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Premanufactured shelled microbubbles composed of a protein shell are
currently licensed as ultrasound imaging contrast agents. Current research is
focussing on using the protein shelled microbubbles as transportation mech-
anisms for localised drug delivery particularly in the treatment of various
types of cancer. For the very first time, a theoretical model is developed
for an incompressible, gas loaded shelled microbubble with a thin shell com-
posed of a liquid-crystalline material. We show that liquid-crystalline shelled
microbubbles exhibit significantly different physical characteristics from com-
mercial protein shelled microbubbles such as Sonovue and Optison. The au-
thors propose that these significantly different physical characteristics may
enhance localised drug delivery. We use the technique of linearisation to pre-
dict the shelled microbubble’s natural frequency and relaxation time. These
physical parameters strongly influence sonoporation which is the mechanism
that is used for localised drug delivery. The influence of the material proper-
ties of the shell on the natural frequency and relaxation time are discussed.
We have discovered that liquid-crystalline shelled microbubbles have a relax-
ation time that is 10 times longer than Sonovue and Optison.
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1 Introduction

Premanufactured shelled microbubbles are currently licensed in the UK as
ultrasound imaging contrast agents. Current research is focussing on using
the microbubbles as a transportation mechanism for localised drug delivery
specifically in the treatment of various cancers [1–9]. Ultrasound contrast
agents (UCAs) are shelled microbubbles typically composed of a layer or
several layers of a protein shell encapsulating a perfluoro gas that helps to
stabilise the microbubble when it is injected into the bloodstream [10–12].
The shelled microbubbles have a typical radius of between 1 and 4 µm al-
lowing them to propagate through the capillaries in the human body and
a shell thickness that varies between 4 and 100 nm depending on whether
the UCA is a monolipid or polymer variant [13]. UCAs create a contrast
with the surrounding tissue primarily due to an impedance mismatch with
the surrounding fluid and the production of higher harmonics. Microbub-
bles resonate with typical frequencies in the range of 1 to 10 MHz producing
nonlinear, multiple harmonic signals that enhance the quality of the medi-
cal imaging process [14]. There has been a research momentum growing in
recent years to use the UCAs as localised drug delivery agents [15]. Much
progress has been made but much remains to be done before this can be
deployed routinely in patients [16]. Hence there is a need to develop virtual
simulation tools to better understand the challenges. This paper contributes
to this effort by identifying an entirely new type of shelled microbubble that
is composed of a nematic liquid crystal, and discusses how the material pa-
rameters of the liquid-crystalline shell influences the dynamics of the shelled
microbubble. Note that all the previous published literature pertaining to the
modelling of shelled microbubbles focusses solely on protein shells. We show
that nematic liquid-crystalline shells display significantly different physical
characteristics from conventional protein shells: these physical characteristics
are highly advantageous to the mechanism of sonoporation [17].

Most current shelled microbubble models are based on the Rayleigh-
Plesset equation for a free gas bubble, which is derived by applying pressure
balances to the inner surface of the shelled microbubble with those acting
on the outside of the shelled microbubble’s surface and the surrounding liq-
uid [18–20]. The Rayleigh-Plesset equation assumes that the microbubble
oscillations are purely radial and that the surrounding liquid is incompress-
ible. The gas in the shelled microbubble is assumed to behave adiabatically
despite its polytropic index being relatively close to one which is associated
with isothermal behaviour [20]. Whilst it is not fully modelled, most of these
equations handle to some degree fluid compressibility. Viscous damping as-
sociated with the microbubble shell is also modelled in these equations.
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Thin monolipid microbubbles have shells that are viscoelastic in nature,
and behave more like a fluid than a solid shell [20]. This fluid like behaviour
has inspired us to consider one particular type of mesophase material, specif-
ically liquid crystals. We propose a new type of shelled microbubble that is
composed of a thin liquid-crystalline shell. This paper uses the Leslie-Erikson
continuum theory ([21], p133-159) for liquid crystals to build up a model for
the dynamics of the shelled microbubble. This is the first study that has
used liquid crystal theory to model UCAs. This paper also considers, for the
first time, how both the relaxation time which is defined as the time taken
for the amplitude of an oscillating shelled microbubble to decrease to 1/e of
its original amplitude, and the natural frequency of the microbubble are in-
fluenced by the material parameters of the shell such as the shell’s viscosity,
density, thickness and its surface tension. The paper is structured in the fol-
lowing way: Section 2 deals with the generic Rayleigh-Plesset equation then
Section 3 focusses on the evaluation of the stress of the liquid crystal’s shell
with Section 4 considering the elastic energy density of the shell. Section 5
determines the linearised Rayleigh-Plesset model and Section 6 reports the
results.

