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ABSTRACT 

INTRODUCTION: It is established that Alzheimer’s disease (AD) patients experience sleep disruption. 

However, it remains unknown whether disruption in the quantity, quality or timing of sleep is a risk 

factor for the onset of AD.  

METHODS: Mendelian randomization (MR) was used to estimate the causal effect of self-reported 

and accelerometer-measured sleep parameters (chronotype, duration, fragmentation, insomnia, 

daytime napping and daytime sleepiness) on AD risk.  

RESULTS: Overall, there was little evidence that sleep traits affect the risk of AD. There was some 

evidence to suggest that self-reported daytime napping was associated with lower AD risk (odds 

ratio [OR]: 0.70, 95% confidence interval [CI]: 0.50 to 0.99). Some other sleep traits (accelerometer-

measured eveningness and sleep duration, and self-reported daytime sleepiness) had ORs for AD risk 

of a similar magnitude to daytime napping, but were less precisely estimated. 

DISCUSSON: Our findings provide tentative evidence that daytime napping may reduce AD risk. 

However, findings should be replicated using independent samples.  
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INTRODUCTION 

Alzheimer’s disease (AD) has been estimated to affect 47 million people worldwide and the 

prevalence is expected to double in the next 20 years.[1] Current treatments are unable to reverse 

or delay progression of the disease, highlighting the importance of prevention. Identifying causal, 

modifiable risk factors is crucial for developing successful prevention strategies. It is well established 

that patients with AD experience sleep disruption (e.g. shorter duration, greater fragmentation[2-

6]). However, it remains unknown whether disruption in the quantity, quality or timing of sleep is a 

causal risk factor for the onset of AD.  

 

Various sleep parameters have been suggested as potential risk factors for AD in previous reviews 

and reports[7-10], but research to date has yielded inconsistent findings. Authors of the recent 

Lancet commission on ‘Dementia prevention, intervention, and care’, did not include sleep in their 

calculations of population attributable fractions of the most ‘potent’ dementia risk factors (despite 

acknowledging sleep as a potentially important risk factor) due to the absence of systematic reviews 

or enough consistent, high-quality evidence.[7] Inconsistencies in the sleep-AD literature may, at 

least in part, be explained by bias due to reverse causation. Most studies have been conducted in 

select clinical populations (e.g. patients with mild cognitive impairment or early AD) making it 

difficult to rule out that associations are not due to sleep disruption as a result of accumulating AD 

pathology. Few studies have been conducted in healthy (non-clinical) populations and, even those 

that have, tend to include older participants (i.e. mid- to late-life at baseline).[11, 12] AD has a long 

prodromal phase that can occur up to 20 years prior to diagnosis[13, 14]. Thus, even in apparently 

healthy populations, measuring participants’ sleep in later life makes it difficult to rule out the 

possibility that those participants with sleep disruption are those with prodromal AD. Another 

potential explanation for the inconsistencies may be the considerable heterogeneity in existing study 

designs, which have examined various exposures (e.g. sleep duration[12, 15, 16], time spent in sleep 

stages[12], fragmentation[17], insomnia[18] and frequency and duration of daytime napping[19] 
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measured both subjectively and objectively) and outcomes (e.g. cognitive function at a single time-

point[20, 21], cognitive decline over time[22], mild cognitive impairment[23], AD diagnoses[12, 23] 

and putative AD biomarkers such as amyloid-beta and tau[17, 19]). Finally, all studies conducted to 

date are observational, meaning confounding is a plausible explanation for the findings.  

 

Mendelian randomization (MR) is a method that uses genetic variants as instrumental variables for 

environmental modifiable exposures.[24] Due to their random allocation at conception, genetic 

markers of a risk factor are largely independent of potential confounders that may otherwise bias 

the association of interest.[25] They also cannot be modified by subsequent disease, thereby 

eliminating potential bias by reverse causation. Thus, MR is a useful tool for helping to establish 

whether sleep traits are causally related to risk of future AD, or whether associations observed to 

date are likely to be a result of bias by confounding and/or reverse causation. In this study, we 

aimed to establish whether both self-report and accelerometer-measured sleep traits have a causal 

effect on AD risk, using a two-sample MR design[26]. 

