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Abstract 

Background:  Accelerometer-driven physical activity guidelines are not available, likely due to the lack of 

consensus on meaningful and interpretable accelerometer outcomes. The aim of this paper is to 

demonstrate how a data-driven accelerometer metric, the acceleration above which a person’s most active 

minutes are accumulated, can a) quantify the prevalence of meeting current physical activity guidelines for 

global surveillance and b) moving forward, could inform accelerometer-driven physical activity guidelines. 

Unlike cut-point methods, the metric is population-independent (e.g. age) and comparable across datasets. 

Methods: Secondary data analyses were carried out on five datasets using wrist-worn accelerometers: 

children (N=145), adolescent girls (N=1669), office workers (N=114), pre- (N=1218) and post- (N=1316) 

menopausal women, and adults with type 2 diabetes (N=475). Open-source software (GGIR) was used to 

generate the magnitude of acceleration above which a person’s most active 60, 30 and 2 minutes are 

accumulated: M60ACC; M30ACC and M2ACC, respectively. Results: The proportion of participants with M60ACC 

(children) and M30ACC (adults) values higher than accelerations indicative of brisk walking (i.e., moderate-to-

vigorous physical activity) ranged from 17-68% in children and 15%-81% in adults, tending to decline with 

age. The proportion of pre-and post-menopausal women with M2ACC values indicative of running and thus 

meeting recently presented thresholds for bone health ranged from 6-13%. Conclusion: These metrics can 

be used for global surveillance of physical activity, including assessing prevalence of meeting the current 

physical activity guidelines, across the lifespan. Translation of acceleration magnitudes into indicative 

activities provides a public health friendly interpretation of results. As accelerometer and corresponding 

health data accumulate it will be possible to interpret the metrics relative to age- and sex- specific norms 

and derive evidence-based physical activity guidelines directly from accelerometer data for use in future 

global surveillance. This is where the key advantages of these metrics lie. 

Keywords: MVPA; public health guidelines; population-independent; accelerometer metrics; GENEActiv; 

Axivity; ActiGraph 
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Introduction 

National and/or large-scale surveys of physical activity through accelerometers are now commonplace in 

many countries worldwide1-5. The World Health Organisation’s recent Global Activity Action Plan on Physical 

Activity 2018-20306 highlights monitoring and surveillance, using robust and reliable data, as the 

cornerstone to the implementation and evaluation of national strategies. Accelerometers provide a valid 

measure of physical activity7; however, a lack of consensus on robust and consistent methods to reduce and 

analyse data to create meaningful and easy to interpret outcome variables, is hampering monitoring and 

evaluation activities. 

For example, epidemiological studies and surveillance studies frequently create variables from 

accelerometer-assessed moderate-to-vigorous physical activity (MVPA) using intensity cut-points. The 

problems with using cut-points to quantify activity are well documented but, briefly, include: (1) cut-points 

are protocol-, and population- (e.g. age-group) specific, leading to results that are not comparable across 

studies8-10; (2) two participants with similar levels of activity score very differently if one has activity falling 

just above the cut-point and one has activity falling just below the cut-point; (3) many participants fail to 

obtain any activity above cut-points (particularly in the vigorous range), consequently a large number of 

people simply score zero minutes. Recently, in an examination of how cut-points influence estimates of 

physical activity, Migueles et al.11,p1 stated that it was ‘not possible (and probably will never be) to know the 

prevalence of meeting the physical activity guidelines based on accelerometer data’. Clearly a new approach 

to analysing and interpreting accelerometer data is needed. 

An alternative approach is to identify the minimum acceleration value above which a person’s most active 

minutes, for example 30 mins (M30ACC), is accumulated. The active minutes can be accumulated in any way 

across the day, with no need for the activity to be in bouts, in line with recent physical activity 

recommendations12. With this approach the metric is population-independent and derived from directly 

measured acceleration, thus not relying on assumptions as cut-points do9, and the intensity is captured 
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regardless of level of activity with no person scoring zero. This bears similarities to the peak 30 min walking 

cadence (steps/min) proposed by Tudor-Locke and colleagues13 as a practical estimate of activity intensity.  

