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Abstract

Mendelian randomization is the use of genetic variants as instruments to assess the
existence of a causal relationship between a risk factor and an outcome. A Mendelian
randomization analysis requires a set of genetic variants that are strongly associated
with the risk factor and only associated with the outcome through their effect on the risk
factor. We describe a novel variable selection algorithm for Mendelian randomization
that can identify sets of genetic variants which are suitable in both these respects. Our
algorithm is applicable in the context of two-sample summary-data Mendelian
randomization and employs a recently proposed theoretical extension of the traditional
Bayesian statistics framework, including a loss function to penalize genetic variants that
exhibit pleiotropic effects. One of our algorithm’s main advantages is more robust
inference through the use of model averaging, as we illustrate by running it on a wide
range of simulation scenarios and comparing it against established pleiotropy-robust
Mendelian randomization methods. In a real data application, we study the effect of
systolic and diastolic blood pressure on the risk of suffering from coronary heart disease.
Although this application has been studied in the past, we add to the literature by using
for the first time a recent large-scale GWAS on blood pressure, allowing us to select 395
genetic variants for systolic and 391 variants for diastolic blood pressure. Both traits are
shown to have significant risk-increasing effects on coronary heart disease risk.

Introduction 1

Mendelian randomisation provides a framework for probing questions of causality from 2

observational data using genetic variants. It applies the theory of instrumental variable 3

analysis from the causal inference literature, using genetic variants associated with the 4

risk factor as instruments. Mendelian randomization relies on the idea that, since 5

genetic variants are randomly inherited and fixed at conception, they should be 6

uncorrelated with potential confounders of the relationship between the risk factor and 7

outcome and are therefore suitable to use as instruments. This approach has received 8

much attention since the seminal paper of Davey Smith and Ebrahim [1], and has led to 9

a number of influential results over the last decade addressing a variety of aetiological 10

questions [2]. For example, in coronary heart disease, Mendelian randomization has 11

been used to strengthen the evidence for a causal role of lipoprotein(a) [3], but to 12

weaken the case for C-reactive protein [4]. 13
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Formally, Mendelian randomization relies on three basic assumptions: 14

1. The genetic variants are independent of any confounders of the risk 15

factor-outcome association. 16

2. The genetic variants are strongly associated with the risk factor of interest. 17

3. The genetic variants only influence the outcome via their association with the risk 18

factor and not through alternative causal mechanisms. 19

The three assumptions are illustrated in Fig 1. Under these assumptions, valid causal 20

inferences can be made as to whether the risk factor affects the outcome. 21

Fig 1. A causal diagram representation of the three assumptions of Mendelian
randomization. Here, X represents the risk factor, Y the outcome, G the genetic
instrument and U denotes confounders of the X − Y relationship.
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In practice, assumption (1) is usually justified on the basis of Mendelian inheritance: 22

an individual’s genotype is randomly assigned at conception and not influenced by 23

external confounding factors. To ensure the validity of assumption (2) Mendelian 24

randomization analyses typically rely on the results of large consortia meta-GWAS, 25

which use sample sizes of tens or hundreds of thousands of individuals to identify 26

genetic variants robustly associated with a trait. In particular, many recent Mendelian 27

randomization studies have utilized a two-sample approach in which genetic associations 28

with the target risk factor and with the outcome are assessed in separate datasets. 29

However, these GWAS results are rarely available as individual-level data. Usually, only 30

a set of summary statistics, such as univariate variant-trait associations and 31

corresponding standard errors, are reported. As a result, a large number of recent 32

Mendelian randomization investigations rely on summarized data. 33

Assumption (3), often called the exclusion restriction or no-pleiotropy assumption, 34

has received much attention in the recent literature. In practical applications, we 35

typically do not know which genetic variants exhibit pleiotropic effects and there is need 36

for methods to perform Mendelian randomization in the presence of some potentially 37

pleiotropic variants. Traditional approaches include MR-Egger regression [5] and 38

median estimation [6], while several algorithms for pleiotropy-robust Mendelian 39

randomization have been developed recently [7–14]. A recent review and comparison of 40

the various methods can be found in [15]. 41

In this paper, we add to the relevant literature by proposing a new method for 42

variable selection and causal effect estimation in Mendelian randomization. Our method 43

is derived as an extension of the JAM algorithm (Joint Analysis of Marginal Summary 44

Statistics, [16]). JAM was originally proposed as an algorithm for fine-mapping genetic 45

regions. Similar to other recently proposed fine-mapping algorithms [17,18], JAM is 46

designed to work with summary GWAS data. The algorithm performs variable selection 47

to identify genetic variants robustly associated with the trait. Genetic correlations are 48
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taken into account by estimating them from a reference dataset such as 1000 Genomes 49

or the UK Biobank. Variable selection is performed according to a Bayesian stochastic 50

search algorithm, which can explore the complete space of causal configurations. 51

Consequently, JAM is able to explore complex models with large numbers of variants, as 52

recently demonstrated while fine-mapping dense genotype data for prostate cancer 53

risk [19]. 54

We develop a novel model averaging variable selection algorithm for Mendelian 55

randomization, which we call JAM-MR (JAM for Mendelian randomization). To do so, 56

we modify JAM’s variable selection to downweight genetic variants which exhibit 57

pleiotropic effects. Using a recently proposed theoretical extension of the core principles 58

of Bayesian inference citeBissiri2016, we augment JAM’s likelihood with a loss function 59

that penalizes models containing variants with heterogeneous univariate causal effect 60

estimates. Our algorithm performs variable selection and returns variant-specific 61

posterior inclusion probabilities, which can be interpreted as probabilities of each 62

variant being a valid instrument, and posterior model probabilities, which can 63

subsequently be used to estimate the causal effect of interest by averaging across 64

model-specific estimates. Uncertainty in which variants should be excluded on the basis 65

of pleiotropy is reflected by averaging estimates over competing selections of 66

instruments; model averaged causal inference is an attractive feature and one of the key 67

contributions of our method. 68

Further advantages of our algorithm compared to established approaches for 69

pleiotropy-robust Mendelian randomization include its dependence on a tuning 70

parameter that represents the strength of pleiotropy penalization; varying the value of 71

this parameter can be a useful tool for sensitivity analysis. JAM-MR also offers a 72

natural framework for incorporating genetic correlations, when conducting Mendelian 73

randomization with several genetic variants coming from the same gene region. The use 74

of the Bayesian paradigm allows us to incorporate prior information on the suitability of 75

genetic variants as instruments into the analysis. It also allows us to model the 76

uncertainty in genetic associations with the risk factor, which is often ignored by other 77

approaches and can cause underestimation of standard errors. Finally, the use of the 78

Bayesian loss function framework [20] means that our algorithm does not have to make 79

any modelling assumptions for the risk factor-outcome relationship. 80

The performance of our algorithm is illustrated in a range of simulated datasets, as 81

well as in a real data application where we investigate the causal effect of systolic and 82

diastolic blood pressure on the risk of coronary heart disease. Although this application 83

has been studied in the past, for the first time we instrument blood pressure using a 84

recently published large scale meta-GWAS, which combined results across more than 85

one million individuals, and therefore base our Mendelian randomization analysis on 86

larger sample sizes and more genetic variants compared to previous studies in the 87

literature. Our results strengthen the claim for a risk-increasing causal relationship 88

between blood pressure traits and coronary heart disease risk. 89

Results 90

Simulation studies 91

Simulation setting 92

The JAM-MR algorithm’s reliance on model averaging means that it is likely to yield 93

robust causal inferences in a wide range of pleiotropic scenarios. To asess that, we 94

conducted a large number of simulations comparing our algorithm to established 95

approaches for Mendelian randomization. The Mendelian randomization model that we 96
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used for the simulations was 97

U =
P∑
j=1

αjGj + εU (1)

X =
P∑
j=1

βXjGj + αXU + εX (2)

Y = θX +
P∑
j=1

δjGj + αY U + εY (3)

εU , εX , εY ∼ N(0, 1) independently of each other

where G1, . . . , GP are the genetic variants, X is the risk factor, Y the outcome and U 98

denotes confounders of the risk factor-outcome association. The parameter θ denotes 99

the causal effect to be estimated, while αj , βj , δj are the effects of genetic variant Gj on 100

U,X, Y respectively. For genetic variants that are valid instruments, δj = αj = 0. 101

Our simulations were conducted using the statistical software R. In each simulation, 102

we generated P = 50 independent genetic variants of which P1 = 35 were valid and 103

P − P1 = 15 were pleiotropic. We considered either a null (θ = 0) or a positive (θ = 0.5) 104

causal effect. Effect allele frequencies for the genetic variants were drawn uniformly in 105