2 The Rayleigh-Plesset model

Consider a shelled microbubble with inner and outer radii given by R1 and R2

respectively, where the radii are functions of time only and the density of the
shell is denoted by ρS. This article uses a dot notation above a physical
quantity to represent differentiation of that quantity with respect to time.
In terms of tensor notation, let xi represent the positional coordinate and
r = |x| where r2 = xixi. We shall denote the radial unit vector as er and
the speed and acceleration of the inner radius of the microbubble as Ṙ1 and
R̈1 respectively. Let ρL denote the density of the surrounding incompressible
liquid where σ represents the Cauchy stress. Momentum balance results in
the following equation to describe the dynamics of the UCA [18,22,23]

(
R1R̈1

(
1−

(
ρS − ρL
ρS

)
R1

R2

)
+ Ṙ1

2
(

3

2
−
(
ρS − ρL
ρS

)(
4R1R

3
2 −R4

1

2R4
2

)))
er

=
1

ρS

∫ ∞
R1

(∇ · σ) dr, (1)

where a pressure balance has to be applied in order to determine the
right hand side of equation (1). The pressure of the gas phase inside the
shell and the surrounding ambient fluid pressure have to be considered as do
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the surface tensions and the shell and fluid viscosities. The divergence of the
stress σ can be expressed as

∇ · σ = −∇P +∇ · τ,

where P denotes a pressure term and τ represents both the stress in the shell
and the stress due to the surrounding Newtonian fluid. Rewriting the right
handside of equation (1) and integrating over the various media leads to∫ ∞

R1

(∇ · σ) dr =

∫ ∞
R1

(−∇P +∇ · τ) dr

= (PS(R1, t)− PS(R2, t) + PL(R2, t)− P∞(t)) er+

∫ R2

R1

(∇ · τS) dr+

∫ ∞
R2

(∇ · τL) dr,

(2)

where PS, PL and P∞ are the pressures in the shell, the surrounding
Newtonian fluid, and at infinity, respectively. The stresses in the shell and
the stress associated with the viscosity of the surrounding fluid are denoted by
τS and τL respectively. Let R01 and R02 denote the equilibrium (unperturbed)
inner and outer radius of the shelled microbubble. The boundary conditions
at the inner and outer radii of the shell’s surface respectively are found by
applying the momentum balance law [18] which leads to

PS(R1, t) = Pg

(
R01

R1

)3κ

+ τS,rr(R1, t)−
2γ1
R1

, (3)

and

PS(R2, t) = PL(R2, t) + τS,rr(R2, t) +
2γ2
R2

− τL(R2, t), (4)

where κ denotes the polytropic index which is a dimensionless parameter
[18,24] and τS,rr denotes the stress in the radial direction. The terms γ1 and
γ2 denote the interfacial surface tension (gas-shell interface) and the surface
tension between the outer shell and the surrounding liquid respectively. The
gas pressure Pg in equation (3) is obtained by balancing the pressures at the
equilibrium radii R01 and R02 to give

Pg = P0 +
2γ1
R01

+
2γ2
R02

+ S, (5)

where P0 represents the surrounding ambient liquid pressure and S is the
stress associated with the elastic energy density of the liquid crystal and is
given by equation (23) in Section 4. Note that P∞ in equation (2) describes
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the atmospheric pressure plus any external applied pressures (such as those
created by an ultrasound probe) and is represented by P∞ = P0 + PA sinωt
where PA and ω represent the externally applied pressure and angular fre-
quency respectively. Substituting equations (3) and (4) into equation (2)
gives

