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Abstract 

Admixture mapping has led to the discovery of many genes associated with differential disease risk 
by ancestry, highlighting the importance of ancestry-based approaches to association studies. However, 
the potential of admixture mapping in deciphering the interplay between genes and environment 
exposures has been seldom explored. Here, we performed a genome-wide screening of local ancestry-
smoking interactions for five spirometric lung function phenotypes in 3,300 African Americans from the 
COPDGene study. To account for population structure and outcome heterogeneity across exposure 
groups, we developed a multi-component linear mixed model for mapping gene-environment 
interactions, and empirically showed its robustness and increased power. When applied to the 
COPDGene study, our approach identified two 11p15.2-3 and 2q37 loci, exhibiting local ancestry-
smoking interactions at genome-wide significant level, that would have been missed by standard single-
nucleotide polymorphism analyses. These two loci harbor the PARVA and RAB17 genes previously 
recognized to be involved in smoking behavior. Overall, our study provides the first evidence for 
potential synergistic effects between African ancestry and smoking on pulmonary function and 
underlines the importance of ethnic diversity in genetic studies. 
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Introduction 
The study of genetically diverse populations has become a priority in public health research. Several 

major initiatives started in the past few years, including the National Institute of Health (NIH) Trans-
Omics in Precision Medicine (TOPMed) Program that aims to sequence over a hundred of thousands 
whole genomes from a variety of ancestries. These initiatives compensate for the lack of participants of 
non-European ancestries in genetic studies1–3. Besides addressing health disparities among ethnic 
groups, studies of multi-ethnic cohorts and admixed populations can provide important information 
about the biology of complex diseases and help to identify associated genes4. Recently admixed 
populations, such as African Americans, represent a special case of multi-ethnic cohorts with mosaic 
chromosomes derived from several ancestral populations. Admixture mapping, often applied to recently 
admixed populations, searches for genomic loci of unusual local ancestry at a putative disease risk locus 
compared with the genome-wide average5. Findings for respiratory disease, chronic renal disease, 
prostate cancer and systemic lupus erythematosus have been reported as results of admixture 
mapping7–12. 

The data analysis in admixture mapping consists of two main steps, inferring local ancestry and 
testing for association between every local ancestry segment and an observed phenotype. Given 
unobservable ancestry information, current methods on ancestry inference probabilistically define the 
location of every ancestral switch using genotyping array data, reference haplotypes and algorithms 
based on hidden Markov models6,35. These methods were empirically shown to produce reliable results 
on African Americans40, as they represent a relatively simple two-way admixture and are well modeled 
by available reference panels41. The standard approach for association testing is similar to genome-wide 
association studies (GWAS) on single-nucleotide polymorphisms (SNPs) and runs linear regression to 
estimate the correlation between local ancestry and phenotype. To avoid confounding due to 
population structure that is inherently present in admixed individuals, most studies also included global 
ancestry components (i.e. the genome-wide proportions of ancestry derived from each ancestral 
population) as covariates. Going beyond linear regression, the framework of linear mixed models was 
applied to quantify individual similarities by ancestry, showing how the phenotypic variance is explained 
by local ancestry42 and linking it to the heritability of complex traits estimated from SNP data20. Notably, 
linear mixed models have not yet been applied in admixture mapping despite several potential 
advantages35.  

Recently, we found that the correlation between local ancestry and untyped causal variants can be 
leveraged to detect distant gene-gene interactions in admixed populations through local ancestry-local 
ancestry screening18. That work also demonstrated that the power of such admixture mapping increases 
with the number of causal variants within local ancestry tested and with the degree of differentiation of 
variants between the ancestral populations. Here, we suggest that the same principle can be applied to 
search for gene-environment interactions. Regarding previous studies of gene-environment interactions, 
most works focused on interactions between the global ancestry and environmental factors using linear 
regression16,19–21. Since here we sought to screen for local ancestry-environment interactions, a type of 
admixture mapping seldom explored, we argue that such application might face multiple 
methodological challenges due to both population stratification and outcome heterogeneity among 
individual groups stratified by environmental exposure. Hence, the use of linear mixed models will be 
particularly relevant to account for complex genetic and environmental relationships in admixed 
individuals. 

Application of admixture mapping to lung function phenotypes in African Americans is especially 
relevant13. European Americans and African Americans are well known to show differences in 
spirometric measures of lung function such as forced expiratory volume in one second (FEV1) and forced 
vital capacity (FVC) with higher values for these two traits for European Americans. Factors partially 
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responsible for these differences include body habitus, early-life development conditions, 
socioeconomic status and other environmental factors14,15. Previous studies showed strong evidence 
that the proportion of African global ancestry is associated with lower lung function for a given ranges of 
height and age13,16. Also, the higher proportion of African ancestry in African Americans was associated 
with an additional decrease in lung function for smokers17. 