(0.1, 0.9). Genetic effects βXj on the risk factor were simulated uniformly in (0.1, 0.2); 106

this loosely corresponds to genome-wide significant variants with p-values ranging from 107

10−40 to 10−7. The proportion of variation in the risk factor explained by the genetic 108

variants was fixed at 10%. 109

We considered four different simulation scenarios, corresponding to different patterns 110

of pleiotropic behaviour. The first scenario was a “balanced pleiotropy” setting, in which 111

the direct effects δj for the 15 pleiotropic variants were drawn uniformly at random in 112

(−0.2, 0.2) and the variant-confounder effects αj were equal to zero. In the second 113

scenario (“directional pleiotropy”), we simulated the direct effects δj in (0, 0.2) instead. 114

In the third scenario we fixed all pleiotropic effects δj at 0.1; this represents a situation 115

where multiple pleiotropic variants act on the same causal pathway and have direct 116

effects of similar magnitude. Finally, in the fourth scenario we generated direct effects 117

uniformly in (0, 0.2) and also allowed pleiotropic variants to influence the confounder, by 118

simulating G-U effects αj uniformly in (−0.1, 0.1). This scenario represents a violation 119

of the InSIDE assumption, which states that instrument strength is independent of the 120

genetic variants’ pleiotropic effects on the outcome. The four scenarios are summarized 121

in Table 1. For each of the four scenarios, we replicated the simulation 1000 times. 122

Table 1. Different simulation scenarios.

Scenario Type of Pleiotropy Direct Effects Confounder Effects

1 Balanced δj ∼ U(−0.2, 0.2) αj = 0
2 Directional δj ∼ U(0, 0.2) αj = 0
3 Directional δj = 0.1 αj = 0
4 InSIDE Violation δj ∼ U(0, 0.2) αj ∼ U(−0.1, 0.1)

Since Mendelian randomization typically relies on summary data, we adapted our 123

simulations accordingly. We used Eq (1), (2), (3) to generate individual-level data and 124

then computed univariate estimates of association of each genetic variant with the risk 125

factor and outcome, along with corresponding standard errors. These univariate 126

estimates constitute a typical GWAS output. We based our implementations of 127

JAM-MR and other Mendelian randomization algorithms on these estimates. 128

In each replication, we simulated two datasets: one from which to obtain genetic 129

associations with the risk factor and one from which to obtain associations with the 130
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outcome. This corresponds to a typical two-sample Mendelian randomization study, in 131

which the exposure and outcome GWAS are conducted in different samples. We used 132

sample sizes of N1 = N2 = 50000 for each dataset. 133

Competing methods 134

To assess the performance of the JAM-MR algorithm, we compared it against the 135

following methods for Mendelian randomization. 136

� Standard inverse variance weighted (IVW) estimation. 137

� MR-Egger regression [5]. 138

� Median estimation, weighted or unweighted [6]. 139

� Mode-based estimation [7]. 140

� A Lasso-type estimator [8, 9]. 141

� MR-Presso [11]. 142

� MR-Raps [12]. 143

For further details on these approaches, the reader is referred to the relevant citations. 144

To illustrate the use of the JAM-MR algorithm as a tool for sensitivity analysis, we 145

considered the following values for the tuning parameter: w = 0 (default JAM with no 146

pleiotropy penalization), w = 0.1N1, w = 0.2N1, w = 0.5N1, w = N1, w = 2N1 and 147

w = 5N1. In each instance, the algorithm was run for 1 million iterations. To 148

implement the competing Mendelian randomization algorithms, we used available R 149

packages - details are provided in the Methods section of the paper. For comparison 150

purposes, we also computed “oracle” IVW causal effect estimates and standard errors 151

using only the valid instruments. 152

Simulation results 153

The results of this simulation experiment are reported in Tables 2, 3, 4 and 5 for each of 154

the four simulation scenarios. We report average causal effect estimates, their standard 155

deviation across 1000 replications, estimated standard errors, average mean squared 156

errors and Type I error rates at a 95% significance level. Mean squared errors and Type 157

I error rates were computed using the estimated standard error values. In simulations 158

with θ = 0, Type I error rates were computed as the empirical power to reject the null 159

hypothesis of no association between the risk factor and the outcome at a 95% 160

significance level, while for θ = 0.5 we interpret “Type I error” as falsely rejecting the 161

true hypothesis H0 : θ = 0.5. 162

In the first simulation, all the Mendelian randomization methods provided nearly 163

unbiased estimates of the causal effect of interest. This was the case even for the 164

standard inverse-variance weighted estimator and the JAM implementation with w = 0, 165

which are the only two methods which do not perform pleiotropy adjustments. In this 166

“balanced pleiotropy” scenario, the pleiotropic effects cancel out and it is relatively easy 167

to obtain an accurate estimate of the causal effect. The Lasso and MR-Raps methods 168

resulted in the smallest estimated standard errors and mean squared errors, followed by 169

JAM-MR, MR-Presso and the median. However, we note the substantial differences 170

between estimated standard errors and the standard deviation of causal effect estimates. 171

These differences can be observed for several already existing methods, as well as 172

JAM-MR, and translate into confidence intervals with incorrect coverage and Type I 173

error rates above nominal levels. The MR-Egger and median methods were 174
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Table 2. Scenario 1: Balanced pleiotropy. Average causal effect estimates, standard deviation of estimates across
replications, estimated standard errors, mean squared errors and empirical Type I error rates for a variety of MR methods.

Method
θ = 0 θ = 0.5

Mean StDev StdError MSE Type I Mean StDev StdError MSE Type I

IVW 0.001 0.061 0.060 0.0074 0.063 0.495 0.064 0.061 0.0078 0.065
MR-Egger -0.013 0.301 0.285 0.1738 0.068 0.397 0.302 0.291 0.1882 0.067

Median (Simple) 0.000 0.023 0.023 0.0011 0.048 0.500 0.034 0.032 0.0022 0.055
Median (Weighted) 0.000 0.024 0.023 0.0011 0.058 0.493 0.033 0.032 0.0022 0.066
Mode (Simple) 0.000 0.028 0.036 0.0021 0.012 0.495 0.041 0.053 0.0046 0.009

Mode (Weighted) 0.000 0.026 0.032 0.0017 0.011 0.480 0.038 0.047 0.0041 0.031
Lasso 0.000 0.020 0.015 0.0006 0.134 0.496 0.027 0.020 0.0012 0.163

MR-Presso 0.000 0.020 0.017 0.0007 0.095 0.496 0.029 0.025 0.0015 0.101
MR-Raps (Simple) -0.005 0.253 0.014 0.0643 0.205 0.504 0.027 0.019 0.0011 0.165

MR-Raps (Overdispersed) 0.001 0.024 0.018 0.0010 0.132 0.503 0.037 0.031 0.0026 0.106

JAM-MR (w = 0) 0.001 0.061 0.060 0.0074 0.063 0.495 0.064 0.061 0.0078 0.065
JAM-MR (w = 0.1N1) 0.001 0.048 0.034 0.0035 0.137 0.496 0.052 0.037 0.0041 0.147
JAM-MR (w = 0.2N1) 0.000 0.034 0.024 0.0017 0.133 0.496 0.038 0.027 0.0022 0.150
JAM-MR (w = 0.5N1) -0.001 0.022 0.018 0.0008 0.126 0.493 0.031 0.022 0.0015 0.172
JAM-MR (w = N1) -0.001 0.021 0.017 0.0007 0.122 0.489 0.036 0.023 0.0019 0.220
JAM-MR (w = 2N1) 0.000 0.024 0.017 0.0009 0.142 0.489 0.046 0.025 0.0029 0.269
JAM-MR (w = 5N1) 0.001 0.034 0.020 0.0016 0.220 0.491 0.055 0.033 0.0042 0.263

Oracle 0.000 0.016 0.017 0.0005 0.043 0.495 0.023 0.023 0.0011 0.057

Table 3. Scenario 2: Directional pleiotropy. Average causal effect estimates, standard deviation of estimates across
replications, estimated standard errors, mean squared errors and empirical Type I error rates for a variety of MR methods.