∫ ∞
R1

(∇ · σ) dr =

(
Pg

(
R01

R1

)3κ

+ τS,rr (R1, t)− τS,rr(R2, t)−
2γ1
R1

− 2γ2
R2

− P0

)
er

+ (−PA sinωt+ τL(R2, t)) er

+

∫ R2

R1

(∇ · τS) dr +

∫ ∞
R2

(∇ · τL) dr. (6)

The stress due to the viscosity µL of the surrounding Newtonian fluid is
denoted by τL(R2, t) where ([18], [25] p50)

τL(R2, t) = −4µL
Ṙ2

R2

, (7)

whereas the term
∫∞
R2

(∇ · τL) dr in equation (6) ([26], p354-p355) results in∫ ∞
R2

(∇ · τL) dr = µL

∫ ∞
R2

(
1

r2
∂

∂r

(
r2
∂v

∂r

)
− 2v

r2

)
erdr = 0. (8)

3 Calculating the stress of a liquid crystal

shell

This section focusses on deriving an expression for the viscous stress of an
incompressible liquid-crystal shell of known inner and outer radii. It is as-
sumed that the shell’s composition is a liquid crystal that can be described
dynamically using the nematic theory developed by Leslie and Ericksen ([21],
p133-159) where five independent Leslie viscosities [27] are required to de-
termine the stress in the shell. The sixth Leslie viscosity can be written as
a linear combination of some of the other five independent Leslie viscosities.
Some proteins [28] exhibit the characteristic behaviour of a liquid crystal
where the molecules are arranged in layers ([21], p6). This paper will use ne-
matic theory to model the mesophase behaviour of proteins [29]. Continuum
modelling of liquid-crystal theory assumes that the molecules are rod like in
nature and are described by a unit vector n which is called the director. The
molecules are arranged in layers with the director aligning perpendicular to
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the layers and parallel to the layer normal ([21],p6). We shall assume spheri-
cal symmetry of the liquid-crystalline shell with the director pointing radially
outward everywhere and the layers consisting of concentric spheres. The di-
rector describes the local direction of the average molecular alignment and
is a unit vector (so n = eixi/r) ([21],p6), where xi represents the positional
coordinate and r = |x|. The viscous stress τij for a nematic liquid-crystal is
given by

τij = α1nkAkpnpninj+α2Ninj+α3niNj+α4Aij+α5njAiknk+α6niAjknk, (9)

where α1, α2, ...., α6 are the Leslie viscosities, Aij is the rate of strain tensor
and Ni is the co-rotational time flux of the director n. The co-rotational
time flux is a measure of the rotation of the director, n, relative to the fluid.
These terms are explicitly defined as ni = xi/r, Aik = (vi,k + vk,i)/2, Ni =
ṅi −Wijnj where the superposed dot signifies the material time derivative
ṅi = ∂ni/∂t+ vj∂ni/∂xj and Wij = (vi,j − vj,i)/2 is the vorticity tensor. For
the spherically symmetric case we have a velocity profile given by v = ver
which is rewritten as

vi =
vxi
r
. (10)

Hence

vi,k =
vδik
r

+ xi
∂

∂r

(v
r

) ∂r

∂xk
.

Since r2 = xkxk then
∂r

∂xk
=
xk
r
. (11)

and so

vi,k =
vδik
r

+
xixk
r

∂

∂r

(v
r

)
, (12)

and since δkp = δpk then

Akp =
vδkp
r

+
xkxp
r

∂

∂r

(v
r

)
, (13)

with Ni = 0 and Wi,j = 0. Substituting into equation (9) gives

τij =
α1xixjv

r3
+
α1xixj
r

∂

∂r

(v
r

)
+
α4vδij
r

+
α4xixj
r

∂

∂r

(v
r

)
+
α5vxjxi
r3

+
α5xjxi
r

∂

∂r

(v
r

)
+
α6xixjv

r3
+
α6xixj
r

∂

∂r

(v
r

)
. (14)