To address the aforementioned methodological challenges, we used real data and proceed in a 
step-wise assessment of multi-component linear mixed model in order to define a robust interaction 
test of association. More precisely, we conducted a genome-wide scan of local ancestry-smoking 
interactions for five spirometric lung function phenotypes available in 3,300 African-Americans from the 
COPDGene study22. The search for gene-environment interactions related to pulmonary function 
phenotypes in the COPDGene study is particularly relevant, as it is one of the largest studies of African-
American smokers. In result, our application of the proposed linear mixed model identified two genome-
wide significant and five suggestive loci that would have been missed in standard single SNP-based 
approaches. 

 
Materials and Methods 
The COPDGene dataset 

In the analysis of COPDGene study, we focused on five correlated quantitative pulmonary 
phenotypes: forced expiratory volume in one second (FEV1); forced expiratory volume in one second as 
a percent of predicted (FEV1 % predicted); forced vital capacity (FVC); forced vital capacity as a percent 
of predicted (FVC % predicted); and the ratio of forced expiratory volume in one second to forced vital 
capacity (FEV1/FVC). We derived two binary smoking exposures from the number of cigarettes smoked 
per day for gene-environment interactions: current smoker exposure (current smokers vs. former 
smokers) and heavy smoker exposure (current heavy smokers vs. current moderate smokers). We 
defined moderate current smokers with 1-14 cigarettes per day on average, while heavy current 
smokers were defined as with >14 cigarettes per day on average. When using heavy smoker exposure in 
the analysis, we excluded all subjects who were former smokers.  

Locus-specific ancestry or local ancestry was inferred from genotype data as previously described22. 
Briefly, we used the LAMP-LD program37 to estimates local ancestry per individual using a hidden 
Markov model (HMM) algorithm comparing observed genotypes and haplotypes from reference 
ancestral populations. We parametrized the algorithm with 15 HMM states, a window size of 50 SNPs, 
and used 99 CEU and 108 YRI unrelated individuals from the 1,000 Genomes Project (Phase III)38 as 
reference panels. Per SNP estimates of African ancestry were further used in two post-processing steps. 
First, we averaged the local ancestry per individual to derive the genome-wide proportion of African 
ancestry (i.e. the global ancestry). Second, we estimated local ancestry segments by merging 
neighboring SNPs with identical values. We next filtered out short ancestry segments of length less than 
10,000 bases to mitigate possible artifacts of the inference procedure that might affect further 
admixture mapping analysis39. 

 
Step-wise model selection for admixture mapping 

Consider a quantitative trait stored in a 𝑛-dimensional vector 𝑦 and a 𝑛 ×𝑚 data matrix 𝑍 of local 
ancestry segments, where 𝑛 is the number of individuals and 𝑚 is the number of local ancestry 
segments. Let 𝑧'  be a column of matrix 𝑍 corresponding to a single local ancestry segment, and 𝑥) being 
a 𝑛-dimensional column vector of a binary environmental exposure. We aim at testing the statistical 
interaction between the local ancestry segments 𝑧'  and the exposure 𝑥) on the phenotype 𝑦. As 
discussed in Supplementary Material, we are interested to assess a fixed effect of interaction 𝑧' × 𝑥) 
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using the standard Wald test, while controlling for variance related to local ancestry, global ancestry and 
exposure that might confound the estimate of effect. However, in regards to potentially non-trivial 
structure in the data, due to both ancestry admixture and potential heterogeneity of outcome across 
exposure groups, we defined our association model using a step-wise approach, where the model 
complexity was incremental until reaching the desired criteria of validity. Following standard practices44, 
these criteria were designed 1) to reach a genomic inflation parameter (𝜆 close to one, and 2); to 
achieve an overall shape of the standard quantile-quantile plot (QQ-plot) of the -log10(P) matching the 
expected uniform distribution of p-values for the majority of the tests. 

In practice, before evaluating interaction effects, we first assessed the robustness of a standard 
linear mixed model (LMM) when testing for the marginal effect of local ancestry 𝑧'  only: 

𝑦 = 𝐶𝛽. + 𝛽)𝑥) + 𝛽0𝑧0 + 𝛽'𝑧' + 𝑢2 + 𝑒(1)	

where 𝐶 is a matrix of trait-specific covariates and 𝛽. is a vector of their fixed effects; 𝑧0 is a vector of 
global; and 𝛽), 𝛽0, 𝛽'  are fixed effects of exposure, global ancestry and local ancestry, respectively. The 
random effects include a vector of the residual errors 𝑒 and a vector of random effect 𝑢2  encoding 
whether two given individuals belong to the same medical center. We further added additional random 
effect components (described below) in the LMM, which importance was assessed incrementally 
(Supplementary Table S1). We next included our parameter of interest, the local ancestry-exposure 
interaction effect, on top of random effect components selected at the previous step and continued our 
assessment of additional components until reaching the desired characteristics. Our full and final LMM 
was defined as follows: 