Moving forward, as accelerometer and corresponding health data accumulate, these data-driven population-

independent metrics could be used to inform accelerometer-driven physical activity guidelines as 

recommended by Troiano et al.10, rather than inappropriately evaluating physical activity assessed by 

accelerometer cut-points to guidelines developed from self-report data, which are conceptually different10. 

For example, the M30ACC and/or M60ACC that is positively associated with a given health marker, e.g. 

adiposity, could be determined. This M30ACC and/or M60ACC value could then be used for surveillance which, 

importantly, would facilitate surveillance using the same physical activity metric as used to garner the 

evidence. As data accumulate, it would be possible to interpret the M30ACC and M60ACC relative to age- and 

sex- specific norms and/or relative to values associated with health markers.  

To facilitate public-health recommendations, translation of the metrics to public-health friendly indicative 

activity types is desirable, e.g. brisk walking, and/or MVPA. This translation is necessarily population-specific 

and thus bears similarities to cut-point analyses. However, crucially this is only in the translation of the data 

for activity recommendations because all analyses are carried out on the population-independent metrics9. 

In contrast, when using cut-points, thresholds are imposed on the data from the outset to collapse data into 

categories for analysis, rendering it impossible to subsequently compare any datasets deploying different 

cut-points.  

For example, assume that a child has an M60ACC of 225 mg. Until we have the data to compare this to 

accelerometer-driven physical activity guidelines, we can assess whether the child is meeting the current 60 

min daily MVPA guideline12 by comparing the M60ACC value to indicative activities, or the various cut-points 

available. According to the 200 mg MVPA cut-point (indicative of brisk walking) published by Hildebrand et 

al.14, the child exceeds the 60 minutes of MVPA per day recommendations12, while according to a more 

stringent 250 mg MVPA cut-point published by Phillips et al.15, the child does not quite reach the 
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recommendations. If a cut-point approach had been used to analyse the data, the child’s score could not be 

compared to any alternative cut-point or threshold.  

For the purposes of a simple demonstration of how these metrics could be used for surveillance of 

adherence to current physical activity guidelines12, we looked at the daily average acceleration above which 

the most active 30 mins (M30ACC, adults) or 60 mins (M60ACC, children) was obtained. It would be possible to 

alter the number of minutes over which the minimum acceleration is considered, depending on the health 

outcome of interest or the guideline being assessed. For example, in a large cross-sectional observational 

study, Stiles et al.16 demonstrated that accumulating 1-2 minutes of accelerometer-assessed high intensity 

activity, equivalent to running, was associated with bone health in pre- and post-menopausal women.  

The primary aim of this paper is to demonstrate how the acceleration above which a person’s most active 

minutes are accumulated, can be used to quantify prevalence of meeting existing physical activity guidelines. 

A secondary aim is to illustrate how in the future, as accelerometer and corresponding health data 

accumulate, these population-independent metrics could be used to inform accelerometer-driven physical 

activity guidelines, which is where the key advantages of these metrics lie. 

Methods 

Secondary data analyses were carried out on five diverse datasets: 10 y old children17, adolescent girls18,19, 

adult office workers20, pre- and post-menopausal women16, and adults with type 2 diabetes. All participants 

gave assent (children and adolescent girls) or informed consent (adults). Parents/guardians of the children 

gave written informed consent and parents/guardians of the adolescent girls returned an opt-out consent 

form if they did not want their child to participate. All studies received the appropriate institutional ethics 

approval.  

In all samples, wrist worn accelerometers were worn 24 h a day for up to 7-days. The children and adult 

office workers wore the ActiGraph GT9X (ActiGraph, Pensacola, FL, USA), the adolescent girls and the adults 

with type 2 diabetes wore the GENEActiv (ActivInsights Ltd, Cambridgeshire, UK) and the pre- and post-
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menopausal women wore the Axivity AX3 (Axivity, Newcastle, UK). The pre- and post-menopausal women 

wore the monitor on their dominant wrist, all other samples wore monitors on the non-dominant wrist. All 

monitors were initialised to record accelerations at 100 Hz, except the adult office workers whose monitors 

were initialised at 30 Hz. 

ActiGraphs were initialised and downloaded using ActiLife version 6.11.9 (ActiGraph, Pensacola, FL, USA). 