Method
θ = 0 θ = 0.5

Mean StDev StdError MSE Type I Mean StDev StdError MSE Type I

IVW 0.191 0.036 0.053 0.0407 1.000 0.688 0.040 0.055 0.0402 0.993
MR-Egger 0.004 0.266 0.255 0.1370 0.059 0.401 0.271 0.261 0.1528 0.083

Median (Simple) 0.049 0.021 0.024 0.0034 0.525 0.570 0.032 0.035 0.0072 0.510
Median (Weighted) 0.045 0.022 0.024 0.0031 0.463 0.555 0.032 0.034 0.0052 0.347
Mode (Simple) 0.004 0.025 0.032 0.0017 0.006 0.506 0.038 0.049 0.0040 0.010

Mode (Weighted) 0.005 0.024 0.029 0.0015 0.015 0.490 0.036 0.043 0.0033 0.020
Lasso 0.022 0.019 0.015 0.0011 0.309 0.533 0.029 0.021 0.0023 0.386

MR-Presso 0.058 0.025 0.021 0.0045 0.770 0.562 0.032 0.029 0.0057 0.554
MR-Raps (Simple) 0.236 0.417 0.016 0.2298 0.439 0.530 0.028 0.019 0.0020 0.401

MR-Raps (Overdispersed) 0.056 0.066 0.025 0.0085 0.488 0.600 0.062 0.039 0.0156 0.731

JAM-MR (w = 0) 0.191 0.036 0.053 0.0407 1.000 0.688 0.040 0.055 0.0401 0.993
JAM-MR (w = 0.1N1) 0.095 0.041 0.035 0.0121 0.813 0.592 0.046 0.037 0.0121 0.699
JAM-MR (w = 0.2N1) 0.047 0.031 0.024 0.0038 0.464 0.543 0.039 0.028 0.0042 0.368
JAM-MR (w = 0.5N1) 0.018 0.022 0.018 0.0012 0.218 0.512 0.031 0.022 0.0016 0.181
JAM-MR (w = N1) 0.009 0.021 0.016 0.0008 0.165 0.501 0.035 0.023 0.0017 0.189
JAM-MR (w = 2N1) 0.005 0.024 0.017 0.0009 0.160 0.498 0.047 0.026 0.0028 0.257
JAM-MR (w = 5N1) 0.006 0.034 0.020 0.0016 0.233 0.505 0.057 0.033 0.0044 0.258

Oracle 0.000 0.016 0.017 0.0005 0.050 0.496 0.023 0.023 0.0011 0.051

well-calibrated, although in the case of MR-Egger this comes at the cost of much larger 175

standard errors. 176

Regarding the values of w, our algorithm generally performed best for w = 0.5N1, 177

w = N1 and w = 2N1. When w was set equal to 5N1, JAM-MR started penalizing valid 178

genetic variants and converging to fairly small models, exhibiting a small increase in 179

standard errors as a result. The heuristic criterion of selecting the run with the smallest 180

variance estimate suggests that on average the best w values are w = N1 for θ = 0 and 181

w = 0.5N1 for θ = 0.5 (although there were variations in the best w value in individual 182
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Table 4. Scenario 3: Directional pleiotropy with the same direct effect for all pleiotropic variants. Average causal effect
estimates, standard deviation of estimates across replications, estimated standard errors, mean squared errors and empirical
Type I error rates for a variety of MR methods.

Method
θ = 0 θ = 0.5

Mean StDev StdError MSE Type I Mean StDev StdError MSE Type I

IVW 0.192 0.020 0.045 0.0392 1.000 0.686 0.027 0.048 0.0375 1.000
MR-Egger -0.010 0.223 0.214 0.0963 0.073 0.380 0.225 0.224 0.1155 0.095

Median (Simple) 0.057 0.022 0.026 0.0044 0.602 0.581 0.035 0.039 0.0093 0.554
Median (Weighted) 0.051 0.024 0.025 0.0038 0.500 0.563 0.037 0.037 0.0066 0.381
Mode (Simple) 0.001 0.023 0.028 0.0013 0.018 0.496 0.034 0.047 0.0034 0.010

Mode (Weighted) 0.000 0.021 0.025 0.0011 0.020 0.481 0.031 0.040 0.0030 0.043
Lasso 0.017 0.020 0.016 0.0009 0.235 0.536 0.035 0.022 0.0030 0.404

MR-Presso 0.043 0.027 0.021 0.0030 0.501 0.594 0.041 0.036 0.0117 0.745
MR-Raps (Simple) 0.303 0.323 0.016 0.1958 0.553 0.523 0.035 0.019 0.0021 0.359

MR-Raps (Overdispersed) 0.170 0.018 0.048 0.0315 1.000 0.672 0.026 0.051 0.0328 0.998

JAM-MR (w = 0) 0.192 0.020 0.045 0.0392 1.000 0.686 0.027 0.048 0.0375 1.000
JAM-MR (w = 0.1N1) 0.149 0.036 0.040 0.0252 0.979 0.638 0.041 0.042 0.0224 0.939
JAM-MR (w = 0.2N1) 0.085 0.051 0.032 0.0110 0.674 0.578 0.054 0.035 0.0102 0.579
JAM-MR (w = 0.5N1) 0.003 0.020 0.017 0.0007 0.085 0.499 0.036 0.023 0.0019 0.186
JAM-MR (w = N1) 0.001 0.019 0.017 0.0006 0.089 0.487 0.035 0.024 0.0020 0.209
JAM-MR (w = 2N1) 0.000 0.023 0.018 0.0008 0.129 0.487 0.046 0.027 0.0030 0.255
JAM-MR (w = 5N1) 0.002 0.034 0.021 0.0016 0.215 0.497 0.055 0.034 0.0043 0.200

Oracle 0.001 0.016 0.017 0.0005 0.043 0.494 0.024 0.023 0.0012 0.074

Table 5. Scenario 4: InSIDE violation. Average causal effect estimates, standard deviation of estimates across replications,
estimated standard errors, mean squared errors and empirical Type I error rates for a variety of MR methods.

Method
θ = 0 θ = 0.5

Mean StDev StdError MSE Type I Mean StDev StdError MSE Type I

IVW 0.182 0.038 0.052 0.0372 0.994 0.661 0.039 0.058 0.0307 0.913
MR-Egger 0.014 0.253 0.180 0.0974 0.169 0.217 0.267 0.191 0.1885 0.369

Median (Simple) 0.049 0.021 0.024 0.0035 0.534 0.563 0.029 0.035 0.0061 0.440
Median (Weighted) 0.052 0.026 0.024 0.0039 0.578 0.547 0.034 0.033 0.0045 0.288
Mode (Simple) 0.009 0.091 0.045 0.0241 0.013 0.505 0.083 0.070 0.0518 0.008

Mode (Weighted) 0.005 0.090 0.043 0.0234 0.018 0.492 0.084 0.066 0.0509 0.026
Lasso 0.024 0.020 0.015 0.0012 0.377 0.526 0.029 0.020 0.0019 0.325

MR-Presso 0.058 0.027 0.021 0.0045 0.771 0.551 0.032 0.027 0.0044 0.465
MR-Raps (Simple) 0.358 0.745 0.022 0.6842 0.447 0.665 1.186 0.033 1.4927 0.370

MR-Raps (Overdispersed) 0.056 0.064 0.024 0.0081 0.488 0.572 0.056 0.034 0.0098 0.545

JAM-MR (w = 0) 0.179 0.038 0.051 0.0363 0.995 0.657 0.039 0.055 0.0293 0.921
JAM-MR (w = 0.1N1) 0.117 0.046 0.036 0.0172 0.906 0.584 0.043 0.035 0.0101 0.677
JAM-MR (w = 0.2N1) 0.087 0.044 0.030 0.0104 0.794 0.560 0.043 0.030 0.0064 0.506
JAM-MR (w = 0.5N1) 0.040 0.033 0.021 0.0031 0.468 0.526 0.039 0.024 0.0028 0.313
JAM-MR (w = N1) 0.022 0.026 0.017 0.0015 0.306 0.507 0.038 0.022 0.0020 0.247
JAM-MR (w = 2N1) 0.012 0.026 0.017 0.0011 0.230 0.501 0.046 0.024 0.0027 0.288
JAM-MR (w = 5N1) 0.009 0.034 0.020 0.0017 0.234 0.507 0.058 0.031 0.0044 0.296

Oracle 0.000 0.016 0.017 0.0005 0.037 0.495 0.022 0.024 0.0011 0.044

replications). 183

We also note that the performance of the various Mendelian randomization 184

algorithms relative to each other was similar for θ = 0 and for θ = 0.5. A notable 185

exception is the simple MR-Raps method, which was somewhat unstable for θ = 0 but 186

performed quite well for θ = 0.5. 187

In the directional pleiotropy scenario 2 (Table 3), we observed deviations in the 188

performance of the various methods. Bias in causal effect estimates was observed for the 189
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majority of methods, with mode-based estimation and JAM-MR being the most 190

accurate algorithms. Lasso, JAM-MR and MR-Presso exhibited the smallest standard 191

errors, with simple MR-Raps having small average estimated standard errors, but large 192

discrepancies in causal effect estimates between iterations for θ = 0. Once again, 193

deviations were observed between standard error estimates and the variance of causal 194

effect estimates across simulations. JAM-MR exhibited the smallest mean squared 195

errors. A similar pattern of results was observed in scenarios 3 and 4 (Tables 4 and 5 196

respectively). 197

In Fig 2 we visualize the causal effect estimates obtained from the various methods 198

for the directional pleiotropy simulation with θ = 0. We have plotted separately the 199

estimates obtained from JAM-MR implementations using different values for the tuning 200

parameter, to illustrate the use of the algorithm as a sensitivity analysis tool. Estimates 201

for small values of w were much larger than those for moderate and large values, 202

indicating that pleiotropic variants are present in the dataset and cause upwards bias in 203

the causal effect estimate. Without accounting for pleiotropy, we would have to reject 204

the null causal hypothesis at a 95% level. As we increase w towards the 205

minimum-standard-error value (plotted in red), causal effect estimates become unbiased. 206