𝑦 = 𝐶𝛽. + 𝛽)𝑥) + 7𝛽0𝑧0 + 𝛿0𝑧0𝑥)9 + [𝛽'𝑧' + 𝛿'𝑧'𝑥)] + 𝑢< + 𝑢= + 𝑢> + 𝑢2 + 𝑒(2)	

where, in addition to notation in Equation (1), 𝑧0 × 𝑥)and 𝑧' × 𝑥) represent interactions between global 
and local ancestries and exposure, respectively; 𝛿0 and 𝛿' are fixed effects of interactions between 
global ancestry and local ancestry and exposure, respectively. The first vector of additional random 
effects 𝑢<  captures the variance of local ancestry remaining after taking into account the global 
ancestry as a fixed effect (𝑧0)42,43. The variance-covariance matrix of 𝑢<  is the ancestral relationship 
matrix (ARM) derived by the cross-product operation on column-wise centered and scaled 𝑍 matrix43. 
The second vector 𝑢=  complements the previous vector 𝑢<  and comes out due to testing the interaction 
effect (𝛿') rather than the marginal effect (𝛽')34. The variance-covariance matrix of 𝑢=  is derived from 
ARM based on stratification by binary environmental exposure status (𝑥))34. We refer to this matrix as 
environmental ARM or EARM. The third vector 𝑢>  models the heterogeneity of phenotypic variance 
across the three smoking groups. The variance-covariance matrix of 𝑢>  is a diagonal matrix, where 
entries are the same if they correspond to the same group.   

 
Multi-phenotype analysis 

We first conducted single-trait admixture mapping of gene-environment interactions for each of 
the five pulmonary traits considered and each of the two exposures (current smoker and current heavy 
smoker). However, these five spirometric lung function measurements are all highly correlated and 
likely share genetic association signals. To reduce the penalty for multiple testing and potentially 
increase power, we focused our primary screening on a multivariate association tests combining single-
trait signals separately for each exposure without assuming any prior on the direction of the single-trait 
effects45–48. In practice, given five Z-scores for a local ancestry segment, stored in a vector 𝑆A×B, we 
estimated the multivariate Z-score 𝑆CD=EF  in two steps. We first estimated 𝛴A×A, the variance-covariance 
matrix among Z-scores under the null hypothesis of no association and then, for each local ancestry 
segment, we derived the multivariate statistics using the Mahalanobis distance, defined as: 
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𝑆CD=EF = 𝑆H𝛴JB𝑆(3) 

 
which squared statistics 𝑇 = 𝑆CD=EFM  follows a 𝜒Mdistribution with 5 degrees of freedom under the null 
composite hypothesis of no interaction effect on any of these five traits. For the estimation of 𝛴, 
previous works suggested using the complete Z-score data from the genome-wide scan, i.e. 𝛴 = 𝑆H𝑆, 
assuming that the vast majority of Z-scores are distributed under the null46,48. Here, we made the same 
assumption and additionally discarded large single-trait Z-scores above a given threshold to reduce the 
risk of bias. Further, we approximated 𝛴 from the resulting truncated multivariate normal distribution 
by the maximum likelihood estimation. We empirically found the best threshold value equals 3 for our 
admixture mapping Z-scores (Supplementary Material).  
 
Follow-up analysis 

We performed association and further fine-mapping analysis using genotyped data, following up 
regions identified by admixture mapping. Considering 𝑥0 is a vector of genotypes for a single SNP, we 
extended the interaction model (Equation 2) by adding two terms for marginal genetic (𝑥0) and 
interaction (𝑥0 × 𝑥)) effects. Note that the exposure term (𝑥)) was already included in this model. We 
performed a univariate Wald test with one degree of freedom to derive the p-value for interaction 
effect between genotype and exposure. By including a local ancestry term when testing for the 
interaction effect of genotype, we accounted for possible different LD patterns for European and African 
ancestral backgrounds49. Such conditional analysis can reduce power but assures that the interaction 
effect of genotype is driven by a biological mechanism rather than a better SNP tagging in a particular 
ancestral population. 

As discussed in our previous work18, we expected SNPs in regions of local ancestry-smoking 
interactions to show multiple-SNP effects on the trait as well as high allelic frequency differentiation at 
SNPs between ancestral populations. Hence, we performed comparative study of allelic frequencies 
between the two ancestral populations and fine-mapping analysis to assess the potential presence of 
multiple causal variants. First, we computed allele frequency differences (ΔDAF)50 at all SNPs to measure 
the allelic heterogeneity between European and African population groups from the 1,000 Genomes 
Project (Phase III)38. The ΔDAF measures were previously found to be highly correlated with Weir and 
Cockerham’s FST in the 1,000 Genomes sample51. We assessed cases of extreme ΔDAF in the regions of 
interest by comparing the observed value against the threshold proposed by Colona et al.24 In brief, that 
study grouped 36.8 million variants in African and European populations from the 1,000 Genomes 
Project38 into bins of non-overlapping sets of 5,000 variants and derived the distribution of the 
maximum ΔDAF for further comparisons. Second, we applied a Bayesian method implemented in the 
software package FINEMAP52 to estimate the posterior probability of each single SNP interaction to be 
causal, conditionally on in-sample linkage disequilibrium pattern. FINEMAP implements a shotgun 
stochastic search algorithm to efficiently explore the most likely causal configurations, and we ran 
FINEMAP with the default parameters on the maximum number of causal SNPs (5), prior probabilities on 
the number of causal SNPs and the prior probabilities of a single SNP to be causal. 
 

