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Abstract

Treatment strategies for infectious disease often aim to rapidly clear the pathogen
population in hopes of minimizing the potential for antibiotic resistance. However, a
number of recent studies highlight the potential of alternative strategies that attempt
to inhibit the growth of resistant pathogens by maintaining a competing population of
drug-sensitive cells. Unfortunately, to date there is little direct experimental evidence
that drug sensitive cells can be leveraged to enhance antibiotic containment strategies.
In this work, we combine in vitro experiments in computer-controlled bioreactors with
simple mathematical models to show that drug-sensitive cells can enhance our ability to
control bacterial populations with antibiotics. To do so, we measured the “escape time”
required for drug-resistant E. coli populations to eclipse a threshold density maintained
by adaptive antibiotic dosing. While populations containing only resistant cells rapidly
escape containment, we found that matched populations with sensitive cells added could
be contained for significantly longer. The increase in escape time occurs only when the
threshold density–the acceptable bacterial burden–is sufficiently high, an effect that
mathematical models attribute to increased competition. The results provide direct
experimental evidence linking the presence of sensitive cells to improved control of
microbial populations.

Introduction

Our ability to successfully treat disease is often determined by our capacity to manage
drug resistance [1–6]. To minimize the risk of resistance evolution, treatment is often
aimed at rapidly reducing – and hopefully clearing – the pathogen population [7–17]. This
principle dominates our approach to both infectious disease and cancer, where treatment
is often aimed at achieving rapid and dramatic reductions in tumor burden [18–29].
Unfortunately, the increasing number of treatment failures associated with drug resistance
suggests that this aggressive approach may not be optimal in all cases [1, 4–6].
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Fig 1. Containment strategies may leverage competition to extend time
below failure threshold. A. Aggressive treatment uses high drug concentrations
(lightning flashes), which eliminates sensitive cells (blue) but may fail when resistant cells
(red) emerge and the population exceeds the failure threshold (“acceptable burden”, light
blue circle). B. Containment strategies attempt to maintain the population just below
the failure threshold by using lower drug concentrations, leveraging competition between
sensitive (blue) and emergent resistant (red) cells to potentially prolong time to failure.
C. Schematic of potential feedback between growth processes in mixed populations. Drug
(lightning flash) inhibits sensitive cells (blue), which in turn inhibit resistant cells (red)
through competition but may also contribute to the resistant population via mutation.

In fact, recent work suggests that aggressive treatment strategies can hasten the
emergence and spread of resistance [30–41]. In addition, numerous studies, both ex-
perimental and theoretical, provide evidence that less aggressive treatment strategies
may be called for under some conditions [42–50], while several clinical trials have also
demonstrated advantages of lower dose therapies [50–58]. The most frequently cited
advantages of less aggressive therapies are reduced off-target selection for resistance
and fewer adverse effects for the patient. However, the less aggressive approach may
also provide benefits by directly improving our ability to control evolving pathogen
populations [34, 59]. More specifically, because drug-sensitive and drug-resistant cells
compete for resources, aggressive treatments that eliminate sensitive cells may remove
competitive barriers that slow the growth of resistant cells (Figure 1) [60].

Maintaining a sensitive population during treatment comes with both a cost and
a benefit [49]. Drug sensitive cells are costly because they are a source for de novo
resistance, yet they may also be beneficial because they can competitively suppress
growth of the resistant population. In theory, the benefits of competition dominate
under some conditions–for example, when sufficiently high pathogen densities can be
tolerated. In these cases, treatments designed to maintain a sensitive population should
outperform aggressive therapies. Although there is increasing interest in the idea of
using sensitive cells to manage resistance, experimental support for this idea remains
scarce and is often indirect – involving a comparison of different treatment strategies as
opposed to comparing the presence versus absence of sensitive cells [35, 43–48, 50, 61–63].