METHODS  

Methods for conducting two-sample MR analyses have been published previously[26]. Briefly, two-

sample MR provides an estimate of the causal effect of an exposure on an outcome, using 

independent samples to obtain the gene-exposure and gene-outcome associations, provided three 

key assumptions hold: (i) genetic variants are robustly associated with the exposure of interest (i.e. 

replicate in independent samples), (ii) genetic variants are not associated with potential confounders 

of the association between the exposure and the outcome and (iii) there are no effects of the 

genetic variants on the outcome, independent of the exposure (i.e. no horizontal pleiotropy)[27].  

Samples  

Genome-wide association studies (GWAS) were previously performed for seven self-reported 

measures of habitual sleep patterns including chronotype[28], sleep duration[29], long sleep 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 19, 2019. ; https://doi.org/10.1101/609834doi: bioRxiv preprint 

https://doi.org/10.1101/609834


duration[29], short sleep duration[29], frequent insomnia[30], excessive daytime sleepiness and 

daytime napping. GWAS have also been performed for three accelerometer-measured measures of 

sleep including timing of the least active 5 hours of the day (L5 timing), nocturnal sleep duration and 

sleep fragmentation[31]. Note that the assessment of accelerometer-derived sleep for up to 7 days 

per individual in UK Biobank was performed, on average, five years after the self-report sleep data 

were collected.[32] Table 1 provides (i) a description of each of the sleep traits and the units in 

which they were measured, (ii) participant numbers for each GWAS, (iii) the number of 

approximately independent genome-wide significant (p<5x10-8) loci identified by each GWAS and (iv) 

the F statistic for each trait. F statistics provide an indication of instrument strength[33] and are a 

function of R2 (how much variance in the trait is explained by the set of genetic instruments being 

used), the number of instruments being used, and the sample size. F>10 is typically used as a 

threshold to indicate that weak instrument bias will have a small influence on the causal effect 

estimate[34]. For the outcome, we used the large-scale GWAS meta-analysis of AD, conducted by 

the International Genomics of Alzheimer’s Project (IGAP) (n=17,008 AD cases and 37,154 

controls).[35] Ethics approval was obtained by the original GWAS studies.  
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Table 1: Description of the sleep GWAS included in the two-sample MR analyses 

 Trait definition (units) 

N Participants  

(cases/controls 

for binary traits) 

N loci 

identified in 

GWAS 

F 

Statistic 

Self-reported measures  

Chronotype[28]  

Whether a person identifies as being a 

‘morning person’ or an ‘evening person’ 

(ordered categorical variable of definitely 

a morning person, more a morning than 

an evening person, do not know, more an 

evening than morning person and 

definitely an evening person)* 

449,734 351 33.1 

     

Sleep duration[29]  

Average number of hours slept in 24 

hours, including naps (continuous 

variable, hours) 

446,118 78 39.6 

     

Short sleep 

duration[29] 

Person has an average of 6 hours or less 

per night vs 7-8 hours per 24 hours (binary 

variable of yes/no) 

411, 934 

(106,192/305,742) 
27 25.6 

     

Long sleep 

duration[29] 

Person has an average of 9 hours or more 

per night vs 7-8 hours per 24 hours (binary 

variable of yes/no) 

339, 926 

(34,184/305,742) 
8 30.6 

     

Frequent insomnia[30] 

Person has trouble falling asleep at night 

or wakes up in the middle of the night 

(binary variable of usually vs never/rarely) 

453,379 

(131,480/321,899) 
48 41.7 

     

Excessive daytime 

sleepiness 

Person dozes off or falls asleep during the 

day without meaning to (ordered 

categorical variable of never or rare, 

sometimes, often and all the time) 

452,071 37 42.3 

     

Daytime napping 

Person naps during the day (ordered 

categorical variable of never, sometimes, 

and usually) 

452, 633 170 46.3 

     

Accelerometer measures  

L5 timing[31] 

Timing of the least active 5 hours of the 

day (continuous variable of hours elapsed 

since previous midnight; provides 

indication of phase of most restful hours 

with later times indexing greater tendency 

towards ‘eveningness’) 

85,205 6 55.3 

     