The shelled microbubble is assumed to be an incompressible shell composed
of a thin liquid crystal shell with a radially directed flow ([21],p139). Marmot-
tant et al. [19] discusses the limitations of an incompressible shell but only
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in relation to protein shells. UCAs such as Sonovue exhibit compression only
behaviour [19]. Currently we have no experimental evidence as to whether or
not compression only behaviour occurs for nematic liquid-crystalline shells.
Since the shell is incompressible then its volume, V , and density will be time
independent. For a shelled microbubble with an inner and outer radii given
by R1 and R2 respectively, the following relationship holds

dV

dt
=

d

dt

(
4

3
π
(
R3

2 −R3
1

))
= 0,

from which we can deduce that

R2
1Ṙ1 = R2

2Ṙ2. (15)

Church [18] and Doinikov et al. [22] state that

v

r
=
R2

1Ṙ1

r3
, (16)

and so

∂

∂r

(v
r

)
=
−3R2

1Ṙ1

r4
. (17)

Using equations (16) and (17), the Leslie viscosities represented by equation
(14) can be rewritten as

τij =
−2α1xixjR

2
1Ṙ1

r5
+
α4R

2
1Ṙ1δij
r3

− 3α4xixjR
2
1Ṙ1

r5

− 2α5R
2
1Ṙ1xixj
r5

− 2α6R
2
1Ṙ1xixj
r5

. (18)

To determine the Cauchy momentum represented by equation (1) we have
to evaluate the divergence of equation (18). Writing this in component form
results in

∂τij
∂xi

=
2α1R

2
1Ṙ1xj
r5

+
2α5R

2
1Ṙ1xj
r5

+
2α6R

2
1Ṙ1xj
r5

, (19)

where the α4 contibution is zero which is consistent with Brennan ([25],
p49-50). The stress associated with the Leslie viscosities is calculated by
integrating equation (19) between the inner and outer radius of the shell. Our
mathematical model focusses on purely radial oscillatory behaviour. Since
the shelled microbubble moves solely in the radial direction then in spherical
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polar coordinates r = rer, with r2 = xjxj. The jth Cartesian component of
er is given by xj/r. Evaluating the integral between R1 and R2 results in∫ R2

R1

(∇ · τ) dr =
2

3
(α1 + α5 + α6)

(
Ṙ1

R1

− R2
1Ṙ1

R3
2

)
er. (20)

4 The elastic energy density for a shelled mi-

crobubble

The liquid-crystal shell has both a viscous stress associated with the Leslie
viscosities and a stress due to the elastic energy of the liquid crystal. This
latter stress will add a further term to equation (9) as calculated below. The
following strain energy density function was proposed for a bilipid membrane
by De Vita and Stewart [28]

W =
1

2
K1a (∇ · a)2 +

1

2
K1n (∇ · n)2

+
1

2
B0|∇Ψ|−2 (1− |∇Ψ|)2 +

1

2
B1

(
1− (n · a)2

)
+B2 (∇ · n)

(
1− |∇Ψ|−1

)
,

(21)

where K1a, K1n, B0, B1 and B2 are material constants, a is the unit normal
to the layer, Ψ defines the layer structure of a liquid crystal and |∇Ψ|−1
represents the current local interlayer distance. The first term on the right
hand side of equation (21) refers to the bending energy while the second
term represents the splay energy contribution. The B0 term represents the
compression-expansion energy, B1 is the energy associated with the coupling
between n and a, and B2 is the term associated with the coupling between the
splay and compression-expansion of the layer. It is assumed that the shelled
microbubble is a bilipid membrane with a typical thickness of 4nm ([21],
p4). Generally |∇Ψ|−1 6= 1 although for an undistorted liquid-crystal such
as planar layers it is useful to define |∇Ψ|−1 such that |∇Ψ|−1 = 1. There
is no contribution to the strain energy density function from the B0, B1 and
B2 terms given in equation (21). There are no published values for K1a

but K1n is known for several types of liquid-crystalline material ([21], p330).
We shall make the assumption that K1a ≈ K1n such that K1a = K1n = K1.
This assumption is based on the experimentally determined values of K1n for
various types of liquid crystals, all of which are very similar in magnitude.
Assuming that n = a then we can conclude that the contribution from the
elastic energy density reduces to