In this work, we combine in-vitro experiments in computer-controlled bioreactors
with simple mathematical models to show that drug-sensitive cells can enhance our
ability to control bacterial populations with antibiotics. Specifically, we measured the
“escape time” required for different E. coli populations to eclipse a threshold density when
exposed to adaptive drug dosing designed to maintain a constant cell density using a
minimal amount of drug. Surprisingly, we found that adding sensitive cells led to longer
escapes times. The increased escape time in mixed populations (resistant populations
with sensitive cells added) occurs only when cells can be maintained at a sufficiently high
total density–that is, when the “acceptable bacterial burden” (here called Pmax) is large
enough to allow for competition between cells. The results provide, to our knowledge,
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Fig 2. Resistant cells exhibit increased resistance to doxycycline and small
fitness cost Left panels: per capita growth rate in bioreactors for ancestral (sensitive,
blue) and resistant (red) populations exposed to increasing concentrations of doxycycline
(top to bottom in each panel). Real time per capita growth rate (light blue or red curves)
is estimated from flow rates required to maintain constant cell density at each drug
concentration (Methods). Mean growth rate (thick solid lines) is estimated between
200-300 minutes post drug addition (shaded regions), when the system has reached
steady state. Doxycyline concentrations are 10, 30, 50, and 80 ng/mL (top panel, top
to bottom) and 50, 150, 300, and 500 ng/mL (bottom panel, top to bottom). Right
panel: dose response curve for sensitive (blue) and resistant (red) populations. Filled
circles correspond to curves shown in left panels, with error bars corresponding to ± one
standard deviation over the measured interval. Solid lines, fit to Hill-like dose response
function r = r0(1 + (D/h)k)�1, with r the growth rate, D the drug concentration, r0
the growth in the absence of drug, h the half-maximal inhibitory concentration (IC50),
and k the Hill coefficient. Half-maximal inhibitory concentrations are estimated to be
h = 49 ng/mL (sensitive cells) and h = 210 ng/mL (resistant cells). Resistant cells also
exhibit a fitness cost of approximately 10% in the absence of drug.

the first direct experimental evidence linking the presence of sensitive cells to improved
control of microbial populations. The findings are particularly striking because they
occur in well mixed populations with a continual renewal of resources–conditions not
typically associated with strong competition–indicating that similar control schemes may
be broadly applicable.

Results

Our primary goal is to investigate whether drug sensitive populations of E.coli can
suppress the growth of drug resistant E.coli in the presence of antibiotics. To do so, we
grew bacterial populations in well mixed bioreactors where environmental conditions,
including drug concentration and nutrient levels, can be modulated using a series of
computer-controlled peristaltic pumps. Population size is measured using light scattering
(optical density, OD), and drug concentration can be adjusted in real time in response
to population dynamics or predetermined protocols (Figure S1).

As a model system, we chose E. coli strains REL606 and REL607, which are well-
characterized ancestral strains used in the celebrated long term evolution experiment
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in E. coli [64]. The strains differ by a single point mutation in araA which serves as a
neutral marker for competition experiments; REL 606 (REL 607) appears red (pink)
when grown on tetrazolium arabinose (TA) plates. In the absence of environmental
input (i.e. no influx or outflow), these E. coli exhibit standard logistic growth in the
bioreactors (Figure S2), suggesting that competition does occur at high cell densities.
Despite this implicit evidence of competition within a single population, it is not clear
whether competition significantly impacts resistance dynamics in mixed populations or
in the presence of antibiotics.