However, for unnecessarily large values of w the estimates become more variable 207

because the pleiotropic loss function removes some of the valid SNPs and causal effect 208

estimation is based on fewer variants, increasing standard errors and reducing power to 209

detect a causal association. 210

We have also included in the plot (above the x-axis) the average number of genetic 211

variants assigned an inclusion probability higher than 0.5 for each JAM-MR 212

implementation. Note that the true number of valid instruments in this simulation was 213

35, which is approximately the number of variants selected by the algorithm for w 214

values with small standard errors. 215

Fig 2. Simulation scenario 2: directional pleiotropy (θ = 0). Causal effect estimates
and 95% confidence intervals for JAM-MR implementations with a range of w values
(left) and other Mendelian randomization algorithms (right).

The JAM-MR algorithm returns posterior inclusion probabilities for each genetic 216

variant, which can be plotted in a Manhattan plot. In Fig 3 we have plotted the 217

inclusion probabilities for a single implementation of simulation scenario 2 and three 218

JAM-MR runs, with w = 0.2N1, w = N1 and w = 5N1. We have coloured red the 219
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pleiotropic genetic variants. The plot illustrates that our algorithm makes accurate 220

selection of the valid instruments, when properly tuned (center). When a small value of 221

w is used (left), the algorithm may retain some pleiotropic SNPs in the analysis. On the 222

other hand, when w is large (right), the algorithm will correctly downweight pleiotropic 223

variants but may also downweight some of the valid SNPs. 224

Fig 3. Manhattan plots illustrating the posterior inclusion probabilities assigned to
each SNP by the JAM-MR algorithm with w = 0..2N1 (left), w = N1 (center) and
w = 5N1 (right), for a single implementation of simulation scenario 2.

Overall, the JAM-MR algorithm was one of the best-performing methods in our 225

simulations. The algorithm proved to be robust to a variety of pleiotropic patterns and 226

yielded accurate causal effect estimates. Together with mode-based estimation it 227

exhibited the smallest bias in our simulations, and it was also one of the algorithms 228

with smallest mean squared error. The main concern regarding the algorithm’s 229

performance is that it did not yield nominal Type I error rates. In the Methods section, 230

we propose a simple adjustment for JAM-MR’s standard errors to mitigate this issue. 231

In the appendix of the paper, we have included two additional sets of simulations. In 232

the first set, we assessed the performance of the various Mendelian randomization 233

methods using a larger sample size (N1 = N2 = 200000) and P = 100 genetic variants. 234

In the second set of simulations, we tested how each method is affected by varying the 235

proportion of invalid instruments. We considered 10%, 20% and 40% of the genetic 236

variants being invalid. The results of these simulations exhibited many similarities to 237

those already discussed. JAM-MR could compete with other established Mendelian 238

randomization algorithms and when properly tuned, gave accurate causal effect 239

estimates and low mean squared errors. Among competing approaches, the mode-based 240

method was the most accurate in estimating causal effects, especially when a large 241

proportion of instruments were invalid. Lasso, MR-Presso and MR-Raps attained the 242

smallest MSE, but this sometimes came at the cost of inflated type I error rates. 243

In further simulations, not reported here, we have considered scenarios with varying 244

SNP-risk factor associations, different numbers of genetic variants, diffferent magnitudes 245

of pleiotropic effects and differnt instrument strength. In all these scenarios, our 246

algorithm provided robust causal effect estimates and was among the best-performing 247

Mendelian randomization methods. 248

Application: effect of blood pressure on CHD risk 249

Blood pressure traits and associated genetic variants 250

We now illustrate the use of the JAM-MR algorithm in a real-data application. We 251

conduct a Mendelian randomization analysis to assess the effect of blood pressure on 252
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the risk of coronary heart disease (CHD). This application has been studied in the 253

past [5, 14,21] and it is generally accepted that high blood pressure has an increasing 254

effect on the risk of suffering from coronary heart disease, despite the fact that a 255

previous Mendelian randomization analysis [5] did not identify a causal relationship. 256

Our analysis is novel not in the question it aims to answer but in the data sources it 257

uses. We utilized a recently published meta-GWAS study [22] which identified hundreds 258

of genetic variants associated with blood pressure. The authors meta-analyzed data 259

from the International Consortium for Blood Pressure (ICBP), the UK BioBank, the 260

US Million Veterans Project and the Estonian Genome Center Biobank (EGCUT). In 261

total, a sample of approximately 1 million individuals of European descent was analyzed. 262

The study confirmed previously reported findings about 258 known and 92 reported but 263

not validated genetic variants associated with blood pressure. It also identified a total 264

of 535 novel associations. 265

We used two blood pressure traits for our analysis, namely systolic and diastolic 266

blood pressure. For each trait, we used all 258 genetic variants with an already 267

established relation to blood pressure, as well as any of the reported-but-not-validated 268

and novel variants reported to be associated with that trait. Among the novel findings, 269

we excluded from consideration variants which were associated with blood pressure in 270

the “discovery” GWAS but not in the “replication” GWAS in [22]. This resulted in a 271

total of P1 = 395 genetic variants for systolic and P2 = 391 genetic variants for diastolic 272

blood pressure; our analysis was therefore based on larger numbers of genetic variants 273

than previous Mendelian randomization investigations. 274

Genetic associations with systolic and diastolic blood pressure were obtained from 275

the Supplementary Tables of [22]. We used estimates based on the ICBP dataset of 276

N1 = 299024 individuals, as this was the only dataset for which genetic associations 277

were reported for all variants. Since the genetic associations with blood pressure were 278

replicated in independent datasets in [22], winner’s curse bias is unlikely to have had a 279

serious effect in our analysis. For the selected variants, we obtained genetic associations 280

with coronary heart disease risk from the CARDIoGRAMplusC4D Consortium [23], 281

based on a sample of N2 = 184305 individuals. The variants were mostly independent, 282

as a result of LD pruning in [22]. 283

Mendelian randomization analysis 284

We implemented JAM-MR and the competing Mendelian randomization methods in 285

this dataset to identify the causal effect of systolic and diastolic blood pressure on CHD 286

risk. The results are listed in Table 6, where we report the estimated causal effect 287

(log-odds ratio of increase in CHD risk per mmHg increase in blood pressure 288

measurement) and its 95% confidence interval for each of the two traits and each 289

Mendelian randomization method. Confidence intervals for the JAM-MR algorithm 290

have been computed using the 1.3178 adjustment proposed in the Methods section. A 291

graphical illustration of the results is provided in Fig 4-5. Tables of summary statistics 292

and JAM-MR inclusion probabilities for each SNP can be found in supplementary 293

material, and corresponding Manhattan plots are included in the Appendix. 294

The reported effects from the various methods confirm that increased blood pressure, 295

both systolic and diastolic, has a deleterious effect on coronary heart disease risk. For 296

systolic blood pressure, the causal effect reported by the various methods was in the 297

region of 0.024− 0.040, corresponding to an odds ratio of e0.024 = 1.024 to e0.04 = 1.041. 298

All methods were able to reject the null causal hypothesis at a 95% significance 299

threshold, except the mode-based estimator whose standard error was unusually large. 300

JAM-MR estimates were very close to those reported by other methods, and were quite 301

consistent for different values of w, both in terms of causal effect estimates and in terms 302

of which genetic variants received the largest inclusion probabilities. The minimum 303
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Table 6. Log-odds ratios of increase in CHD risk per 1mmHg increase in the
corresponding blood pressure measurement. Causal effect estimates and 95 %
confidence intervals for a variety of MR methods.

Method
Systolic Blood Pressure Diastolic Blood Pressure

Estimate 95% C.I. Estimate 95% C.I.