W = K1 (∇ · n)2 . (22)
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The stress associated with the elastic constant arising from the splay and the
bending energies given by K1(ni,i)

2 is determined via (−∂W/∂np,j)np,i and
is represented by τelastic ([21],p151) where W is given by equation (22). So

(τelastic)ij = − ∂W

∂np,j
np,i,

= −2K1 (np,p)nj,i,

= −2K1
∂

∂xp

(xp
r

) ∂

∂xi

(xj
r

)
.

The integral of the divergence of the stress associated with the elastic energy
density contributions due to n and a is∫ R2

R1

(∇ · τelastic) dr = −4K1

(
1

R2
2

− 1

R2
1

)
er. (23)

Combining equations (20) and (23) gives the total stress in the shell as∫ R2

R1

(∇ · τS) dr =
2

3
(α1 + α5 + α6)

(
Ṙ1

R1

− Ṙ2

R2

)
er + 4K1

(
1

R2
1

− 1

R2
2

)
er,

(24)
where τS represents the total stress in the shell. Substituting equations (7),
(8), (18)and (24) into equation (6) gives∫ ∞

R1

(∇ · σ) dr =

(
Pg

(
R01

R1

)3κ

− 4

3
(α1 + α5 + α6)

(
Ṙ1

R1

− Ṙ2

R2

)
− 4K1

(
1

R2
1

− 1

R2
2

))
er

+

(
−4µL

Ṙ2

R2

− P0 − PA sinωt− 2γ1
R1

− 2γ2
R2

)
er, (25)

where R01 is the unperturbed inner radius. To simplify the notation let
α = 4

3
(α1 + α5 + α6). Using equation (23), the stress S in its unperturbed

state is equal to 4K1 (1/R2
01 − 1/R2

02). Substituting equation (25) into the
right-hand side of equation (1) leads to

R1R̈1

(
1−

(
ρS − ρL
ρS

)
R1

R2

)
+ Ṙ1

2
(

3

2
−
(
ρS − ρL
ρS

)(
4R1R

3
2 −R4

1

2R4
2

))
=

1

ρS

((
P0 +

2γ1
R01

+
2γ2
R02

+ 4K1

(
1

R2
01

− 1

R2
02

))(
R01

R1

)3κ

− 2γ1
R1

− 2γ2
R2

− P0 − PA sin (ωt)

)

− 1

ρS

(
α

(
Ṙ1

R1

− Ṙ2

R2

)
+ 4K1

(
1

R2
1

− 1

R2
2

)
+

4µLṘ2

R2

)
. (26)
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5 Linearisation

The technique of linearisation is used to determine the natural frequency
and relaxation time for the shelled microbubble whose dynamic behaviour is
described by equation (26). The time-dependent perturbations for the inner
and outer radii can be written as

R1 = R01 (1 + ξ (t)) , (27)

and
R2 = R02 (1 + η (t)) , (28)

respectively. The shell is incompressible which results in R3
2−R3

1 = R3
02−R3

01.
Linearising R3

2−R3
1 = R3

02−R3
01 using equations (27) and (28) and assuming

that |ξ|, |η| � 1, results in

R3
2 −R3

1 ≈ R3
02 (1 + 3η)−R3

01 (1 + 3ξ) ,

which can be simplified to give

η =

(
R01

R02

)3

ξ. (29)

To linearise equation (26) we have to assume that the externally applied
forcing pressure PA is of the same order of magnitude (in some appropriate
sense) as |ξ| and |η|. Then linearising equation (26) leads to

R2
01ξ̈

(
1−

(
ρS − ρL
ρS

)
R01

R02

)
=

1

ρS

(
−3κξ

(
P0 +

2γ1
R01

+
2γ2
R02

+ 4K1

(
1

R2
01

− 1

R2
02

))
+

2γ1ξ

R01

+
2γ2η

R02

− PA sin (ωt)