To answer this question, we first characterized the response of both drug-sensitive and
drug-resistant E.coli isolates to doxycyline, a frequently used protein synthesis inhibitor.
To isolate a doxycycline-resistant mutant, we exposed populations of REL606 strains
to increasing concentrations of doxycyline over several days using standard laboratory
evolution with daily dilutions and isolated a single colony (“resistant mutant”) from the
resulting population (Methods). To quantify the responses of the drug-sensitive (REL607)
and drug-resistant (REL606-derived mutant) cells to doxycylcline, we measured real-
time per capita growth rate for isogenic populations of each strain exposed to different
concentrations of drug (Figure 2). Briefly, growth rate was estimated using influx
rate of media required to maintain populations at a constant density (Methods). The
resistant isolate exhibits both increased resistance to doxycycline (increased half maximal
inhibitory concentration) as well as a 10% fitness cost in the absence of drug (Figure 2).
We note in the experiments that follow, drug concentrations are sufficiently high that
resistant cells always have a selective advantage over sensitive cells, despite this fitness
cost.

To test our primary hypothesis–that the presence of sensitive cells can enhance the
efficacy of antibiotic control strategies–we designed a simple experiment that directly
compares identical “treatment” regimens in three different populations: one seeded with
a large number of sensitive cells, one seeded with only a small number of resistant cells,
and one mixed population combining a large sensitive population and small resistant
population (Figure 3A). Because high concentrations of drug are expected to completely
inhibit growth of sensitive cells and therefore eliminate any potential competition, we
designed an adaptive drug dosing protocol intended to maintain the mixed population at
a fixed density (Pmax) using minimal drug. The adaptive protocol uses simple feedback
control to adjust the drug concentration in real time in response to changes in population
density (Figure 3A, Methods). Because drug is restricted to a finite range (0-125 ng/mL),
populations containing resistant cells cannot be contained indefinitely and will eventually
eclipse the target density (Pmax). The time required for this crossover is defined as the
escape time, and the goal of the experiment is to compare escape times–which correspond,
intuitively, to times of treatment failure–for different populations exposed to the same
drug dosing.

Specifically, we applied the adaptive dosing protocol to a mixed population of sensitive
(90%) and resistant (10%) cells with an initial density just below the threshold Pmax. In
parallel, we also applied an identical drug dosing protocol to matched populations of
resistant-only and sensitive-only cells. The initial density of the resistant-only (sensitive-
only) population was set to 0.1Pmax (0.9Pmax) to match the density of the resistant
(sensitive) sub-population in the mixed population. We stress that while the temporal
dynamics of the mixed population–but not the other populations–completely determine
the dosing protocol, all three populations receive identical drug dosing and therefore
experience identical drug concentrations over time.

This experimental design tests the effect of sensitive cells by comparing escape time
in two extreme scenarios: 1) in the absence of sensitive cells, and 2) in the presence of
the largest possible sensitive population (subject to the threshold constraint). In the
absence of competition or other intercellular interactions, the dynamics of the mixed
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Fig 3. Escape time dynamics in antibiotic-treated populations depend on
presence of sensitive cells and cell density. A. Schematic of experiment. Three
different populations (sensitive only, resistant only, and mixed) were exposed to identical
antibiotic treatments in separate bioreactors. The media in each bioreactor was also
refreshed at a constant rate of FN = 0.067 mL

min . The drug treatment was determined in
real time by measuring the density (OD) of the mixed population and adjusting drug
influx to maintain a constant density (Pmax) while minimizing drug used (Methods).
While the dynamics of the mixed population fully determine the temporal profile of the
drug dosing, all 3 populations then receive identical treatments. In the high density
experiment, mixed populations started at an OD of Pmax = 0.2, with a 90-10 ratio of
sensitive to resistant cells. The initial OD of resistant cells is therefore 0.02. Resistant-
only populations started from an initial density of 0.02 and contained no sensitive cells,
while sensitive-only populations started from an initial density of 0.18 and contained
no resistant cells. In the low density experiment, mixed populations started at an
OD of Pmax = 0.1, and the initial OD of resistant cells was unchanged (OD=0.02).
Therefore, the starting conditions of the high and low density experiments differ only in
the number of sensitive cells. B and C. Experiments (left) and model (right) in high
density (Pmax = 0.2, B) and low density (Pmax = 0.1, C) regimes. Red curves are
resistant only, blue are sensitive only, and black are the mixed populations. Lightly
shaded curves correspond to individual experiments, dark curves show the median across
experiments. Horizontal dashed lines show the treatment failure threshold Pmax + 0.025,
where the 0.025 term allows for small experimental fluctuations without triggering a
threshold crossing event.
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population should be a simple sum of the dynamics in the two single-species populations.
As a result, escape times for both the resistant-only (scenario 1) and mixed (scenario 2)
populations should be approximately equal. Intuitively, the drug is expected to inhibit
the sensitive cells but have minimal effect on resistant cells, which determine the escape
time. On the other hand, if competition suppresses the growth of resistant cells, one
would expect the escape time of the mixed population to exceed that of the resistant-only
population.