IVW 0.034 0.026 0.041 0.048 0.035 0.061
MR-Egger 0.024 0.008 0.041 0.083 0.058 0.109

Median (simple) 0.038 0.030 0.046 0.053 0.038 0.068
Median (weighted) 0.032 0.024 0.040 0.060 0.047 0.073
Mode (simple) 0.026 -0.090 0.142 -0.063 -21.735 21.610

Mode (weighted) 0.026 -0.090 0.141 -0.063 -21.698 21.573
Lasso 0.037 0.032 0.042 0.048 0.040 0.057

MR-Presso 0.038 0.032 0.045 0.052 0.042 0.063
MR-Raps (simple) 0.040 0.035 0.044 0.055 0.047 0.063

MR-Raps (overdispersed) 0.039 0.032 0.045 0.055 0.043 0.066

JAM-MR (w = 0) 0.031 0.018 0.044 0.055 0.037 0.073
JAM-MR (w = 0.1N1) 0.033 0.022 0.043 0.058 0.043 0.073
JAM-MR (w = 0.2N1) 0.031 0.021 0.041 0.060 0.045 0.074
JAM-MR (w = 0.5N1) 0.031 0.022 0.041 0.064 0.047 0.080
JAM-MR (w = N1) 0.031 0.022 0.041 0.070 0.057 0.083
JAM-MR (w = 2N1) 0.037 0.029 0.045 0.067 0.052 0.081
JAM-MR (w = 5N1) 0.022 0.007 0.038 0.075 0.057 0.094

Fig 4. Log-odds ratios of increase in CHD risk per 1mmHg increase in systolic and
diastolic blood pressure. Point estimates and 95% confidence intervals for various
Mendelian randomization methods. The mode-based method for DBP is not plotted; it
resulted in an estimate of −0.063 with 95% confidence interval (−21.698, 21.573).

causal standard error criterion suggested using the implementation with w = 2N1; the 304

corresponding JAM-MR log-odds ratio estimate was 0.037 (95% confidence interval: 305

(0.029, 0.045)) . 306

For diastolic blood pressure, most of the established Mendelian randomization 307

methods reported causal effect estimates between 0.048 and 0.060, corresponding to 308

odds ratios between 1.049 and 1.062. The JAM-MR estimates were slightly larger. For 309

example, setting w = N1 (the value with the smallest standard error) yields a log-odds 310
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Fig 5. Log-odds ratios of increase in CHD risk per 1mmHg increase in systolic and
diastolic blood pressure. Point estimates and 95% confidence intervals for JAM-MR
implementations with various values of the tuning parameter.

ratio estimate of 0.070 (95% confidence interval (0.057, 0.083)) and an effect estimate of 311

e0.07 = 1.073. Once again, all methods were able to reject the null causal hypothesis at 312

a 95% level, except the mode-based estimator which did not give reasonable results. 313

Our analysis strongly suggests that both systolic and diastolic blood pressure have a 314

causal role in increasing coronary heart disease risk. 315

Interpretation of results 316

It is worth noting that the MR-Egger method rejects the null hypothesis of no causal 317

association and indicates the existence of a causal effect on CHD risk for both blood 318

pressure traits. MR-Egger was the method used to generate the null findings in [5]. 319

This inconsistency can be explained by the fact that the analysis in [5] was based only 320

on a small set of 29 genetic variants and its power to detect a causal association was 321

rather low. Our analysis is based on larger sample sizes and a much larger number of 322

genetic variants associated with blood pressure traits, and these novel variants indicate 323

that there is indeed a causal link between blood pressure and coronary heart disease. 324

The mode-based estimation method performed poorly, yielding much larger 325

estimated standard errors than other methods. To implement mode-based estimation, 326

we used the default function in the R package “MendelianRandomization”. The poor 327

performance was due to the presence of a few genetic variants with extreme outlying 328

effects in our dataset, especially for diastolic blood pressure. These outlying effects were 329

in turn the result of weak instrument bias. 330

In this example, JAM-MR’s variable selection downweighted and removed a 331

significant proportion of the available genetic instruments. For example, the JAM-MR 332

implementation with w = 2N1 for systolic blood pressure assigned posterior inclusion 333

probability greater than 0.5 to 115 of the 395 genetic variants. Of the 280 variants that 334

were assigned low probabilities, 125 had univariate causal effect estimates below the 335

overall reported estimate of 0.037 and 155 had univariate estimates above that value. A 336

similar performance was observed for diastolic blood pressure: for w = N1, 127 of the 337

391 variants received inclusion probabilities higher than 0.5. Of the remaining 264 338
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variants, 151 had lower and 113 had higher univariate causal effect estimates than the 339

reported value of 0.070. Not all the downweighted variants were penalized because of 340

pleiotropy; for many of them, the association with blood pressure was not deemed 341

strong enough to justify their inclusion into the high-probability JAM-MR models. 342

Nevertheless, the fact that several genetic variants with both small and large univariate 343

causal effect estimates were assigned small inclusion probabilities suggests that this 344

application resembles a “balanced pleiotropy” setting similar to that of simulation 345

scenario 1. In line with that observation, the inverse-variance weighted method provided 346

accurate causal effect estimates for both blood pressure traits but resulted in wider 347

confidence intervals compared to some of the other Mendelian randomization methods 348

due to the presence of pleiotropic variants. 349

In the simulations of Table 6, we assumed that the genetic variants are independent. 350

While this is mostly true, there were still a few genetic variants in our dataset coming 351

from the same DNA region. Since JAM can incorporate genetic correlations, we 352

repeated the analysis using data from the UK Biobank as a reference dataset from which 353

to estimate genetic correlations. The results of this JAM-MR implementation were very 354

similar to those reported in Table 6 and are not reported here. Similar results were also 355

obtained when we restricted our analysis only to the 258 genetic variants that had been 356

known to be associated with blood pressure prior to the GWAS in [22]; the main 357

difference was that effect estimates for diastolic blood pressure were slightly larger for 358

many of the previously proposed Mendelian randomization methods and closer to the 359

results reported by JAM-MR in Table 6. This could be an indication that some of the 360

novel variants for diastolic blood pressure discovered in [22] exhibit pleiotropic effects on 361

CHD in the risk-decreasing direction, and this may have caused a slight decrease in 362

causal effect estimates from other methods. The sensitivity plot of Fig 5 illustrates the 363

same pattern: for small values of the tuning parameter, the JAM-MR causal effect 364

estimates for diastolic blood pressure are subject to slight downwards bias. The best-w 365

causal effect estimate was less affected because the algorithm’s variable selection in this 366

example was rather harsh, downweighting a large proportion of the genetic variants 367

included in the analysis; this included many of the ”new” genetic variants. 368

Discussion 369

In this paper, we have developed a new algorithm for causal effect estimation in 370

Mendelian randomization when some of the candidate instruments are pleiotropic. Our 371

algorithm uses Bayesian variable selection to identify sets of genetic variants with 372

homogeneous causal effect estimates, and model averaging among these sets to estimate 373

the overall causal effect of exposure on outcome, while accounting for uncertainty in the 374

selection of instruments to use. A wide range of simulation studies demonstrate how 375

using model averaging to account for uncertainty in pleiotropic selections leads to more 376

robsut inference than other current methods. The real data application is the first time 377

a very recently published large scale meta-GWAS has been used to instrument blood 378

pressure for CHD. 379

Compared to other approaches for Mendelian randomization with pleiotropic 380

variants, the JAM-MR algorithm has a number of attractive features. The use of model 381

averaging provides robust causal effect estimation, allows many variants to have small 382

contributions to the overall causal effect estimate and offers uncertainty quantification 383

for genetic associations with the risk factor. Unlike the competing approaches discussed 384

in this paper, our algorithm uses the Bayesian framework which allows for incorporating 385

prior information on the biological function of SNPs. JAM-MR’s stochastic search 386

procedure is quite flexible and can efficiently explore the large parameter space of causal 387

configurations; as a result, the algorithm can be used with large numbers of genetic 388
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variants. 389

Our algorithm also provides a natural framework for incorporating genetic 390

correlations into a Mendelian randomization analysis and selecting the most relevant 391

variants from a densely genotyped region. Common approaches for Mendelian 392

randomization typically assume that genetic variants are independent. In related work, 393

we are investigating the advantages of utilizing JAM’s variable selection compared to 394

pruning and other approaches for Mendelian randomization with correlated instruments, 395

in order to incorporate multiple correlated effects from regions which harbour complex 396

genetic signals for the trait of interest. 397

Limitations of our approach include the algorithm’s issues with calibration of 398

standard errors. The correction proposed in this paper behaves well in practical 399

applications but does not come with any theoretical guarantees of good performance 400

and further research is needed to fully address these issues. Alternatives could include 401

directly fitting a truncated normal random-effects model to univariate causal effect 402

estimates, or using bootstrap techniques. It would also be useful to devise an efficient 403

automatic procedure for specifying the tuning parameter w. Running JAM-MR with 404

several w values can help visualize how pleiotropic variants affect the causal effect 405

estimate (as illustrated in Fig 2), but comes with an increased computational cost and it 406

would be desirable to obtain an accurate causal effect estimate based on a single 407

implementation of the algorithm. Finally, another extension would be to construct a 408

fully Bayesian version of the JAM-MR algorithm, by fitting a model for SNP-outcome 409

associations similar to (2)-(3) that contains the causal effect as a parameter. 410