Sleep duration[31]  

Average number of hours of nocturnal 

sleep per night (continuous variable, 

hours) 

84,810 11 52.1 

     

Sleep 

fragmentation[31] 

The average number of nocturnal sleep 

episodes separated by at least 5 minutes 

of wakefulness per night (continuous 

variable, number of episodes) 

84,810 21 38.6  

*Note that in the original chronotype GWAS, categories were ordered from more ‘eveningness’ to more 

‘morningness’. In this analysis, to ensure that the ordinal chronotype variable correlated positively with the 

accelerometer-measured measure of L5 timing, SNP-exposure coefficients for chronotype were reordered from 

more ‘morningness’ to more ‘eveningness’ (where ‘definitely a morning person’ is the reference category).  
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STATISTICAL ANALYSIS 

Harmonization of exposure and outcome GWAS data 

Only biallelic single nucleotide polymorphisms (SNPs) were included as instruments (insertions and 

deletions were excluded). SNPs for each sleep trait were identified in the AD GWAS dataset. Proxies 

were identified for any SNPs not found (r2>0.8 using 1000 genomes as a reference). In a two-sample 

MR analysis, the effect of a SNP on exposure and an outcome must be harmonised relative to the 

same allele. SNPs for the exposure were coded so that the effect allele was always the ‘increasing 

allele’ (e.g. increasing sleep duration), and the alleles were harmonized so that the effect on the 

outcome corresponded to the same allele as the exposure. Supplemental Table A shows the SNP 

flow through the harmonization procedure and the final number of SNPs included in each analysis. 

Phenotypic correlations between each of the sleep traits were estimated using Pearson’s r.  

Estimating the causal effects of the sleep phenotypes on risk of Alzheimer’s disease 

MR-Base (www.mrbase.org)[36] was employed to perform all two-sample MR analyses. Effect 

estimates and corresponding standard errors of the genome-wide significant SNPs were extracted 

from each sleep GWAS and the AD GWAS. The SNP-exposure (sleep trait units detailed in Table 1) 

and SNP-outcome (AD, in units of log odds ratios [ORs]) coefficients were combined using an 

inverse-variance-weighted (IVW) approach to give an overall estimate of the causal effect across all 

SNPs included for each sleep phenotype. This is equivalent to a weighted regression of the SNP-

outcome coefficients on the SNP-exposure coefficients with the intercept constrained to zero. The 

results of all analyses were converted to ORs for AD. For binary exposures (i.e. frequent insomnia, 

and long and short sleep duration), SNP-exposure coefficients were estimated using logistic 

regression and are therefore on the log odds scale. Causal effect estimates (i.e. ORs for AD) have 

been rescaled so that they are interpreted per doubling of genetic liability for the sleep trait, as 

recommended by Burgess et al[37]. For ordered categorical exposures, SNP-exposure coefficients 

were estimated using linear regression and causal effect estimates are interpreted per category 
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increase in the sleep trait. For continuous exposures, SNP-exposure coefficients were estimated 

using linear regression and causal effect estimates are interpreted per unit increase in the sleep trait 

(units detailed in Table 1).  

Sensitivity analyses 

A series of sensitivity analyses were conducted to check for violation of the key MR assumptions. 

The rationale and methodological details for each of these analyses are provided in the online 

supplement. The IVW method assumes no horizontal pleiotropy but will be unbiased if there is 

balanced horizontal pleiotropy.[27] Thus, results from the IVW method were compared to those 

from MR-Egger[27] and weighted median regressions[38] which relax this assumption. The IVW 

method also assumes no measurement error in the gene-exposure association estimates (i.e. the 

NOME assumption)[27]. We assessed this using an adaptation of the I2 statistic[39] (referred to as 

I2
GX), which provides an estimate of the degree of regression dilution in the MR-Egger causal 

estimate due to uncertainty in the SNP-exposure estimates. Simulation extrapolation (SIMEX) was 

then used to adjust the MR-Egger estimate for this dilution[40]. Heterogeneity (i.e. variability in 

causal estimates from different genetic variants) was assessed using Cochran’s Q statistic[27]. Funnel 

plots were then generated to enable visual assessment of the extent to which pleiotropy is likely to 

balanced (or directional) across the set of instruments used in each analysis. Radial MR was used to 

detect and remove any SNP outliers (i.e. those SNPs that contribute the most heterogeneity to 