To quantitatively guide our experiments and refine this intuition, we developed a
simple mathematical model for population growth in the bioreactors in the presence of an
adaptive therapy (Methods). The model implicitly incorporates competition via a logistic
growth term, similar to the classic Lotka-Volterra model. The model parameters are fully
determined by independent experiments, such as those in Figure 2, that characterize
the response of individual populations (sensitive only or resistant only) to fixed drug
concentrations (see Table 1 and Methods for a detailed description of the model). As
intuition suggests, the model predicts that escape times for the mixed population will be
extended relative to the those for the resistant-only population only when the threshold
density–the acceptable burden, Pmax–is sufficiently large.

To test these predictions, we first performed the experiment at Pmax = 0.2 (Figure 3B),
a threshold density which the model predicts will lead to competitive inhibition. Note
that this density falls in the range of exponential growth and falls below the stationary
phase limit in unperturbed populations (Figure S2). To account for batch effects
and day-to-day experimental fluctuations, we repeated the experiment multiple times
across different days, using different media and drug preparations. Unsurprisingly, the
experiments confirm that sensitive only populations are significantly inhibited under
this treatment protocol and never reach the containment threshold; in fact, the overall
density decreases slowly over time due to a combination of strong drug inhibition and
effluent flow (Figure 3B, blue curves). By contrast, the resistant-only population grows
steadily and eclipses the threshold in 6-9 hours (Figure 3B, red curves). Remarkably,
however, the mixed population (black curves) is contained below threshold–in almost all
cases–for the entire length of the experiment, which spans more than 18 hours. At the
end of the experiment, we plated representative examples of resistant only and mixed
populations (Figure S3), which confirmed that the mixed vial was predominantly resistant
at the end of the experiment. Matched drug-free controls indicate that containment in
the mixed vial is due to drug, not artifacts from media inflow or outflow (Figure S3).
The experiments also show remarkable agreement with the model (with no adjustable
parameters; compare left and right panels in Figure 3B).

If competition were driving the increased escape time, one would expect the effect
to be reduced as the threshold density (Pmax) is decreased. To test this hypothesis,
we repeated the experiments at Pmax = 0.1 (Figure 3C). As before, the sensitive-only
population is strongly inhibited by the drug and decreases in size over time (blue).
Also as before, the resistant-only population (red) escapes the containment threshold,
typically between 5-8 hours (faster than in the high Pmax experiment due to the lower
threshold). In contrast to the previous experiment, however, the mixed population also
escapes the containment threshold, and furthermore, it does so on similar timescales as
the resistant-only population. Again, the agreement between model and experiment is
quite good, though the model does predict a slightly longer escape time in the mixed
population. The small discrepancy between the model and the experiment suggests
that competition may decrease even more rapidly as density is lowered than the model
assumes.