In conclusion, JAM-MR performs pleiotropy-robust causal effect estimation for 411

Mendelian randomization. Our algorithm has a number of desirable features, most 412

notably model-averaged inference. It exhibits good performance in simulations and has 413

been used to implement a Mendelian randomization analysis of the effect of blood 414

pressure on CHD risk, using a recent large-scale blood pressure meta-GWAS. We 415

therefore hope that JAM-MR will become a valuable addition to the Mendelian 416

randomization literature. 417

The JAM-MR algorithm has been implemented in R as part of the GitHub package 418

R2BGLiMS, available at https://github.com/pjnewcombe/R2BGLiMS. 419
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Methods 420

The JAM algorithm 421

Introduction 422

Here, we provide a brief outline of the JAM algorithm. The reader is referred to [16] for 423

a more detailed description. 424

The JAM algorithm is primarily a tool for fine-mapping densely genotyped DNA 425

regions. Let X denote a trait of interest and let G1, . . . , GP be a set of (possibly 426

correlated) genetic variants to be tested for association with X. The main purpose of 427

JAM is to identify a subset of genetic variants that are robustly and independently 428

associated with the trait. 429

For individual i, let gi = (gi1, . . . , giP ) and xi be the allele counts and trait 430

measurements respectively, and denote G = (gij) the genetic matrix. We assume that 431

trait values and allele counts per variant have been centered. Typically, the 432

“individual-level data” xi, gi are not available in practice. Instead, we only have access to 433

a set of univariate association estimates β̂Xj between each variant and the trait, as well 434

as the corresponding standard errors ŝXj . 435

The JAM model 436

JAM uses linear regression to model the trait: if all P genetic variants were assumed to 437

be associated with X, the JAM algorithm would model the trait as 438

xi|β, σ2
X , G =

P∑
j=1

gijβj + εXi , εXi ∼ N(0, σ2
X) , i = 1, . . . , N . (4)

In practice JAM implements variable selection, reflecting that, in many applications, 439

only a subset of the variants should be used to model the trait. Let γ ∈ {0, 1}P index 440

the selected subset, so that if γj = 1 variant Gj is included into the JAM model and if 441

γj = 0 it is not. Using βγ , Gγ to denote the subsets of β,G only for the variants Gj for 442

which γj = 1, (4) becomes 443

xi|βγ , σ2
X , γ,Gγ =

∑
j:γj=1

gijβj + εXi , εXi ∼ N(0, σ2
X) . (5)

Eq (5) can be used to build a likelihood for the individual-level data, 444

p(x|βγ , σ2
X , γ,G) =

∏
i p(xi|βγ , σ2

X , γ, gi). One can also obtain the marginal model 445

likelihood, p(x|γ,G) =
∫
p(x|βγ , σ2

X , γ,G)dβγdσ
2
X . JAM works by constructing 446

summary-data approximations to these two likelihoods (see the following subsections). 447

Prior specification 448

The likelihood p(x|βγ , σ2
X , γ,G) is complemented with a set of priors in order to perform 449

Bayesian inference. For the genetic associations βγ , JAM uses a conjugate g-prior, 450

βγ |σ2
X , γ ∼ N

(
0, σ2

Xτ(GTγGγ)−1
)

, (6)

where τ is a constant. By default, the algorithm sets τ = max(P 2, N), as has been 451

previously recommended by various authors [24,25]. The residual variance σ2
X is 452

assigned its own conjugate prior, which is an Inverse-Gamma density, 453

σ2
X ∼ IG(aX , bX) , (7)
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for fixed aX , bX . Finally, JAM uses a Beta-Binomial prior on the space of all possible 454

models, 455

p(γ) =
B(aω + Pγ , bω + P − Pγ)

B(aω, bω)
, (8)

where B(a, b) denotes the Beta function and Pγ denotes the size of model γ. The 456

relative sizes of the hyperparameters aω, bω reflect the proportion of genetic variants 457

expected a priori to be associated with the trait; by default, aω = 1, bω = P , which 458

correspond to an expectation that a single variant will be associated with the trait. 459

Posterior inference for the regression parameters 460

A Bayesian posterior distribution over models, genetic associations and residual variance 461

can be obtained according to the standard principles of Bayesian inference: 462

p(βγ , σ
2
X , γ|x,G) ∝ p(x|βγ , σ2

X , γ,G)p(βγ |σ2
X , γ)p(σ2

X |γ)p(γ) . (9)

Conditional on a particular model, i.e. combination of causal variants, posterior 463

inference on the regression parameters βγ , σ
2
X can be conducted using known results for 464

Bayesian linear regression with conjugate priors, which yield 465

σ2
X |x, γ ∼ IG

(
aX +

N

2
, bX +

s2

2
+
β̂Tγ G

T
γGγ β̂γ

2(τ + 1)

)
(10)

βγ |x, σ2
X , γ ∼ N

(
τ

1 + τ
β̂γ ,

τ

τ + 1
σ2
X(GTγGγ)−1

)
(11)

where β̂γ = (GTγGγ)−1GTγ x and s2 = (x−Gγ β̂γ)T (x−Gγ β̂γ). 466

Posterior model selection 467

An advantage of the linear regression setting is that it allows for fast and efficient 468

variable selection. The regression coefficients βγ and the residual variance σ2
X can be 469

integrated out from the JAM likelihood p(x|βγ , σ2
X , γ) to obtain the marginal model 470

likelihood 471

p(x|γ) ∝ (τ + 1)−
Pγ
2 (2bσ + S(γ))−aσ−

N
2 , (12)

where 472

S(γ) = xTx− τ

τ + 1
xTGγ(GTγGγ)−1GTγ x . (13)

This leads to the marginal model posterior, p(γ|x) ∝ p(x|γ)p(γ). The normalizing 473

constant of that density can be difficult to evaluate, but this can be avoided by using 474

reversible-jump MCMC [26]. JAM implements a standard reversible-jump algorithm 475

with addition, deletion and swapping of genetic variants as possible moves. The 476

stochastic search algorithm allows exploration of an unrestricted model space, without 477

the need to set limits on the maximum number of causal variants. Consequently, JAM 478

is able to efficiently explore complex causal configurations among large numbers of 479

genetic variants. Posterior model probabilities can be estimated by the proportion of 480

iterations JAM spends in each model. 481

JAM with summarized data 482

One of JAM’s main advantages is that it does not require access to individual-level data. 483

Variable selection is implemented according to Eq (12), (13), which depend on the 484

observed data xi, gi only through the quantities xTx, GTx and GTG. These quantities 485

are sufficient summary statistics for linear regression. In the setting of genome-wide 486
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association studies, [16] describes a way of approximating z = GTx from the univariate 487

variant-trait association estimates β̂Xj , j = 1, . . . , P , as well as effect allele frequencies. 488

In addition, note that xTx ≈ (N1 − 1)σ̂2
X since we have assumed that trait values have 489

been centered before implementing JAM. Here, σ̂2
X is an estimator of the trait variance 490

Var(X) measured in the GWAS for the trait X (this is typically reported by genetic 491

association studies). [16] uses a slightly different approximation to the JAM likelihood 492

which avoids the need to estimate the trait variance, but providing the trait variance to 493

the algorithm improves the accuracy of approximation, particularly when many genetic 494

variants have significant effects on the trait. Finally, the matrix GTG models (N − 1 495

times) the genetic correlations between variants G1, . . . , GP and can be approximated if 496

a reference dataset, such as the 1000 Genomes dataset or the UK Biobank, is available. 497

This yields the following summary-data approximation for S(γ): 498

S(γ) ≈ (N − 1)σ̂2
X −

τ

τ + 1
ẑT (GTγ,refGγ,ref)

−1ẑ . (14)

The model-specific marginal posteriors (10) and (11) can be approximated by summary 499