Data were saved in raw format as GT3X files, before being converted to raw csv file format for signal 

processing. GENEActivs were initialised and data downloaded in binary format using GENEActiv PC (version 

3.1). Axivity data were downloaded from UK Biobank in .cwa format, auto-calibrated, resampled (100 Hz) 

and converted to .wav format using open-source software (Omgui Version 1.0.0.28; Open Movement, 

Newcastle, UK). 

All accelerometer files were processed and analysed with R-package GGIR version 1.6-7 (http://cran.r-

project.org)21,22. Signal processing in GGIR included auto-calibration using local gravity as a reference21 (apart 

from the Axivity files which were auto-calibrated when converted to .wav files); detection of sustained 

abnormally high values; detection of non-wear; and calculation of the average magnitude of dynamic 

acceleration corrected for gravity (Euclidean Norm minus 1 g, ENMO). These were averaged over 1 or 5 s 

epochs (1s: pre- and post-menopausal women (UK Biobank); 5 s: children, adolescent girls, adult office 

workers and adults with type 2 diabetes) and expressed in milli-gravitational units (mg). 

Participants were excluded if their accelerometer files showed: post-calibration error greater than 0.01 g (10 

mg), fewer than three days of valid wear (defined as >16 h per day), or wear data wasn’t present for each 15 

min period of the 24 h cycle. The following metrics were generated and averaged across all valid days: 

average acceleration; intensity gradient (intensity distribution23); acceleration above which a person’s most 

active X minutes (MXACC) are accumulated: M60ACC (mg); M30ACC (mg), M2ACC (mg), (GGIR qlevels (0,24 

hours): 1380/1440, 1410/1440 and 1438/1440). As acceleration measured at the dominant wrist is 

approximately 10% higher than the non-dominant24, magnitudes of M60ACC, M30ACC and M2ACC were reduced 

by 10% for dominant wrist placement (pre- and post-menopausal women). 
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Analyses: Descriptive statistics were calculated using mean (standard deviation (SD)) for continuous variables 

and percentage for categorical variables. 

Percentiles (5th - 95th percentile) were graphed for females (all samples) and males (where available) for the 

M60ACC, M30ACC and M2ACC. Presenting percentiles for each metric illustrates the magnitude of the most 

active X minutes, from the least to the most active participants, within each sample. To address our primary 

aim, the proportion of each sample meeting the MVPA physical activity guidelines, operationalised for the 

purposes of this demonstration as a daily average of 30 min for adults and 60 mins for children and 

adolescents, was calculated. For MVPA, we used acceleration values indicative of a brisk walk (5 km/h,  3.6 

METs: 170 mg adults; 200 mg children14) and of a fast walk (5.6 km/h,  4.5 METs: 250 mg adults; 300 mg 

children14,25,26). In addition, the proportion of pre- and post-menopausal women meeting the recently 

proposed accelerometer-driven guide of 2 min high-intensity activity associated with bone health16 was 

calculated. The thresholds (>1000 mg (medium run) pre-menopausal, > 750 mg, post-menopausal (slow 

run)) were generated using dominant wrist data16, so are adjusted by -10%24.  

Results 

Descriptive characteristics are presented in Table 1. Valid accelerometer data files were available for 64% of 

10 y old children, 96% of adolescent girls, 78% of adult office workers and 99% of adults with type 2 

diabetes. All accelerometer files for the pre- and post-menopausal women from UK Biobank meeting the 

criteria of Stiles et al.16 were available and included (see Stiles et al.18 for details). 
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Table 1. Descriptive characteristics of the five datasets.  

  9-10 y old 
children  

 

Adolescent girls 
 

Adult office 
workers 

 

Women: UK Biobank 
 

Adults with type 
2 diabetes  

   
(N=145) 

11-12 y 
(N=974) 

13-14 y 
(N=695) 

 
(N=114) 

Pre-menopausal 
(N=1218) 

Post-menopausal 
(N=1316) 

 
(N = 475) 

 

Sex (%) 
 

Males 
 

42.8 
 

 

0 
 

0 20.4 0 0 64 

 Females 
 

57.2 100 100 79.6 100 100 36 

Age (y) 
 

 9.6 (0.3) 12.3 (0.4) 13.6 (0.4) 41.2 (10.9) 46.2 (3.9) 59.0 (5.1) 64.2 (8.7) 