Results 
Participants characteristics and description of traits 

We used a dataset of 3,300 African American research volunteers from the Genetic Epidemiology of 
COPD (COPDGene) study23. Self-identified non-Hispanic African Americans and non-Hispanic European 
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Americans between 45 and 80 years of age with a history at least 10 pack-years of smoking were 
enrolled from 21 medical centers across the US. Details on phenotyping, genome-wide genotyping of 
the cohort and inference of local ancestry are provided in Methods and Supplementary Material.  

Individual characteristics of the COPDGene dataset are described in Table 3 for the whole sample 
and stratified by current smoking status: non-smokers, moderate smokers (1-14 cigarettes per day) and 
heavy smokers (>14 cigarettes per day). The three smoker groups have similar overall characteristics, 
although there are some differences due to the COPDGene study enrollment protocol: the current 
smokers are younger and have higher proportions of males; non-smokers have higher numbers of 
accumulated pack-years. After stringent quality control procedure (Supplementary Figures S8-S9 and 
Supplementary Table S7), we observed a total of 30,043 local ancestry segments. The distribution of 
proportions of local African ancestry (averaged across individuals) is roughly uniform along the genome 
(Figure 1a), confirming that the local ancestry data were free from artifacts. The proportion of global 
African ancestry ranged between 26.3% and 99.8% across individuals with an average of 80.3% (Figure 
1b). We confirmed that individuals with higher proportions of African ancestry tend to have lower 
pulmonary function at a highly significant level (P<0.001, Supplementary Table S4) for all the traits 
except FEV1/FVC. We also assessed the variance heterogeneity among the smoking groups (not current 
smokers; moderate current smokers and heavy current smokers) by its explicit modeling as random 
effects (Equation 2). Both exploratory data analysis (Supplementary Figure S7) and formal statistical 
tests (P<0.0001 for all traits; Supplementary Table S5) highlighted differences among these three 
groups not only by mean, but also by variance (the group of non-smokers has the largest variance).  

 
Mixed model to account for population structure and variance heterogeneity 

To address the methodological question of performing a test of local ancestry-exposure interaction 
in admixed population, we chose a data-driven approach where the robustness of candidate models was 
assessed using the genomic control parameter (𝜆) and the overall shape of the standard quantile-
quantile plot (QQ-plot) of the -log10(p-value). We started with the simplest model testing the marginal 
effect of local ancestry, and incrementally added terms necessary for robust testing of local ancestry-
exposure interaction, our main parameter of interest.  

We proposed to use a linear mixed model (LMM) including up to four random effects: 𝑢<, 𝑢=, 𝑢> , 
and 𝑢2, capturing structure due to shared local ancestry, local ancestry-smoking interaction, smoking 
status, and recruitment medical center, respectively. We added each of these components into the 
model through a step-wise procedure, assessing their relative contribution in various combinations. All 
variance-covariance matrices for the random effects observed in real data are illustrated in 
Supplementary Figure S10, while additional details of the model selection are provided in 
Supplementary Material. 

 We used the FEV1% predicted phenotype as an illustrative scenario and started with a marginal 
association model for single-trait admixture mapping (Figure 2a) (i.e. without ancestry-environment 
interaction; see also Supplemental Notes and Supplementary Table S1) including only 𝑢2  as there was 
strong heterogeneity in the distribution of traits by medical center. Marginal local ancestry statistics in 
this initial model showed substantial inflation (𝜆 = 1.19). We further accounted for correlation by 
genome-wide local ancestry across individuals, which was done by modeling the ancestral relationship 
matrix (ARM) (the 𝑢<random effect in Equation 2). The addition of the ARM component substantially 
mitigated the inflation (𝜆 = 1.04, Figure 2b). We next considered adding the 𝑢>  random effect that 
captured substantial portion of variance of modeled traits (Supplementary Table S5). This additional 
parameter did not impact the overall distribution of p-values (𝜆 = 1.03), but resulted in an improved 
power of admixture mapping (the average of top statistics with P< 0.001 increased from 11.95 to 12.41), 
likely due to reduced amount of the residual variance after modeling the heterogeneity. 
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We then expanded the LMM to address the model components related to testing local ancestry-
smoking interactions (Equation 1 and Supplementary Table S1). Following the exploration of the 
marginal model, we examined the role of four random effects by conducting admixture mapping for a 
single trait and the current smoker exposure in different model configurations (Figure 2b). Overall, the 
association test statistic was substantially inflated (𝜆 = 1.61) if none of the three components were 
modeled. Including the components separately in the model, either the heterogeneity component, one 
genetic component with ARM or two genetic components, was not sufficient to fix the inflation (𝜆 = 
1,16, 1.6 and 1.39, respectively). The association test statistic was well-behaved only when all three 
components were included (𝜆 = 1.06). Hence, our final model (Equation 2) for admixture mapping of 
local ancestry-smoking (gene-environment) interaction included three additional random effects that 
capture structures due to shared local ancestry, local ancestry-smoking interaction and outcome 
heterogeneity across smoking groups.  