Cochran’s Q, based on a multiple testing corrected P value threshold). Leave-one-out permutations 

were conducted to assess the undue influence of potentially pleiotropic SNPs on the causal 

estimates[41]. We checked results were similar after excluding palindromic SNPs[42]. Steiger 

filtering was performed to test that the hypothesised causal direction was correct for each SNP (i.e. 

that that the genetic instruments influence the exposure first and then the outcome, through the 

exposure)[43]. Finally, we investigated potential bias due to ‘winner’s curse’; where the magnitude 

of the effect sizes for variants identified within a single discovery sample are likely to be larger than 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 19, 2019. ; https://doi.org/10.1101/609834doi: bioRxiv preprint 

https://doi.org/10.1101/609834


in the overall population, even if they are truly associated with the exposure. Assessment of 

winner’s curse was only possible for frequent insomnia and sleep duration, where the GWAS were 

replicated in independent samples (The Nord-Trøndelag Health Study [HUNT] and The Cohorts for 

Heart and Aging Research in Genomic Epidemiology [CHARGE], respectively). Details of the 

replication samples and winners curse analyses are in the online supplement.  

Additional analyses 

Causal effects of the of sleep traits on risk of AD were additionally assessed by two-sample 

Mendelian randomization analysis using summary statistics from the most recently published AD 

GWAS meta-analysis[44]. This includes the aforementioned IGAP, the AD working group of the 

Psychiatric Genomics Consortium and the AD Sequencing Project (Phase 1; n= 24,087 cases and 

55,058 controls compared with n=17,008 AD cases and 37,154 controls for IGAP alone). The paper 

details a further meta-analysis additionally including participants from the UK Biobank (Phase 3). 

However, we a-priori decided to use the Phase 1 rather than Phase 3 meta-analysis for two reasons: 

Firstly, all sleep trait GWASs include the UK Biobank, meaning there would be significant overlap 

between the exposure and outcome samples in each MR analysis (which can yield biased causal 

effect estimates[45]). Secondly, the phase 3 AD GWAS meta-analysis includes only AD-by-proxy 

cases from the UK Biobank (i.e. no diagnosed cases). AD-by-proxy cases were defined as a positive 

response to the question ‘Has your mother or father ever suffered from Alzheimer’s 

disease/Dementia’. There are several potential problems with this for MR analyses: participants 

defined as cases have not themselves been diagnosed with AD; the question does not specify 

Alzheimer’s disease but asks about any form of dementia; and finally, the question does not ask if 

family members were diagnosed by a doctor.  

 

To examine whether the previously observed associations between AD (as an exposure) and sleep 

disruption (as an outcome)[2-6] could be supported through applying MR analytical approaches, we 
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tested whether genetic liability for AD was causally associated with the self-reported and 

accelerometer-measured sleep traits, using 20 independent genome-wide significant AD SNPs 

identified in the IGAP AD GWAS meta-analysis (described previously)[35]. As with the main analysis 

of sleep traits on AD risk, SNP-exposure and SNP-outcome coefficients were combined using an 

inverse-variance-weighted (IVW). MR-Egger, weighted median, Radial MR and Steiger filtering were 

performed to assess potential violation of the MR assumptions. Analyses were conducted both with 

and without the ApoE variant included, as ApoE has been previously shown to be pleiotropic[46] 

(which violates an MR assumption). We also examined associations of ApoE (as a single genetic 

instrument) with the sleep traits. As AD is a binary exposure and SNP-exposure coefficients are on 

the log odds scale, causal estimates for the effect of AD on sleep traits are rescaled so that they are 

interpreted per doubling of genetic liability for AD. It is worth noting that there are several 

important limitations to these analyses (including the healthy selected, relatively young population 

in the UK Biobank) and these are discussed in detail in the online supplement. We present these 

results for completeness.  

RESULTS 

Supplemental Table B shows the phenotypic correlations between each of the sleep traits. 