To quantify these results, we calculated the time to escape for each experiment.
We defined time to escape for a particular experiment as the first time at which the
growth curve (OD) exceeded the threshold density Pmax by at least 0.025 OD units (note
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Fig 4. Escape times are increased in the presence of sensitive cells only for
sufficiently large threshold densities Time to escape for populations maintained
at low (Pmax = 0.1, left) and high (Pmax=0.2, right) threshold densities (“acceptable
burdens”). Small circles: escape times for individual experiments in mixed (black) or
resistant-only (red) populations. Large circles: mean escape time across experiments,
with error bars corresponding to ± one standard deviation. Time to escape is defined as
the time at which the population exceeds the threshold OD of Pmax + 0.025, where the
0.025 is padding provided to account for experimental fluctuations. Time to escape is
normalized by the total length of the experiment (mean length 22.5 hours). Note that in
the high Pmax case (right), the mixed population (black) reached the threshold density
during the course of the experiment in only one case, so the escape times are set to 1 in
all other cases.
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that the 0.025 was chosen to allow for noise fluctuations in the OD time series without
triggering a threshold crossing event). For low values of acceptable burden (Pmax), the
escape times for resistant-only and mixed populations are nearly identical (Figure 4,
left). By contrast, at higher values of Pmax, the escape time is dramatically increased in
the mixed population relative to the resistant-only population (Figure 4, right), even
though both receive identical drug treatment and start with identically sized resistant
populations.

We note that previous theoretical work [49] indicates that sensitive cells may also
come with a cost because they serve as a potential reservoir for de novo resistance. In
fact, one can show that for our experimental system, the effect of mutations is expected
to be negligible for biologically relevant mutation rates (see SI, Methods). As a result,
we neglect mutation in the current model. Importantly, our experiments suggest that
sensitive cells are beneficial at high values of Pmax and have little effect at low Pmax,
consistent with the assumption that mutation-driven costs of sensitive cells in our system
are negligible.

Discussion

In this work, we provide direct experimental evidence that the presence of drug-sensitive
cells can lead to improved antibiotic-driven control of bacterial populations in vitro.
Specifically, we show that adaptive antibiotic dosing strategies can contain mixed popula-
tions of sensitive and resistant cells below a threshold density for significantly longer than
matched populations containing only resistant cells. The increase in escape time occurs
only when the threshold density is sufficiently high that competition is significant. The
findings are particularly remarkable given that experiments are performed in well mixed
bioreactors with continuous resource renewal, and even the highest density thresholds
occur in the exponential growth regime for unperturbed populations. The surprisingly
strong effect of competition under these conditions suggests that similar approaches may
yield even more dramatic results in natural environments, where spatial heterogeneity
and limited diffusion may enhance competition [65–67].

Notably, our experiments do not uncover scenarios where sensitive cells may actually
be detrimental and accelerate resistance emergence. Theory suggests that these scenarios
do indeed exist [49], but because of the typical mutation rates observed in bacteria,
they cannot be reliably produced with our experimental system (see SI for extended
discussion).

It is important to keep in mind several technical limitations of our study. First,
we measured population density using light scattering (OD), which is a widely used
experimental surrogate for microbial population size but is sensitive to changes in
cell shape [68]. Because we use protein synthesis inhibitors primarily at sub-MIC
concentrations, we do not anticipate significant artifacts from this limitation, though it
may pose challenges when trying to extend these results to drugs such as fluorquinolones,
which are known to induce filamentation [69, 70]. In addition, in the absence of cell
lysis, OD can not distinguish between dead and living cells. However, our experiments
include a slow background flow that adds fresh media and removes waste, leading to a
clear distinction between non-growing and growing populations. Under these conditions,
fully inhibited (or dead) populations would experience a decrease in OD over time, while
populations maintained at a constant density are required to divide at an effective rate
equal to this background refresh rate.