GWAS data in a similar way. 500

An extension of JAM for Mendelian randomization 501

Scope 502

We now describe our extension to the standard JAM algorithm that facilitates 503

pleiotropy adjustment and accurate causal effect estimation in Mendelian randomization 504

studies, which we call JAM-MR (JAM for Mendelian Randomization). 505

We start by pointing out a difference in the scope of our new algorithm compared to 506

the original JAM algorithm. Traditionally, JAM is used to analyze correlated variants 507

from one (fine-mapping) or multiple genetic regions. On the other hand, Mendelian 508

randomization studies typically use variants from across the whole genome, often pruned 509

for independence. Consequently, many practical implementations of JAM-MR will rely 510

on independent, genome-wide significant variants. Mendelian randomization analyses 511

using correlated variants are less common in practice, and assessing pleiotropy in these 512

studies can be difficult because many genetic variants may share a common pleiotropic 513

effect through correlation. Although JAM-MR is applicable in such studies too, we 514

mainly consider the “traditional” Mendelian randomization framework in this paper. 515

For the JAM-MR algorithm, we work in the context of two-sample summary-data 516

Mendelian randomization [27]. The two-sample summary-statistics framework is a 517

common approach for Mendelian randomization, since it allows researchers to leverage 518

the power and large sample sizes of large consortia GWAS studies that are already 519

available for many important traits. 520

JAM takes as inputs the univariate genetic variant-risk factor associations β̂X , the 521

trait variance σ̂2
X and a reference matrix from which to compute genetic correlations. 522

The two-sample summary-data Mendelian randomization framework further assumes 523

the availability of univariate variant-outcome association estimates β̂Y j and 524

corresponding standard errors ŝY j , obtained from a separate genetic association study. 525

The coefficients β̂Xj and β̂Y j can be used to obtain variant-specific estimates of the 526

causal effect θ according to a ratio formula [28], 527

θ̂j =
β̂Y j

β̂Xj
, s.e.

(
θ̂j

)
=
ŝY j

β̂Xj
. (15)

Sometimes a second-order formula is used to estimate the variant-specific standard 528
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errors, 529

s.e.
(
θ̂j

)
=

√√√√ ŝ2Y j

β̂2
Xj

+
β̂2
Y j ŝ

2
Xj

β̂4
Xj

. (16)

Bayesian inference with loss functions 530

The JAM-MR algorithm implements a recently proposed framework for performing 531

Bayesian inference using loss functions [20]. This new theoretical framework constitutes 532

a generalization of the core Bayesian paradigm. For a dataset D, a parameter vector θ 533

and a prior distribution π(θ), the standard Bayesian updating scheme, 534

p(θ|D) ∝ π(θ)p(D|θ), is replaced with a loss-function update of the form 535

p`(θ|D) ∝ π(θ) exp−w`(D,θ) , (17)

where `(D|θ) represents a loss function. If w = 1 and `(D, θ) = − log p(D|θ) is the 536

negative log-likelihood, we obtain traditional Bayesian inference. 537

The motivation behind this approach is that the loss function can be used to tailor 538

Bayesian inference towards specific objectives. For example, if the objective of interest 539

is classification, the misclassification error can be used as a loss function [29]. In 540

addition, using a loss function instead of a likelihood avoids the need for the Bayesian 541

statistician to specify a full data-generating model; this is especially useful when the 542

object of interest is a low-dimensional parameter of a complex, high-dimensional model. 543

A rigorous decision-theoretic framework for the new updating scheme is provided in [20]. 544

JAM with a pleiotropic loss function 545

In order to construct the JAM-MR algorithm, we use a slight modification of the 546

Bayesian loss function framework. Specifically, we use both a likelihood and a loss 547

function to construct the “loss-posterior” p`(θ|D): 548

p`(θ|D) ∝ π(θ)p(D|θ) exp {−w`(D, θ)} . (18)

This is equivalent to using `(D, θ)− 1
w log p(D|θ) as a loss function in (17). The use of 549

both a likelihood and a loss function in JAM-MR is justified because the objective of 550

the model selection procedure is two-fold: we use the likelihood to select genetic 551

variants strongly associated with the risk factor and the loss function to penalize 552

variants which exhibit pleiotropic effects on the outcome. The parameter w can be 553

interpreted as a tuning parameter that balances the impact of the pleiotropic loss on 554

model selection relative to that of the JAM likelihood and the prior. Note that the loss 555

function framework allows us to avoid making specific modelling assumptions for the 556

SNP-outcome association, since that association is only modelled through the loss 557

function. 558

In the context of JAM-MR, the data to be used are the univariate summary 559

statistics along with the reference dataset from which to compute genetic correlations, 560

so D = {β̂X , β̂Y , ŝY , Gref}. For the purpose of model selection, and since βγ and σ2
X can 561

be integrated out, the parameter vector is simply the model indicator θ = γ and the 562

likelihood in (18) is the marginal model likelihood (12). 563

We now discuss how to specify the loss function `(D, γ). It is common in the 564

Mendelian randomization literature to use some measure of heterogeneity between 565

univariate causal effect estimates as a proxy for pleiotropic behaviour [7, 10]. The 566

intuition is that genetic variants which are valid instruments yield the same univariate 567

causal effect estimates, up to some random variation. On the other hand, estimates 568

based on pleiotropic variants can exhibit systematic differences, especially if the variants 569
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operate on different causal pathways towards the outcome, because the estimated causal 570

effects depend on the strength and direction of the pleiotropic G-Y association. This 571

suggests that our loss function should upweight models with homogeneous univariate 572

causal effect estimates, as such models are likely to contain valid instruments, and 573

downweight models with heterogeneous estimates, as at least some of the genetic 574

variants contained in them are likely to be pleiotropic. 575

Consequently, in order to penalize pleiotropic models, we use loss functions that 576

measure heterogeneity of univariate estimates. A simple option is the variance of the 577

univariate causal effect estimates, 578

`1(θ̂, γ) = Var
(
θ̂j : γj = 1

)
=

1

Pγ − 1

∑
j:γj=1

(
θ̂j − θ̂γ

)2
, (19)

where θ̂γ = 1
Pγ

∑
j:γj=1 θ̂j is the mean of the univariate causal effect estimates in model 579

γ. The loss function downweights (in terms of posterior probability) models with 580

heterogeneous causal effect estimates, since the variance of such estimates is larger and 581

the term exp{−w`(D, θ)} in (18) is smaller. Note that the loss function (19) is 582

identically zero for models containing only one genetic variant. Such models carry no 583

evidence as to whether the variant included is valid or pleiotropic. Therefore, we ignore 584

these models and restrict JAM-MR to only consider models with at least two genetic 585

variants. 586

An alternative loss function can be obtained by weighting the individual causal effect
estimates in (19) by the inverse of their squared standard errors,

`2(θ̂, γ) =
∑
j:γj=1

(
θ̂j − θ̂γ,IVW

)2
s.e.
(
θ̂j

)−2
.

where θ̂γ,IVW is the inverse-variance weighted causal effect estimate based on variants 587

in model γ, 588

θ̂γ,IVW =

∑
j : γj=1 θ̂js.e.

(
θ̂j

)−2
∑
j : γj=1 s.e.

(
θ̂j

)−2 . (20)

A similar function was used in [10] to obtain a pleiotropy-robust exhaustive-search 589

model averaging procedure for Mendelian randomization. In practice, we have found 590

that the two loss functions often yield similar results. In the simulations and the 591

real-data application, we have used the variance loss (19). 592

In conclusion, the Bayesian loss-posterior for JAM-MR’s variable selection is 593

p`(γ|β̂X , β̂Y , Gref) ∝ B(aω + Pγ , bω + P − Pγ)

B(aω, bω)
(τ + 1)−

Pγ
2 (2bσ + S(γ))−aσ−

N1
2

× exp

−w 1

Pγ − 1

∑
j:γj=1

(
θ̂j − θ̂γ

)2 , (21)

where S(γ) can be computed from (14). Note that N1 represents the sample size from 594

which the G-X associations are obtained (the “first sample” in two-sample Mendelian 595

randomization). 596

The algorithm’s stochastic search procedure scales well to large datasets containing 597

hundreds of genetic variants, is quite flexible and can explore large parts of the model 598

space. JAM-MR’s probabilistic output (posterior probabilities for each model) also 599

offers the potential to use Bayesian model averaging for causal effect estimation. 600
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Since we are using heterogeneity as a proxy for pleiotropic behaviour, our algorithm 601

implicitly makes a plurality assumption, similar to that made in [7, 10]. The algorithm 602

will assign a high posterior probability to a large set of pleiotropic variants with 603

consistent univariate causal effect estimates, especially if the size of that set is larger 604

than the number of valid SNPs. As a result, model-averaged causal effect estimates will 605

be biased. Our algorithm allows such cases to be detected by inspecting the list of 606

posterior model probabilities: if two very different models are both assigned high 607

posterior probabilities, there is evidence for the presence of a set of genetic variants with 608

similar pleiotropic effects. This is typically the result of many pleiotropic variants acting 609

on the same causal pathway to the outcome, and the biological interpretation of such 610

sets can be an interesting question in applications. We note however that JAM-MR 611

often requires a very large number of iterations in order to identify different sets of 612

variants with homogeneous effects. 613

Causal effect estimation using JAM-MR 614

The JAM-MR posterior probabilities can subsequently be used to obtain an overall 615

estimate of the causal effect of interest, according to a model averaging procedure. The 616

use of Bayesian model averaging enables quantification of uncertainty related to the 617

choice of instruments and allows many genetic variants to have small contributions to 618

the overall causal effect estimate. 619

For each model γ visited by the algorithm, a model-specific inverse variance weighted 620

estimate θ̂γ,IVW can be computed according to (20). The variance of this estimator is 621