Body size Height (cm) 137.5 (5.9) 153.5 (7.7) 159.5 (6.8) 165.9 (7.5) 164.9 (6.0) 163.2 (6.1) 168.6 (11.4) 
Mass (kg) 35.2 (8.2) 45.5 (10.8) 53.6 (12.8) 73.1 (17.3) 65.4 (12.0) 68.1 (11.8) 107.5 (14.5) 
Body mass 
index (BMI) 
(kg.m-2) 

 

18.5 (3.3) 19.2(3.6) 20.9 (4.3) 26.5 (5.9) 24.9 (4.2) 25.6 (4.4) 31.4 (5.4) 

 **zBMI 

 

0.63 (1.19) 0.08 (1.30) 0.34 (1.33)     

Accelerometer  
 

Brand ActiGraph GT9X 
 

GENEActiv 
 

GENEActiv 
 

ActiGraph GT9X 
 

Axivity 
 

Axivity 
 

GENEActiv 
 

 Wrist 

 

Non-dominant Non-dominant Non-dominant Non-dominant Dominant Dominant Non-dominant 

*Physical 
activity 

Average 
acceleration 
(mg) 

45.8 (13.1) 37.8 (9.0) 34.3 (7.9) 26.9 (7.7) *30.6 (8.5) *27.1 (7.0) 22.0 (7.3) 

†Intensity 
gradient 

-1.96 (0.14) -2.19 (0.15) -2.28 (0.17) -2.55 (0.22) -2.66 (0.16) -2.74 (0.16) -2.74 (0.20) 

‡M60ACC (mg) 216.9 (71.5) 180.4 (42.9) 166.7 (37.7) 129.1 (37.9) *158.3 (47.7) *139.1 (34.1) 103.9 (36.3) 
‡M30ACC (mg) 363.9 (135.5) 260.6 (75.8) 233.0 (63.80 188.1 (95.6) *226.4 (85.9) *191.7(56.2) 136.9 (50.5) 
‡M2ACC (mg) 1545.1 (518.8) 954.2 (323.7) 771.9 (301.5) 426.5 (216.2) *522.2 (228.9) *503.8 (160.3) 305.0 (115.0) 

Values are mean (standard deviation) for continuous variables and % for categorical variables. 

* Reduced by 10% as acceleration measured at the dominant wrist is approximately 10% higher than measured at the non-dominant24. 

** zBMI: BMI expressed in z-scores for sex and age according to reference curves for the UK27. 

†Measure of the intensity distribution of the 24 h activity profile, see Rowlands et al.23. A more negative gradient reflects a steeper drop with little time accumulated at 

mid-range and higher intensities, while a less negative gradient reflects a shallower drop with more time spread across the intensity range. 

‡M60ACC, M30ACC, M2ACC: acceleration above which a person’s most active minutes (X min, MXACC) are accumulated. 
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Figures 1 and 2 show percentile plots for M60ACC, M30ACC and M2ACC for females and males, 

respectively, in order of increasing sample mean age. Accelerations associated with a brisk walk (5 

km/h), fast walk (5.6 km/h) and run (>8 km/h) are marked on the y-axes to illustrate how the data 

could be translated in a public-health friendly way14. The expected age-related decline in intensity of 

physical activity was relatively greater the fewer minutes considered (i.e. M2ACC relative to M30ACC, 

and M30ACC relative to M60ACC), but also for higher percentiles (i.e. higher intensity) within a given 

outcome (Figures 1b-c, 2b-c). Sex differences were most evident in 10 y old children, with the 

intensity of boys’ activity greater than that of girls’ (Figures 1a-c compared to 2a-c).  