Most importantly, our results are based entirely on in-vitro experiments, which
allow for precise environmental control and quantitative measurements but clearly
lack important complexities of realistic in-vivo and clinical scenarios. Developing drug
protocols for clinical use is an extremely challenging problem spanning multiple length
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and time scales. Our goal was not to design clinically realistic adaptive therapies,
but instead to provide direct experimental evidence that sensitive cells can improve
drug-driven control protocols in a tractable setting. The use of drug sensitive cells to
manage resistance will (and should) remain controversial, particularly in the absence of
detailed in-vivo investigations. Containment-based strategies come with a number of
potentially dangerous drawbacks–including the possibility of increased resistance–from
maintaining larger pathogen loads. At the same time, there are proposed benefits of
less aggressive strategies, including fewer adverse effects for the patient. Our results are
compelling because they provide empirical evidence that competitive suppression can
enhance containment of resistant cells in-vitro, raising the question of whether similar
competitive dynamics may play out in-vivo. We therefore hope they will motivate
continued experimental, theoretical, and perhaps even clinical investigations.
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Methods

Bacterial Strains, Media, and Growth Conditions

Experiments were performed with Escherichia coli strains REL 606 and 607 [64]. Re-
sistant strains were isolated from lab-evolved populations of REL606 undergoing daily
dilutions (200X) into fresh media with increasing doxycycline (Research Products Inter-
national) concentrations for 3 days. A single resistant isolate was used for all experiments.
Stock solutions were frozen at -80C in 30 percent glycerol and streaked onto fresh agar
plates (Davis Minimal Media (Sigma) with 2000 µg/ml glucose) as needed. Overnight
cultures of resistant and sensitive cells for each experiment were grown from single
colonies and then incubated in sterile Davis Minimal Media with 1000 µg/ml glucose
liquid media overnight at 30C while rotating at 240 rpm. All bioreactor experiments
were performed in a temperature controlled warm room at 30C.

Continuous Culture Bioreactors

Experiments were performed in custom-built, computer-controlled bioreactors as de-
scribed in [71], which are based, in part, on similar designs from [72,73]. Briefly, constant
volume bacterial cultures (17 mL) are grown in glass vials with customized Teflon tops
that allow inflow and outflow of fluid via silicone tubing. Flow is managed by a series of
computer-controlled peristaltic pumps—up to 6 per vial—which are connected to media
and drug reservoirs and allow for precise control of various environmental conditions.
Cell density is monitored by light scattering using infrared LED/Detector pairs on the
side of each vial holder. Voltage readings are converted to optical density (OD) using
a calibration curve based on separate readings with a table top OD reader. Up to 9
cultures can be grown simultaneously using a series of multi-position magnetic stirrers.
The entire system is controlled by custom Matlab software.

Experimental Mixtures and Set up

Before the experiments begin, vials are seeded with sensitive or resistant strains of E. coli
and allowed to grow to the desired density in the bioreactor vials. Cells were then mixed
(to create the desired population compositions) and diluted as appropriate to achieve the
desired starting densities. Each vial is connected to 1) a drug reservoir containing media
and doxycycline (500 µg/ml), 2) a drug-free media reservoir that provides constant
renewal of media, 3) an effluent waste reservoir. Flow from reservoir 1 (drug reservoir) is
determined in real-time according to a simple feedback algorithm intended to maintain
cells at a constant target density with minimal drug. Flow to/from reservoirs 2 and 3
provides a slow renewal of media and nutrients while maintaining a constant culture
volume in each vial.

Drug Dosing Protocols

To determine the appropriate antibiotic dosing strategy the computer records the optical
density in each vial every 3 seconds. Every 3 minutes, the computer computes:(i) the
average optical density ODavg in the mixed vial over the last 30 seconds and (ii) the
current drug concentration in the vial. If ODavg is greater than Pmax, the desired
containment density, and the current drug concentration is less than dmax = 125 ng

mL
then

drug and media will be added to the vial for 21 seconds at a flow rate of 1 mL/min. In a
typical experiment, this control algorithm is applied to one of the mixed populations to
determine, in real time, the drug dosing protocol (i.e. influx of drug solution over time).
The exact same drug dosing protocol is then simultaneously applied to all experimental
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Table 1. Model Parameter Description