)
− 1

ρS

(
αξ̇

(
1−

(
R01

R02

)3
)

+
8K1η

R2
02

− 8K1ξ

R2
01

+ 4µLη̇

)
. (30)

Dividing equation (30) throughout by R2
01 and substituting equation (29)

into it gives
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ξ̈

(
1−

(
ρS − ρL
ρS

)
R01

R02

)
=

1

ρSR2
01

(
−3κξ

(
P0 +

2γ1
R01

+
2γ2
R02

+ 4K1

(
1

R2
01

− 1

R2
02

))
+

2γ1ξ

R01

+
2γ2
R02

(
R01

R02

)3

ξ

)

− 1

ρSR2
01

(
αξ̇

(
1−

(
R01

R02

)3
)

+
8K1

R2
02

(
R01

R02

)3

ξ − 8K1ξ

R2
01

+ 4µL

(
R01

R02

)3

ξ̇ + PA sin (ωt)

)
.

(31)

Note that the linearised equation (31) has the form

ξ̈ + 2γdξ̇ + ω2
oξ =

P (t)

ρSR2
01 (1− ((ρS − ρL)/ρS)R01/R02)

, (32)

where γd represents a damping term and ωo is the angular natural frequency
of the shelled microbubble. The term, P (t), represents the sinusoidal, ex-
ternal ultrasound signal which forces the shelled microbubble. The damping
term is given as

γd =
α
(
1− (R01/R02)

3)+ 4µL (R01/R02)
3

2ρSR2
01 (1− ((ρS − ρL)/ρS)R01/R02)

, (33)

which is related to the relaxation time by trelax = 1/γd. The natural fre-
quency, fo = ωo/(2π), is given by

fo =
1

2π

√
N

D
, (34)

where

N = 3κR01R
5
02 (P0 + 2γ1/R01 + 2γ2/R02)− 2γ1R

5
02 − 2γ2R

4
01R02

+ (12κ− 8)K1R
5
02/R01 + 8K1R

4
01 − 12κK1R

3
02R01, (35)

and
D =

(
ρSR

3
01R

5
02 − (ρS − ρL)R4

01R
4
02

)
. (36)

6 Results

We will now perform a sensitivity analysis on the damping term γd and the
natural frequency f0 given by equations (33) and (34) respectively. We shall
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consider how γd is influenced by changing firstly the Leslie viscosities given
by α, and then the thickness of the shell given by R02 − R01. Also, we shall
consider the influence of the interfacial surface tension γ1 on the natural
frequency f0.

0 .1 0 .2 0 .3 0 .4
Α HPa .s L

0 .2 5

0 .3 0

0 .3 5

0 .4 0

0 .4 5

0 .5 0

t re la x HΜs L

Figure 1: The relaxation time of a shelled microbubble of exterior ra-
dius 1µm (thickness 4nm) versus the Leslie viscosities given by α where
α = 4

3
(α1 + α5 + α6). The densities of the liquid-crystalline shell and the

surrounding fluid are ρS = 1060 kgm−3 and ρL = 1000kgm−3 respectively
([21], p330). The polytropic index of the gas, the viscosity of the surround-
ing fluid and the interfacial surface tension and the exterior radius’ surface
tension are κ = 1.095, µL = 10−3Pa s, γ1 = 0.036Nm−1and γ2 = 0.072Nm−1

respectively ([21], p330). The graph is constructed using equation (33)
and trelax = 1/γd.

Figure 1 illustrates the relaxation time’s dependency on the Leslie vis-
cosities where α = 4

3
(α1 + α5 + α6). As α increases the relaxation time trelax

decreases in a nonlinear manner. This is because a more viscous shell will
dampen the oscillatory motion of the shell faster.
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Figure 2: The relaxation time of a shelled microbubble of exterior radius
R02 = 1µm versus the thickness of the shell R02 − R01. The density of the
surrounding fluid and the shell are ρL = 1000kgm−3 and ρS = 1060kgm−3

respectively and the Leslie viscosities give α = 0.035Pa s ([21], p330). The
polytropic index of the gas, the viscosity of the surrounding fluid and the
interfacial surface tension and the exterior radius’ surface tension are κ =
1.095, µL = 10−3Pa s, γ1 = 0.036Nm−1 and γ2 = 0.072Nm−1 respectively
([21],p330). The graph is plotted using equation (33) and trelax = 1/γd.