 
Local ancestry-smoking interactions detected by admixture mapping 

We conducted admixture mapping of local ancestry-environment interaction for all five spirometric 
traits considering the two binary exposures independently (Supplementary Figures S1 and S2). Single-
trait statistics showed limited inflation for all analyses (𝜆 = 0.93-1.09), except for FEV1/FVC and current 
smoker exposure (𝜆 = 1.12, Supplementary Figures S4 and S5). For each exposure, single traits results 
were combined to form a multi-trait test (Figure 3). The two multi-trait analyses show a well-controlled 
type I error rate (𝜆 = 0.98, 1.02, Supplementary Figures S6). Following the eigenMT approach18, we 
estimated the number of effective tests to be 1,635 (Supplementary Material) and, thus, reduced the 
multiple-testing burden from the Bonferroni threshold (0.05/30,043 = 1.51x10-6 to the effective 
Bonferroni threshold (0.05/1,635 = 3.06x10-5). We also considered the suggestive Bonferroni threshold 
(0.5/1,635 = 3.06x10-4) to select additional candidate loci of interest. 

We identified two genome-wide significant and five suggestive interaction association signals 
(Table 2). The first genome-wide significant locus in the region chromosome 11p15.2-3 spanned 11 
ancestry segments of average length 37Kb and 17 SNPs. The top ancestry segment Chr11: 12,341,061-
12,373,680 of length 32,619b and 21 SNPs had a multi-trait positive interaction effect with current 
smoker exposure with multi-trait Z = 5.34 and P = 2.79x10-5. The signal was driven by all single-trait 
associations, where all p-values passed the suggestive Bonferroni threshold. The top single-trait 
association for FEV1 % predicted showed Z = 4.53 and P = 5.86x10-6. That top single-trait ancestry 
segment was 47kb away from the top multi-trait one, but the two segments were highly correlated after 
adjusting for the global ancestry (the Pearson correlation coefficient equaled 0.98). The second genome-
wide significant locus in chromosome 2q37.3 included 11 ancestry segments of length 32Kb and 9 SNPs 
on average. The strongest multi-trait and top single-trait (FEV1) association signals were both localized in 
the same ancestry segment Chr2: 238,430,224- 238,486,767 of length 56,543b and 21 SNPs. The positive 
interaction effects with the current heavy smoker exposure showed Z = 5.34 and P = 2.90x10-6 , and Z = 
4.53 and P = 2.50x10-6 for multi-trait and top single-trait associations, respectively. 

The other five suggestive loci (Table 2) were mostly detected in the interaction admixture mapping 
with current heavy smoker exposure (13q12.3-13.1, 11q21, 7p15.2-3 and 8q21.13), except one locus 
1q44 from the mapping with current smoking exposure. In contrast to the genome-wide significant loci, 
multi-trait association signals were much stronger than top single-trait signals for all suggestive loci (the 
difference in p-values was several orders of magnitude for some tests). 

 
Genotype-smoking interactions reveal differentiated genetic variants 

For each region showing at least suggestive significance in the multi-trait admixture mapping 
analysis, we assessed potential interactions of single SNPs available in the region around the top 
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admixture signal. We conducted association analysis for a total of 888 SNPs available across the 7 
regions lying within ancestry segments (the average number of SNPs per region was 126.9, and the 
average number of SNPs per segment was 13.7). Here, we focused on the single trait showing the largest 
association signal in the admixture mapping. Overall, none of these SNPs passed a stringent Bonferroni 
correction threshold accounting for all SNPs tested in each region. However, the top SNPs especially in 
the genome-wide significant loci helped to localize the association signal (Table 3). In the first genome-
wide significant region 11p15.2-3 (Figure 4), the top SNP rs933920 (P = 0.0036) is an intronic variant in 
the PARVA gene (MIM 608120). In the second genome-wide significant region 2q37.3 (Figure 4), the first 
top SNP rs7569427 (P = 0.02) was an intronic variant in the MLPH gene (MIM 606526), and second top 
SNP rs2280289 (P = 0.036) was a missense variant in the RAB17 gene (MIM 602206). 

To assess the level of allelic heterogeneity of SNPs in these identified regions, we computed the 
allele frequency differences (defined as ΔDAF in Materials and Methods). The SNPs exhibited high levels 
of heterogeneity for all regions (ΔDAF in 0.62 and 0.78). Overall, 3 out of our 7 loci (1q44, 2q37.3 and 
8q21.13) matched the 0.7 threshold proposed by Colonna et al.24, defining the 1% of the genome 
displaying the most extreme differentiation across populations. These differences in minimum allele 
frequency (MAF) between European and African ancestries can also be visually assessed on Figure 4 and 
Supplementary Figures S12-15. Finally, we also evaluated the hypothesis of multiple causal SNPS per 
region using the FINEMAP software21, but we were not able to find any strong evidence for multiple 
causal SNPs (Supplementary Table S6).  