Parameter Definition Value

V volume of vial 17 mL
FD flow rate of 1 mL

min
drug reservoir

�D function indicating when 1 when drug is being added
drug is being added 0 when drug is not being added

FN constant background flow rate 0.067 mL
min

of nutrients
Din drug concentration in drug reservoir 500 ng

mL
C carrying capacity 280000000bacteria

mL (OD = 0.35)

rS intrinsic per capita growth rate 0.0169 1
min

of drug sensitive strain
rR intrinsic per capita growth rate 0.0152 1

min
of drug resistant strain

hS drug concentration where effect 49.0639 ng
mL

of drug is at 50% (assuming h = 1)
hR drug concentration where effect 209.9995 ng

mL
of drug is at 50% (assuming h = 1)

kS hill function coefficient 2.2023
kR hill function coefficient 2.4849
⌧S time delay for sensitive strain 79.04 min
⌧R time delay for resistant strain 96.72 min

populations (mixed, resistant-only, sensitive-only, Figure 3). In parallel, an identical
dosing protocol is applied to a series of control populations, but in these populations,
the drug solution is replaced by drug-free media (Figure S3).

Mathematical Model

The mathematical model used in the simulations is

Ṡ =
rS

1 + (D(t�⌧S)
hS

)kS

✓
1� (S +R)

C

◆
S � (FD�D + FN )

V
S,

Ṙ =
rR

1 + (D(t�⌧R)
hR

)kR

✓
1� (S +R)

C

◆
R� (FD�D + FN )

V
R,

Ṙonly =
rR

1 + (D(t�⌧R)
hR

)kR

✓
1� Ronly

C

◆
Ronly �

(FD�D + FN )

V
Ronly,

Ṡonly =
rS

1 + (D(t�⌧S)
hS

)kS

✓
1� Sonly

C

◆
Sonly �

(FD�D + FN )

V
Sonly,

Ḋ =
FD�D

V
Din � (FD�D + FN )

V
D, (1)

where S and R are the drug-sensitive and drug-resistant densities in mixed vial, Ronly

is the bacterial density in the vial that contains only drug-resistant bacteria, Sonly is
the bacterial density in the vial that contains only drug-sensitive bacteria and D is
the drug concentration in the vials, . The initial conditions for the simulations (and
experiments) are given in Table 2. The effect of drug on growth rate is modeled as
a hill function with parameters rS , kS and hS for the sensitive strain and parameters
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rR, kR and hR for the resistant strain. There is also a time-delay associated with the
effect of drug (denoted by ⌧S for the sensitive strain and ⌧R for the resistant strain).
Competition in the model is captured by using a logistic growth term with carrying
capacity C. It is assumed that the sensitive and resistant strains have similar carrying
capacities. Finally, the bioreactor has a continual efflux to maintain constant volume.
The rate of this outflow is the sum of the constant background nutrient flow FN and
any additional outflow required to compensate for the inflow of drug which enters at
a rate FD�D. FD is a constant rate and �D is an indicator function which is 1 when
drug is being added to the vials and 0 when it is not. In the simulations, the decision of
when to add drug is based on the same control algorithm that was used in the actual
experiment (see Methods: Drug Dosing Protocols). Since Model (1) describes the rate
of change of bacterial density, the total efflux (FN + FD�D) is divided by the volume of
the vials V . The drug concentration in the vials is determined by the rate of drug flow
into the vials (FD�DDin, where Din is the concentration of drug in the reservoir) and
the rate of efflux out of the vials (FD�D + FN ). The values of Din, V , FD and FN were
chosen to match the associated values in the experimental system, all other parameters
in the model where fit using independent experimental data (see SI for details) and are
given in Table 1.

Table 2. Initial Optical Densities for Simulations and Experiments

Pmax D(0) S(0) R(0) Ronly(0) Sonly(0)

High 0.2 0 0.175 0.02 0.175 0.02
Low 0.1 0 0.075 0.02 0.075 0.02
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