Figure 2 shows how the relaxation time decreases nonlinearly as the thick-
ness (R02 − R01) of the shell increases. Equation (33) highlights the depen-
dency of the damping coefficient and the relaxation time on the radii of the
shell. Rewriting equation (33) as

γd =
α(1− (R01/R02)

3(1− 4µL/α))

2ρSR2
01 (1− ((ρS − ρL)/ρS)R01/R02)

, (37)

and rearranging for a fixed α, µL, R01, ρS and ρL gives

γ̂d =
1− aR̂−3

1− bR̂−1
, (38)

where a = 1− 4µL/α, b = (ρS − ρL)/ρS, R̂ = R02/R01 and γ̂d = 2ρSR
2
01γd/α.

Note that γ̂d can increase or decrease as a function of R̂ depending on the
values of a and b. Substituting the values of µL, α, ρS and ρL that are used
to construct Figure 2 (see caption) satisfies the condition a� b. Hence as R̂
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increases and the shell thickens, the damping coefficient γd increases which
results in a shorter relaxation time (since trelax = 1/γd).

0.05 0.10 0.15 0.20 0.25 0.30
γ1 (Nm

-1)

4.5

5.0

5.5

6.0

6.5

7.0

f0 (MHz

Figure 3: The natural frequency fo of a shelled microbubble of exterior ra-
dius R02 = 1µm and thickness 4nm versus the interfacial surface tension
(gas/inner boundary) of the shell denoted by γ1. The polytropic index of
the gas is κ = 1.095, the internal gas pressure P0 = 105Pa [19], the sur-
face tension at the outer shell/liquid interface is γ2 = 0.072Nm−1 and the
elastic constant is given by K1 = 6 × 10−12N ([21], p330). The density of
the surrounding fluid and shell are ρL = 1000kgm−3 and ρS = 1060kgm−3

respectively, and the Leslie viscosities results in α = 0.035Pa s ([21], p330).
The graph is plotted using equations (34), (35) and (36).

Figure 3 illustrates how the natural frequency fo of the shell increases
nonlinearly as the interfacial surface tension γ1 of the shell increases. This is
due to a greater restoring force arising from a larger surface tension acting
on the inner surface of the shell.

The known published density of liquid crystals lies between 1020 and 1168
kgm−3 ([21], p330), thus varying the density of the shell ρS has a negligible
effect on both the damping term γd and the natural frequency f0. Similarly
varying the elastic constant K1 over two orders of magnitude has very little
effect on the natural frequency f0. We can compare our theoretically derived
expression for the liquid-crystalline shell’s damping term given by equation
(33) with the damping term derived by Doinikov and Bouakaz [30] which
is for a protein shelled microbubble. Similarly we can compare the natural
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frequency f0 given by equation (34) with the natural frequency derived by
Doinikov and Bouakaz for a commercial protein shelled microbubble. We
shall compare a liquid-crystalline shelled microbubble of thickness R02−R01