 
Replication of association signals in European GWASs 

We performed replication analyses of association signals detected at individual SNP-level and gene-
level, for the seven loci reported in Tables 2-3. We considered two large studies of pulmonary 
phenotypes and COPD conducted in individuals of European ancestry: the CHARGE consortium (N = 
50,047) which had genome-wide summary results for SNP-by-smoking interaction53; and the most 
recent and largest meta-analysis of UK Biobank and SpiroMeta cohorts (COPD cases = 35,735, COPD 
controls = 222,076; N = 400,102 for pulmonary function phenotypes) which provides an up-to-date list 
of variants with genome-wide significant marginal genetic effect.54,55.  

Matching our nine top SNPs with the CHARGE consortium results53, we found that three were 
missing, being rare or monomorphic in European population. Interaction effects of three of out the six 
remaining SNPs were replicated at the nominal significance level (P <0.05) (Supplementary Table S8) in 
SNP-smoking interaction screening of FEV1/FVC, where packs-years was used as a proxy for heavy 
smoking. We also assessed the joint SNP and SNP-smoking association reported in the CHARGE 
consortium53 in all seven loci. Although, no loci display genome-wide significant association, we 
observed that all but one showed at least one SNP with association signal at the level of P< 0.0001 (the 
strongest signal for rs10202058 with P = 1.92 x10-6 in the 2q37.3 locus). 

We next assessed the presence of marginal genetic effect at our seven loci using the 
aforementioned meta-analysis of pulmonary phenotypes54 and COPD55. Although our marginal signals of 
top local ancestry segments and SNPs were weak (Supplementary Table S10-11), we observed that nine 
genome-wide significant SNPs from GWASs54,55 were located less than 1Mb away from the three loci 
2q37.3, 11p15.2-3 and 7p15.2-3 (Supplementary Table S9). In particular, two SNPs rs80145403 and 
rs80145403 were within the same PARVA and TEAD1 genes in Chromosome 11 as in our SNP-smoking 
interaction analysis (Table 3). Notably, five SNPs come from two loci that each has three distinct signals 
estimated by the conditional analysis55. Such a scenario with multiple SNPs driving either marginal or 
interaction association is beneficial for our ancestry-based approach to detect gene-environment 
interactions, and, thus, may explain the signal overlap at the gene-level for two 11p15.2-3 and 2q37.3 
loci.  
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Discussion 

Broadening the diversity of ethnicities in genetic analysis can provide important information for 
disease pathogenesis.  Leveraging local ancestry through admixture mapping could improve power to 
discover marginal genetic and gene-environment effects, although the technical and statistical 
challenges still remain. To address these challenges, we introduced a multi-component linear mixed 
model and empirically demonstrated its robustness in admixture mapping on real data in 3,300 African 
American participants in the COPDGene study. We detected two genome-wide significant and five 
suggestive loci showing smoking-dependent effects of local ancestry on spirometric lung function 
phenotypes. 

While the functional effects of variants in the identified genomic regions is unknown, these regions 
harbor genes previously known for traits related to smoking. The top SNP rs93392 in the first genome-
wide significant locus 11p15.2-3 (P = 2.79x10-5) is located within the PARVA gene, which produces a focal 
adhesion protein25. Two previous studies reported that this gene was differentially methylated in small 
airway epithelium26 and buccal mucosa27 when stratified by current smoking status. The second top SNP 
rs2280289 for the second genome-wide significant region on 2q37.3 (P = 2.90x10-5) is a missense 
mutation in RAB17, which was previously associated with a smoking cessation genotype success 
score28,29. As for the most relevant result found among the five suggestive loci, the top SNP rs11020968 
in the locus 11q21 (P = 5.0x10-5) is a missense mutation for angiomotin-like protein 1 (AMOTL1; MIM 
614657), a tight junction protein hypothesized to play a role in COPD through endothelial tight junction 
permeability, and whose expression is affected by cigarette smoking30. Additional genes around other 
loci may warrant further investigation. 

We further attempted to evaluate whether SNPs within these identified regions show multiple-SNP 
effects and exhibit high allelic differentiation, as our previous work on gene-gene interaction admixture 
mapping suggested this kind of genetic architecture18. Overall, allele frequency heterogeneity between 
European and African ancestries was very strong and persistent in the identified regions. Although our 
fine-mapping analysis did not show evidence for multiple causal variants, SNP-smoking interaction 
analysis is known to have limited power31; thus, we cannot rule out the possibility of multiple causal 
variants. Indeed, the conditioning on the primary signal of local ancestry is likely to decrease the 
statistical power to detect interactions at the SNP level even in larger samples31. Alternative methods, 
such as jointly modeling ancestry and genotype association signals, might help to overcome this 
limitation32.  