Correlations between accelerometer measures have been published previously.[31] Correlations 

were generally weak, ranging from r=-0.001 (between accelerometer-measured L5 timing and 

accelerometer-measured sleep duration) to r=-0.32 (between self-report frequent insomnia and self-

report short sleep duration). It is also worth noting that correlations were weak between self-

reported and accelerometer-measured sleep duration (r=0.15). This may reflect that accelerometer 

data in the UK biobank were collected between 2 and 9 years (mean 5 years)[31] after baseline, 

when self-reported sleep measures were assessed. It may also reflect self-reports of global sleep 

duration (vs daily self-reported) can be influenced by distress/affect[47]. 
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Figure 1 shows results for the IVW analysis of the sleep traits on risk of AD. Full results can be found 

in Supplemental Table C. Point estimates for self-reported chronotype, insomnia and sleep duration 

were very close to or on the null. Both shorter and longer self-reported sleep duration and 

accelerometer-measured sleep fragmentation yielded positive estimates with AD risk, but were 

imprecisely estimated.  Similarly, the estimates suggesting protective effects for self-reported 

daytime napping was associated with lower AD risk, with odds of AD being 30% lower [95% CI: 1% to 

50%] per category increase from ‘never’, ‘sometimes’ to ‘usually’ napping, were also imprecisely 

estimated. Odds ratios for greater accelerometer-measured eveningness, longer accelerometer-

measured sleep duration and self-reported daytime sleepiness were similar in magnitude to daytime 

napping, although again with wide confidence intervals. 
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Figure 1: Associations of sleep traits with Alzheimer’s Disease  
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Sensitivity analyses 

For all analyses, there was little evidence of directional pleiotropy from the MR-Egger regression 

intercepts (Supplemental Table D) and causal effect estimates from the MR-Egger and weighted 

median regressions generally agreed with those from the IVW regressions; in all cases there was 

substantial overlap between the confidence intervals for each estimate (Supplemental Table C). As 

expected, precision was less for MR-Egger (due to estimating both an intercept and slope in the 

MR-Egger regression as opposed to only a slope in the IVW regression) and weighted median (due 

to assuming only 50% of the instruments are valid). I2GX statistics are provided in Supplemental 

Table E and SIMEX-adjusted MR-Egger estimates in Supplemental Table C. These estimates were 

consistent with regression dilution of the MR-Egger causal effect estimates due to measurement 

error in the SNP-exposure estimates. There was evidence of between-SNP heterogeneity in the 

self-reported chronotype and daytime napping, and accelerometer-measured L5-timing analyses 

(Supplemental Table F). However, there were not unduly asymmetrical in the funnel plots 

(Supplemental Figures A-C), suggesting directional pleiotropy is unlikely to bias the effect estimates 

for these sleep traits.  A total of three outliers were detected by Radial MR for sleep fragmentation 

(rs12714404, rs429358 and rs4974697) and one for L5 timing (rs1144566). Point estimates for 

these two traits attenuated towards the null after removal of these outliers (Supplemental Table 

G). Results were similar after removing each SNP in turn in the leave-one-out permutations 

(Supplemental Figures D-M), suggesting no single SNP was having undue influence on the overall 

causal effect estimate. Results were also similar when palindromic SNPs were excluded from the 

analyses (Supplemental Table H). Steiger filtering provided evidence that for each MR analysis, 

SNPs explained more variation in the sleep trait than in AD. Findings for the sleep duration and 

insomnia results were similar when repeating analyses using the available replication datasets (i.e. 

using SNP-exposure estimates from independent datasets) (Supplemental Table I), providing 

evidence that bias due to winner’s curse is unlikely.  
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Additional analyses 

Causal effect estimates for associations of sleep traits on risk of AD were very similar when using 

the largest meta-analysis GWAS for AD, typically with more precision around the causal estimates 

(Supplementary Figure D). There was consistent evidence of a protective effect of daytime napping 

on Alzheimer’s risk, with odds of AD being 36% lower [95% CI: 11% to 45%] per category increase 

from ‘never’, ‘sometimes’ to ‘usually’ napping in the IVW analysis. Effects were consistent across a 

number of pleiotropy-robust methods, including MR Egger and weighted median approaches.  