and outer equilibrium radius of R02 = 1µm to an equally sized commercial
protein shelled microbubble discussed by Doinikov and Bouakaz [30]. Let us
assume that the densities of the liquid-crystalline shell and the surrounding
fluid are ρS = 1060 kgm−3 and ρL = 1000kgm−3 respectively ([21], p330).
The Leslie viscosity term, the polytropic index of the gas, the viscosity of
the surrounding fluid and the interfacial surface tension and the exterior ra-
dius’ surface tension are α = 0.035Pa s, κ = 1.095, µL = 10−3Pa s, γ1 =
0.036Nm−1 and γ2 = 0.072Nm−1 respectively ([21], p330). The damping
term for a liquid-crystalline shelled microbubble was γd = 2.2× 106s−1 com-
pared to γd = 3.2×107s−1 for a commercial protein shelled microbubble. This
results in a relaxation time of trelax = 4.5 × 10−7s for a liquid-crystalline
shelled microbubble compared to trelax = 3.2× 10−8s for a commercial pro-
tein shelled microbubble. Comparing the natural frequencies f0 for both
types of shells where P0 = 105Pa gives f0 = 4.6MHz for a liquid-crystalline
shell compared to f0 = 10.8MHz for a commercial protein shelled microbub-
ble. Note that f0 = 10.8MHz is the mathematically determined natural
frequency for a single protein shelled microbubble. Our study does not con-
sider a uniform solution of microbubbles or a polydisperse solution. Cowley
and McGinty have speculated that these significantly different physical char-
acteristics strongly influence the mechanism of sonoporation [17]. Cowley
and McGinty have proposed that a liquid-crystalline shelled microbubble en-
hances the capillary wall shear stress by two orders of magnitude compared
to commercial protein shelled microbubbles.

7 Conclusion

A modified Rayleigh-Plesset equation has been derived for a shelled mi-
crobubble with an incompressible shell composed of a liquid-crystaline mate-
rial, surrounded by a Newtonian fluid. The model considered the adiabatic
gas inside the shelled microbubble, the thin shell’s crystalline material and
the surrounding Newtonian fluid. We then linearised the model using time-
dependent perturbation theory and determined expressions for the relaxation
time and the natural frequency of the shelled microbubble. We performed
a sensitivity analysis, considering how the various material parameters of
the shell influenced both the relaxation time and the natural frequency of
the shelled microbubble. The relaxation time exhibited a dependency on
both the thickness of the shell and the Leslie viscosities (which are depen-
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dent on the type of liquid-crystalline material that the shell is made from).
We discovered that the relaxation time decreased nonlinearly as the Leslie
viscosities of the shell increased. Similarly the relaxation time decreased
nonlinearly as the thickness of the shell increased. However, the natural
frequency of the shelled microbubble depended primarily on the interfacial
surface tension of the liquid-crystalline shell. Our sensitivity analysis on the
natural frequency showed that the natural frequency increased nonlinearly
as the interfacial surface tension increased. Up until now there has been
no published experimental data for liquid-crystalline shelled microbubbles.
Using the values given by Doinikov and Bouakaz for commercial shelled mi-
crobubbles, we have discovered that the damping term γd for commercial
microbubbles is approximately 10 times larger than the damping term for a
liquid-crystalline shelled microbubble. This implies that current commercial
shelled microbubbles have a relaxation time that is approximately 10 times
shorter. We have also discovered that the natural frequency of a liquid-
crystalline shelled microbubble is approximately 1/2 that of a commercial
shelled microbubble. There are two novel contributions in this article. We
have derived for the first time a modified Rayleigh-Plesset equation for a
shelled microbubble whose shell is composed of a liquid-crystalline material.
No previous study has considered such an alternative and unique approach.
We have given qualitative insight into how the material parameters such as
the Leslie viscosities, the thickness of the shell, and the interfacial surface
tension of the shell influence the shelled microbubble’s relaxation time and
natural frequency. Such modelling may aid soft matter scientists’ under-
standing of UCA localised drug delivery and gene therapy specifically in the
treatment of cancer.

Future research will focus on the technique of sonoporation which involves
using the shelled microbubbles in conjunction with an external ultrasound
signal to temporarily enhance the porosity of the capillary walls. This tempo-
rary enhancement of the walls is a consequence of wall shear stress and is due
to several mechanisms [30]. One such mechanism is acoustic microstreaming
which we intend to model using our liquid-crystalline shelled microbubble
model. It has been proposed by Doinikov and Bouakaz that both the damp-
ing term and the natural frequency of the shell have a significant influence on
the magnitude of the wall shear stress. We will compare and contrast the wall
shear stress generated by a solution of liquid-crystalline shelled microbubbles
acting on a viscoelastic capillary wall to that generated by a solution of com-
mercial contrast agents such as Sonovue.

We accept that experimental data is required in order to validate the
findings of our mathematical model. It is the authors’ hope that this journal
article instigates future experimental work.
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