprague et al., 2018b) using a fixed encoding model across 
relevant comparisons (Sprague et al., 2018a). When used this way, the criticisms raised by 
Gardner & Liu  (2019) have no substantial bearing on the efficacy of the IEM technique for 
comparing the impact of experimental manipulations on information represented within aggregate 
measurements of neural activity patterns. In other words, in the same way the answer (42) is only 
meaningful in the context of the Question, results derived from a model are only meaningful in the 
context of the model used.   
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