 

Associations between genetic liability for AD and all sleep traits are provided in Supplemental Table 

J. All point estimates are interpreted per doubling of genetic risk for AD. There was little evidence 

that genetic liability for AD was associated with short sleep duration (<6 hours vs 7-8 hours per 24 

hours) or daytime sleepiness. Increased genetic liability for AD was associated with less frequent 

insomnia, reduced daytime napping and reduced sleep fragmentation. The effects were very small 

in magnitude (e.g. a doubling of genetic liability for AD was associated with, on average, a 0.4% 

lower risk of frequent insomnia). Point estimates for associations of genetic liability for AD with all 

other sleep traits were also very close to or on the null (e.g. a doubling of genetic liability for AD 

was associated with, on average, 0.3 minutes lower sleep duration). P values were small; likely due 

to the strength of ApoE as an instrument for AD. Given that these causal effect estimates are per 

doubling of genetic liability for AD, the magnitude of effect is very small and not likely to be 

clinically important. Results were similar when using ApoE alone as an instrument for AD (i.e. 

excluding all other AD SNPs, Supplemental Table K). When using the full set of AD genetic 

instruments minus ApoE, point estimates remained largely unchanged but confidence intervals 

were wider (Supplemental Table L). Results were comparable when using MR-Egger and weighted 

median regressions (Supplemental Table J) and after removal of outliers detected by Radial MR 
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(Supplemental Table M). Steiger filtering provided evidence that for each MR analysis, all AD SNPs 

explained more variation in AD than in the sleep trait.  

 

Given our concerns about selection bias in the UK Biobank for these analyses[48], we performed a 

post-hoc analysis to assess whether causal effect estimates were comparable when using a 

different outcome sample. Methods for these analyses are provided in the online supplement. We 

tested the association between genetic liability for AD and frequent insomnia in N=62,533 

participants from The Nord-Trøndelag Health Study (HUNT)[30, 49]. HUNT is a less selected sample 

with over 60% response rate (compared with <5% for UK Biobank). Results were comparable to the 

main analyses using UK Biobank, except that confidence intervals were wider (IVW odds ratio: 0.98 

per doubling of genetic liability for AD, 95% CI: 0.95 to 1.01 in HUNT vs IVW odds ratio: 0.99 per 

doubling of genetic liability for AD, 95% CI: 0.99 to 1.00 in the UK Biobank, Supplemental Table N).  

 

DISCUSSION 

We have used the largest genome-wide association studies available of self-report and 

accelerometer-measured sleep traits and diagnosed Alzheimer’s disease, to provide bounds on 

possible causal relationships between them. Overall, based on the data presented in this study, we 

found no clear evidence of a link between these sleep traits and risk of AD, although there was 

suggestive evidence that daytime napping was associated with lower risk of AD. Odds ratios for 

accelerometer-measured ‘eveningness’, accelerometer-measured sleep duration, and self-reported 

daytime sleepiness were similar in magnitude to daytime napping, however, confidence intervals 

were wide and consistent with the null.  

We found increased genetic liability for AD was associated with less frequent insomnia, reduced 

daytime napping and reduced sleep fragmentation. However, it is important to note that point 

estimates were very close to the null, and given that they are per doubling of genetic liability for 
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AD, are unlikely to be clinically important.  Confidence intervals around these point estimates were 

likely narrow due to the inclusion of ApoE as a genetic instrument for AD (as it is strongly and 

robustly associated with a 3- to 15-fold increase in AD risk[44]); confidence intervals were wider 

when we excluded this instrument. Although these associations are in the opposite direction to 

what we expected, these results should be treated with caution because of the potential for 

selection bias within the UK Biobank (which can cause spurious associations[48]), where 

participants are healthier than the general population. We observed a very small reduction in 

insomnia related to AD liability in an independent sample (HUNT), though with wider confidence 

intervals given its smaller size.  