Our methodological contributions to admixture mapping are multiple. First, we extended the 
concept of genetic relationship matrix originally proposed to control population structure in GWAS33: 
the ancestry relationship matrix (ARM) was similarly computed on local ancestry data and further used 
in association tests. Second, we adopted the population stratification approach recently designed 
specifically for GWAS of gene-environment interactions34: two matrices, the standard ARM, but also a 
second environmental ARM or EARM, were essential to control for spurious association results when 
testing local ancestry-environment interactions. Finally, we modeled the outcome heterogeneity among 
groups stratified by environmental exposure. Modeling this heterogeneity increased the power because 
of reduced residual phenotypic variance (up to 65%); and substantially decreased the inflation of 
interaction test statistic. 

Our study also has limitations. COPDGene is one of the largest studies of African-American smokers, 
with a high proportion of subjects with COPD, which makes suitable replication cohorts challenging. 
Nevertheless, we were able to reproduce some of the top SNP-smoking interactions in the CHARGE 
consortium53 at nominal significant level. More importantly, our study identified 3 loci 2q37.3, 11p15.2-3 
and 7p15.2-3 using a dataset of only 3,300 African-American individuals, while the same loci only passed 
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the genome-wide significance threshold of standard univariate association in an independent replication 
cohort including up to 400,000 individuals54,55. Further, the method for admixture mapping can also be 
optimized. When conducting association analysis, excluding the local ancestry segment under testing 
from the ARM construction will be able improve power35, but is computationally more burdensome. We 
attempted a more efficient out-of-chromosome strategy commonly applied in GWAS36, but we observed 
fairly inflated test statistics (data not shown). 

In conclusion, our study reports a powerful approach for gene-environment interaction association 
studies, leveraging the unique genetic architecture of complex traits measured in recently admixed 
populations. The proposed statistical model has shown to be robust to population structure and 
outcome variance heterogeneity. In our application to the COPDGene study, we have found two 
genome-wide significant local ancestry-smoking interactions of lung function phenotypes that would 
have been missed in standard single SNP interaction analyses. Overall, our findings provide additional 
evidence of the importance of ethnic diversity in genetic clinical studies. 
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  Tables 
Table 1. Characteristics of African American participants in the COPDGene project. 

 
Former 

smokers 

Current 
moderate 
smokers 

Current 
heavy smokers 

All 
individuals 

Current cigarettes per day 0 1-14 >14 – 
Number of individuals (%) 657 (20%) 1,261 (38%) 1,382 (42%) 3,300 (100%) 
Age enrolled 60 (9) 54 (6) 53 (6) 55 (7) 
Gender, % male 48% 53% 63% 56% 
Body-mass index 30 (7) 29 (7) 29 (6) 29 (7) 
Pack-years smoked 39 (22) 32 (20) 44 (21) 38 (22) 
Smoking duration, years 34 (10) 37 (8) 36 (8) 36 (8) 
Global African ancestry, % 79% (12%) 81% (10%) 80% (11%) 80% (11%) 

Dataset characteristics are presented for each smoking status separately and for all individuals. Values for a quantitative 
characteristic are given as the mean (standard deviation). 

 
Table 2. Top local ancestry segments-smoking interactions 
Locus Ancestry segment Exposure Multi-trait P Top single-trait P Top trait 
11p15.2-3 12,075,829-12,845,835 Current smoker 2.8x10-5 * 5.8x10-6 * FEV1 % predicted 
2q37.3 238,143,387-238,769,892 Current heavy smoker 2.9x10-5 * 2.5x10-6 * FEV1 
13q12.3-13.1 31,623,839-32,256,475 Current heavy smoker 3.4x10-5 0.0052 FVC 
11q21 94,360,812-94,825,729 Current heavy smoker 5.1x10-5 0.0028 FEV1 
7p15.2-3 25,133,849-26,371,279 Current heavy smoker 1.3x10-4 2.82x10-4 FEV1 % predicted 
8q21.13 81,871,222-82,335,354 Current heavy smoker 2.0x10-4 0.24 FVC 
1q44 248,020,448-249,208,153 Current smoker 3.2x10-4 0.0029 FEV1/FVC 
Top signals from two admixture mappings of ancestry-smoking interactions, where environment exposure is either current 
smoker or current heavy smoker. Genome-wide significant association signals with p-value below the effective Bonferroni 
threshold 0.05/1,635 = 3.06x10-5 are denoted with the “*” mark, where 1,635 is the effective number of tests estimated by the 
eigenMT method18. 