Table 2 shows the proportion of each sample meeting MVPA guidelines operationalised as 60 min 

per day (children) or 30 min per day (adults) of brisk walking or fast walking. The MXACC above which 

the most active time is accumulated is shown for those meeting and not meeting the guidelines. The 

proportions of pre- and post-menopausal women meeting the recent accelerometer-derived guide 

proposed for bone health (2 minutes >1000 mg (medium run) pre-menopausal, >750 mg (slow run) 

post-menopausal (18)) were 6% and 13%, respectively (Figure 1c). 
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Figure 1: Percentiles for the magnitude of acceleration above which the females’ most active (a) 60, 
(b) 30 and (c) 2 minutes are accumulated: M60ACC; M30ACC and M2ACC (mg). Black dashes /dashed 
lines represent: (a) M60ACC and (b) M30ACC at the intensity of a brisk walk (lower dashed line) or fast 
walk (upper dashed line); (c) M2ACC at the bone health threshold: medium running for pre-
menopausal women and slow running for post-menopausal women14 
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Figure 2: Percentiles for the magnitude of acceleration above which the males’ most active (a) 60, (b) 
30 and (c) 2 minutes are accumulated: M60ACC; M30ACC and M2ACC (mg). Black dashes /dashed lines 
represent: (a) M60ACC and (b) M30ACC at the intensity of a brisk walk (lower dashes / dashed line) or 
fast walk (upper dashes / dashed line) 
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Table 2: Proportion of each sample meeting MVPA guidelines operationalised as 60 min per day 

(children) or 30 min per day (adults) of brisk walking or fast walking 

  
Brisk walk 

 
Fast walk 

 

  
Female Male Female Male 

Children 60 min >200 mg >200 mg >300 mg >300 mg 

10 y olds % meeting guideline 39% 68% 2% 21% 
 

NO: M60ACC  164.9 (21.3) 157.8 (27) 192.0 (42.2) 212.1 (53.1) 
 

YES: M60ACC 242.3 (28.4) 289.1 (74.4) 302.2 (1.64) 377.2 (70.2) 
      

 11-12 y olds % meeting guideline 26% 
 

2% 
 

 
NO: M60ACC  161.4 (23.3) 

 
177.6 (36.8) 

 

 
YES: M60ACC 235.6 (39.0) 

 
355.2 (43.30 

 

      

13-14 y olds % meeting guideline 17% 
 

1% 
 

 
NO: M60ACC  154.6 (25.1) 

 
164.4 (25.6) 

 

 
YES: M60ACC 228.1 (30.1) 

 
320.1 (10.5) 

 

Adults 30 min >170 mg >170 mg >250 mg >250 mg 

Office 

workers 

% Meeting guideline 45% 55% 11% 14% 

NO: M30ACC  141.7 (18.2) 147.7 (16.0) 161.4 (30.9) 167.5 (27.4) 

YES: M30ACC 246.8 (133.6) 212.8 (46.0) 427.9 (188.5) 282.8 (19.5) 
      

Pre-

menopausal 

women 

% meeting guideline 81% 
 

25% 
 

NO: M30ACC  150.8 (15.1) 
 

191.2 (31.3) 
 

YES: M30ACC 244.5 (86.0) 
 

334.5 (107.6) 
 

      

Post-

menopausal 

women 

% meeting guideline 63% 
 

11% 
 

NO: M30ACC  145.6 (17.6) 
 

177.3 (33.5) 
 

YES: M30ACC 219.0 (53.4) 
 

303.4 (69.9) 
 

      

Adults with 

type 2 

diabetes 

% meeting guideline 15% 16% 2% 3% 

NO: M30ACC  118.7 (23.9) 123.9 (26.5) 129.2 (35.1) 132.8 (33.9) 

YES: M30ACC 203.8 (28.4) 221.2 (89.1) 268.8 (15.4) 354.5 (0) 
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Discussion 

Given the rising use of accelerometers, including their use in large-scale surveyse.g.1-5, it is important 

to have simple to derive and easy to interpret accelerometer variables that can be used to compare 

physical activity across datasets/populations/countries. This would facilitate global surveillance and 

the development of evidence-based physical activity guidelines directly from accelerometer data. As 

data accumulate, physical activity of groups and individuals can be interpreted relative to age- and 

sex- specific norms and/or relative to values associated with health markers. While the values 

themselves are not immediately intuitive, this is also true of many metrics that are commonly used 

by researchers, clinicians and the public28. For example, risk thresholds for health markers such as 

body mass index, blood pressure, and cholesterol are routinely used and widely understood. As 

outlined by Welk et al.28, a range of instruments are used to obtain measures of blood pressure, but 

the use of a standardised metric makes it possible for researchers, clinicians and patients to discuss a 

common number. This would also be possible with widespread use of standardised population-

independent accelerometer measures of physical activity.  