 

It is worth noting that we looked only at frequency (not duration) of daytime napping, as 

information on duration of naps is not currently available in the UK Biobank. Previous studies have 

reported both positive and negative outcomes observed in relation to napping, and there is 

evidence that the duration may be particularly important (with shorter naps being beneficial, and 

longer naps being detrimental for various health outcomes including cardiovascular risk, cognitive 

impairment and memory consolidation).[50-53] Most studies to date linking daytime napping to 

poor health outcomes have been done in elderly populations[4, 54, 55], making it difficult to rule 

out that (in those studies) daytime napping is not merely a result of underlying disease, rather than 

being a cause of the poor outcomes. In addition, it’s often not possible in those studies to separate 

whether it is poor nocturnal sleep or the consequential daytime napping that is associated with the 

adverse outcomes. Conversely, there is some evidence that daytime naps offer a variety of benefits 

including memory consolidation[56-58], improvements in subsequent learning[59], executive 

functioning[60] and emotional processing[61], all of which are impaired in AD[62, 63]. There is also 

evidence that short, restorative naps (<60 minutes in duration) may reduce the rate of 

cardiovascular disease and low-grade inflammation.[53] Thus, daytime napping (prior to the onset 

of preclinical disease) may potentially serve as a useful compensatory mechanism for poor 
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nocturnal sleep, enabling the brain to carry out tasks it was unable to complete during poor 

nocturnal sleep (for example, due to fragmented or short sleep). 

Strengths and Limitations 

To our knowledge, this is the first study to examine the causal effect of various sleep traits on risk 

of AD, using MR. We have both self-reported and accelerometer-assessed measures of sleep, 

allowing a comprehensive evaluation of various sleep parameters and a comparison across the two 

methods of assessment. We conducted a comprehensive series of sensitivity analyses to examine 

whether our results were robust to the various assumptions of MR or were likely to be biased by 

horizontal pleiotropy. We were also able to replicate some of our findings using independent 

exposure datasets (i.e. for self-report sleep duration and insomnia), and results were consistent, 

suggesting our findings are unlikely to be biased by winner’s curse. Findings were also largely 

consistent when we performed MR using summary statistics from a more recent GWAS meta-

analysis of Alzheimer’s disease[44]. There are, however, several limitations to our study. The first 

limitation is low instrument strength; although F statistics were over 10 (the threshold typically 

used to indicate potential weak instrument bias), confidence intervals for analyses of sleep traits on 

risk of AD were generally wide. Identifying stronger instruments for these sleep traits may enable 

us to estimate their causal effects on AD risk more precisely. Secondly, there was a small number of 

approximately independent genome wide significant SNPs available for the MR analyses for some 

sleep traits (e.g. self-report long-sleep duration and for accelerometer L5 timing and sleep 

duration), making it difficult to examine potential directional horizontal pleiotropy using funnel 

plots. However, given that there was only evidence of heterogeneity for L5 timing, daytime napping 

and chronotype (and the chronotype and daytime napping showed no marked asymmetry in the 

funnel plot), horizontal pleiotropy is unlikely to explain our findings. Thirdly, we did not correct for 

multiple testing because several of the sleep traits are correlated, but the results need to be 

interpreted in this light and replication of our findings are required. Fourthly, it is possible that the 

specific features of sleep that are implicated in the pathogenesis of AD (for example, disruption of 
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slow wave sleep) are not detectable using accelerometers or subjectively. Fifth, there may be a 

threshold effect of daytime napping by which shorter naps are beneficial and long, frequent naps 

may be detrimental. Previous studies have suggested this may be the case (particularly for 

cardiovascular risk, cognitive impairment, and memory consolidation[53]), but we are unable to 

unpick these effects with current data in an MR framework. Sixth, most analyses were conducted 

using data from the UK Biobank, which may not be representative of the general population (due 

to selection into the study)[64]. That said, results were similar when using data from independent 

replication samples (including HUNT and CHARGE). Finally, no sleep diaries were collected in the UK 

Biobank to identify time in bed and out of bed, which may introduce measurement error into some 

of the accelerometer measures. However, for the sleep data used in this study, time in and out of 

bed were estimated using a validated algorithm to determine the sleep period time window[65].  

Conclusions 

Our findings tentatively suggest that daytime napping may reduce AD risk. However, given that this 

is the first MR study of multiple self-report and objective sleep traits on AD risk, findings should be 

replicated using independent samples. Identifying stronger instruments for all sleep traits will be 

useful in more precisely estimating any causal effects on AD risk. 
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