 
Table 3. Top SNP-smoking interactions in regions identified by admixture mapping 

Locus SNP Position Type Gene Anc. Za Anc. P a SNP Zb SNP P b Allele FreqCEU/YRI 
11p15.2-3 rs933920 12,481,110 intronic PARVA26,27 4.32 1.6 x 10-5 2.91 0.0036 C/T 0.99/0.89 
11p15.2-3 rs4553350 12,759,834 intronic TEAD1 4.20 2.7 x 10-5 -2.83 0.0046 C/T 0.55/0.95 
2q37.3 rs7569427 238,413,338 intronic MLPH 4.63 3.7 x 10-6 -2.33 0.020 A/G 0.94/0.28 
2q37.3 rs2280289 238,483,729 missense RAB1728,29 4.71 2.5 x 10-6 2.10 0.036 C/T 0.84/0.20 
13q12.3-13.1 rs1535532 32,114,398 intergenic  2.18 0.030 2.32 0.020 A/G 0.67/0.62 
11q21 rs11020968 94,602,414 missense AMOTL131  2.77 0.0056 -2.11 0.035 A/T 0.84/1.00 
7p15.2-3 rs10270076 25,363,037 intergenic  3.31 9.3 x 10-4 -2.83 0.0046 A/G 0.57/0.29 
8q21.13 rs7000934 82,123,005 intergenic  -1.17 0.24 -2.38 0.017 C/T 0/0.15 
1q44 rs7533237 248,298,552 intergenic  -2.54 0.011 -2.83 0.0046 G/T 0/0.11 

Top SNP-smoking interaction signals for 7 loci identified by admixture mapping. Two top SNPs are listed for the two genome-
wide significant loci (the first four rows). The reference allele frequencies in two CEU (European) and YRI (African) populations 
from the 1,000 Genomes Projects are presented for each SNP in the last two columns. 
aZ-scores and p-values are reported for the effects of local ancestry-exposure interactions.  
bZ-scores and p-values are reported for the effects of SNP-exposure interactions.   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/626077doi: bioRxiv preprint 

https://doi.org/10.1101/626077


Figures 
Figure 1. The African ancestry of African American participants of the COPDGene project. 
(a) The distribution of local ancestry is plotted by physical position in the genome on X axis. For each 
local ancestry segment the proportions of individuals with two African chromosomes (light green color), 
one African chromosome (green color) and no African chromosomes (dark green color) are presented on 
Y axis. (b) The distribution of the global African ancestry among 3,300 African-American individuals in 
the COPDGene study is shown. The vertical red dashed line depicts the mean value, 0.803. 
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Figure 2. Robustness of mixed-model admixture mapping assessed by quantile-quantile (QQ) 
plots.   

The linear mixed model is examined through different combinations of random genetic and 
heterogeneity effects denoted in equations as um, ui and uh, while labeled on the plots as ARM, EARM 
and Het. (see Equation 1 and Supplementary Table S1). Admixture mapping is conducted for FEV1 % 
predicted phenotype, and current smoker status is used in evaluation of ancestry-smoking interactions. 
(a) When testing marginal effects of ancestry, the distribution of the test statistics is not inflated only 
when the genetic random effect (ARM) is presented in the model (𝜆 = 1.04 or 1.02). (b) When testing 
ancestry-smoking interaction effects, all three random effects (ARM, EARM and Het.) are necessary to 
mitigate the inflation (𝜆 = 1.06). 
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Figure 3. Admixture mapping identifies two genome-wide significant and five suggestive loci of local 
ancestry-smoking interactions. 
Manhattan plots show results of two admixture mappings of ancestry-smoking interactions, where 
smoking is one of two binary variables: (a) current smokers vs. non-smokers, and (b) current moderate 
smokers vs. current heavy smokers. The multivariate test joins the single-trait test statistics from five 
traits under the composite null hypothesis of no association and provides the multi-trait p-values. 
Horizontal lines depict the effective Bonferroni threshold (0.05/1,635 = 3.06x10-5) and the effective 
suggestive Bonferroni threshold (0.5/1,635 = 3.06x10-4), where 1,635 is the effective number of tests 
estimated by the eigenMT method18. 
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Figure 4. Detailed regional association plots for three selected loci 11p15.2-3, 2q37.3 and 11q21. 
From top to bottom, each panel shows (i) the regional association plot; (ii) linkage disequilibrium 
pattern; (iii) annotated protein-coding genes; (iv) trans-continental differences in allele frequency. (i) 
The Y axis represents −log10(P) of SNP association tests using a single phenotype most strongly 
associated with the ancestry segment in the locus. The shaded area represents the strength of local 
ancestry association in the multi-trait admixture mapping with stronger associations painted by darker 
shades of grey. The blue diamonds represent the Bayes factors for assessing the evidence that a SNP is 
causal estimated by FINEMAP; the bigger the diamond the higher the Bayes factor. (ii) The r2-based LD 
heatmap is built using genotypes of the COPDGene study, and the gradient of red is proportional to the 
r2. (iii) Protein-coding genes are queried from grch37.ensembl.org (iv) Allele frequencies are estimated 
in the 1,000 Genomes Project for European and African populations. For each SNP in an ancestry 
segment, the cyan indicates the frequency of the European minor allele variant, while a vertical segment 
connects the European and African frequencies of the allele. The segments are colored according to the 
direction of the difference: red when the African frequency is higher than the European frequency, or 
green for lower African frequency.   
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