In this paper, we demonstrate how presenting percentiles for population-independent metrics such 

as the M60ACC and M30ACC can be used now to estimate adherence to current MVPA guidelines. The 

numerous problems associated with applying cut-points to accelerometer data8-10 are avoided as the 

data and results presented are data-driven. Comparison to any indicative activity, cut-point or, more 

importantly, any future health-related accelerometer threshold is possible and can be carried out 

post-hoc with no access to the original data needed. Further, demographic-specific translations can 

be carried out post-hoc to facilitate public-health friendly recommendations using accelerations 

representative of typical activities.  Crucially, population-specific translation is only for interpretation 

and has no bearing on analyses or results presented. This means the metrics and results retain their 

population-independence9.  
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Further, comparison or translation is not tied to an exact acceleration value for an indicative activity 

or cut-point. For example, if a child accumulates 60 min of activity in the acceleration range of 185 – 

199 mg, their M60ACC will be 185 mg. Another child may accumulate 60 min with accelerations just 

exceeding 200 mg. With the cut-point method, these similar activity levels look very disparate; zero 

min of MVPA and 60 min of MVPA, respectively. Their M60ACC, on the other hand reflects the smaller 

discrepancy in activity level that is evident; 185 mg and 200 mg. At a group level, presenting 

percentiles for the MXACC values as illustrated herein (Figures 1 and 2), displays the proportion of a 

sample achieving X min at any given intensity. In contrast, once cut-points have been applied, any 

activity accumulated just below a given cut-point will always be disregarded, irrespective of how the 

data are presented. 

By decreasing the number of minutes of interest the metric can be used to focus on aspects of 

health that benefit from short, high-intensity bursts of activity, e.g. bone health16, 29. Accelerometer-

derived physical activity intensity guides for bone health have recently been proposed for pre- and 

post-menopausal women using data from a UK Biobank16; these metrics could be used to further 

test this recommendation and to derive guidelines from accelerometer data specific to bone health 

in men and children. 

To aid translation, we expressed the acceleration magnitudes in relation to indicative activities, e.g. 

brisk walk, fast walk and run. Currently there are limited data from which to draw these estimates. 

To enhance translation of these metrics there is a need to generate more data showing the 

acceleration ranges associated with indicative activities across a wide range of demographics. Note, 

this is only for translation and is not necessary for generation of the accelerometer metrics from 

data, or for developing the evidence base necessary to derive physical activity guidelines directly 

from accelerometer data. 

The acceleration magnitudes tended to be higher for the pre-menopausal women who wore the 

Axivity on their dominant wrist than for the slightly younger office workers who wore the ActiGraph 
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on their non-dominant wrist. While this may be due to the sedentary nature of the office job, it 

could reflect the non-representative nature of the samples, indicate that the -10% reduction in 

acceleration for dominant wrist placement24 was insufficient, and/or that there were differences 

between the ActiGraph and the Axivity. While raw data from the GENEActiv and Axivity 

accelerometers compare well24, ‘raw’ data from the ActiGraph GT9X is passed through a filter that 

suppresses higher intensity accelerations. The accelerometer sampling frequency and epoch differed 

between some studies. As the metrics are sampling frequency independent this should not impact 

on the outcomes generated with GGIR, but this needs to be confirmed empirically. It is also possible 

that the use of 1 s and 5 s epochs may have impacted on the MXACC outcomes, however, in our 

previous study data summarised in 1 s and 5 s epochs were comparable30. 

Conclusion 

Cut-point approaches to analysing accelerometer data are not appropriate for assessing the 

prevalence of meeting guidelines globally11. Metrics reflecting the acceleration above which the 

most active minutes are accumulated are a standardised, easy to interpret, and population-

independent method appropriate for assessing prevalence of physical activity and comparing activity 

between demographics and/or studies. These simple to derive variables facilitate global surveillance 

and dose-response studies.  Furthermore, translating the metrics in terms of indicative activities (e.g. 

brisk walking) can provide a public-health friendly interpretation of the results9. Currently, guidelines 

are largely derived from self-report data10. As accelerometer and corresponding health data 

accumulate it will be possible to derive evidence-based physical activity guidelines directly from 

accelerometer data.  
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