ŝ2γ,IVW =
1∑

j:γj=1 s.e.
(
θ̂j

)−2 . (22)

This implicitly corresponds to a fixed-effects model for the variance. In practice, a 622

multiplicative random-effects model is often preferred, where θ̂j ∼ N(θ, φ2ŝ2j ) instead of 623

θ̂j ∼ N(θ, ŝ2j ) and the IVW variance (22) is multiplied by φ2. The overdispersion 624

parameter φ can be estimated using weighted linear regression [30]. 625

The model-specific IVW estimates and their standard errors can be combined into a 626

single estimator, 627

θ̂JAM-MR =
∑
γ

p(γ|x)θ̂γ,IVW , (23)

with variance 628

ŝ2JAM-MR =
∑
γ

p(γ|x)ŝ2γ,IVW +
∑
γ

p(γ|x)θ̂γ,IVW

(
θ̂γ,IVW − θ̂JAM-MR

)
, (24)

where the summation is over all models γ assigned positive posterior probability by the 629

variable selection procedure. Eq (24) can be derived as an approximation to the 630

posterior variance Var(θ|D), by expressing it in terms of the model-specific posterior 631

moments E(θ|D, γ), Var(θ|D, γ) and approximating these by θ̂γ,IVW , ŝ2γ,IVW . 632

This algorithm is not fully Bayesian. Although it utilizes JAM’s Bayesian variable 633

selection to obtain posterior model probabilities and facilitate model averaging, the 634

process of causal effect estimation for each model is conducted using classical 635

inverse-variance-weighted formulas. A fully Bayesian algorithm for Mendelian 636

randomization would require further modelling assumptions for the causal effect 637

parameter and return a posterior sample for that parameter. This is an interesting 638

potential extension of JAM-MR, but is beyond the scope of this paper. 639
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Tuning the algorithm 640

The tuning parameter w plays a crucial role in JAM-MR’s variable selection. Tuning w 641

is subject to a bias-variance tradeoff. For relatively small values, the pleiotropic loss 642

function has limited effect on the variable selection procedure and JAM-MR tends to 643

favour larger models. These models may still include some pleiotropic variants, and the 644

resulting causal effect estimates may exhibit bias. On the other hand, with a large value 645

of w the algorithm favours models that contain no pleiotropic variants but may also 646

ignore some of the valid instruments. In this case JAM-MR yields unbiased causal effect 647

estimates, but these estimates may have large standard errors. 648

Setting w = 0 is equivalent to the standard JAM algorithm with no pleiotropy 649

adjustment; the algorithm is similar to a simple IVW estimator except it downweights 650

genetic variants that are weakly associated with the risk factor. The other extreme case 651

is to assign a very large value to w. In this case the algorithm becomes very selective 652

and converges to models containing only two genetic variants. 653

Heuristic approaches for tuning w [20, 31] rely on the idea of “balancing” the 654

magnitude of the loss function relative to the likelihood. For the JAM-MR algorithm, 655

we have empirically observed in simulations that the optimal value for the tuning 656

parameter w depends primarily on the sample size N1, and secondarily on the number 657

P of genetic variants in the analysis and the proportion of genetic variation in the risk 658

factor. Note that these quantities appear in the JAM likelihood (12) - (14) (the 659

proportion of genetic variation is a function of the risk factor variance, the genetic 660

effects on the risk factor and effect allele frequencies). 661

The algorithm’s dependence on the tuning parameter w can be potentially useful. 662

Running JAM-MR with multiple values of the tuning parameter can help detect and 663

visualize the effect of pleiotropy on the causal effect estimate, as illustrated in Fig 2. 664

Comparisons with the results obtained from other Mendelian randomization approaches 665

can also be made. We recommend running our algorithm with several w values similar 666

to a grid search. Values used in the grid search should be expressed as multiples of the 667

sample size N1 of the GWAS from which the G-X associations are obtained. This is 668

because the JAM likelihood scales with N1 and the tuning process aims to balance the 669

effect of the loss function against the likelihood. 670

A simple heuristic to determine the best value of the grid search and obtain a single 671

causal effect estimate is to choose the implementation with the smallest causal standard 672

error (24). Both the inclusion of genetic variants with pleiotropic effects and the 673

removal of valid genetic variants is likely to increase the standard error, so the minimum 674

standard error implementation is likely to include the valid instruments. 675

Accuracy of JAM-MR standard error estimates 676

As reflected in our simulations, the estimated JAM-MR standard errors (24) may yield 677

confidence intervals with Type I error rates above nominal levels. The reason why this 678

happens is illustrated in the funnel plot of Fig 6. The plot shows causal effect estimates 679

and standard errors for 50 genetic variants in one replication of simulation scenario 2. 680

Variants 1-35 were generated as valid instruments and variants 36-50 were generated to 681

be pleiotropic. We have also coloured in red the variants that were assigned by 682

JAM-MR a posterior inclusion probability lower than 0.5. 683

JAM-MR uses a random effects framework, θ̂j ∼ N(θ, φ2ŝ2j ), to derive the causal 684

standard error for each model visited. The parameter φ models the spread of univariate 685

causal effect estimates around the true causal effect θ, ignoring the finite-sample 686

variations which are modelled by the ŝj . 687

Since JAM-MR uses heterogeneity of univariate causal effect estimates as a proxy for 688

pleiotropic behaviour, it is likely to downweight genetic variants which are valid 689
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Fig 6. JAM-MR variable selection in practice. A single implementation of a directional
pleiotropy simulation (scenario 2) with θ = 0. Causal effect estimates and 95%
confidence intervals for each variant are plotted. Variants above the dotted line were
simulated as valid and variants below the dotted line were simulated as pleiotropic.
Variants assigned a posterior inclusion probability lower than 50% are coloured red.

instruments, but whose causal effect estimates happen to be far from θ due to random 690

variation. This can be confirmed in Fig 6, where valid genetic variants with outlying 691

causal effect estimates are assigned low posterior probabilities. As a result, the 692

dispersion parameter φ may be underestimated. This problem is more likely to occur 693

when JAM-MR identifies a large number of variants as pleiotropic. In fact, the opposite 694

scenario is also possible. If a large number of mildly pleiotropic variants are present, 695

JAM-MR may be unable to remove all of them from consideration and include some of 696

them in its top models. In this case, overestimation of the parameter φ and the variance 697

can occur. 698

A simple and somewhat naive, yet often useful, way of correcting the problem is to
rescale the variance by a constant in order to improve coverage of confidence intervals.
We have found empirically that rescaling by(

1− 2
z0.975

0.95
√

2π
e−

1
2 z

2
0.975

)−1
≈ 1.3178

can improve the coverage of confidence intervals; this value corresponds to estimating 699

the variance based on a multiplicative random-effects model with truncated normal 700

standard errors, with truncation at the 2.5-th and 97.5-th quantiles. This adjustment 701

does not work well for all values of the tuning parameter w (this is the reason why we 702

did not use it in the results of Tables 2-5) but is likely to work well for the smallest 703

standard error values. In addition, when the variants deemed pleiotropic by JAM-MR 704

are only a small proportion of the overall number of genetic instruments, there is often 705

no need for adjustment. 706

The improvement in coverage of JAM-MR confidence intervals for the simulations 707
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presented earlier is illustrated in Table 7. 708

Table 7. Standard deviation of causal effect estimates across replications, estimated
and adjusted standard errors for the best (i.e. minimum standard error) JAM-MR
implementations in Tables 2-5, along with corresponding Type I error rates.

Sim Scenario Best Fit StDev StdError Adj SE Type I Adj Type I

Scen 1 - θ = 0 w = N1 0.0207 0.0165 0.0217 0.122 0.038
Scen 1 - θ = 0.5 w = 0.5N1 0.0311 0.0223 0.0294 0.172 0.073
Scen 2 - θ = 0 w = N1 0.0213 0.0164 0.0216 0.165 0.068
Scen 2 - θ = 0.5 w = 0.5N1 0.0311 0.0225 0.0296 0.181 0.079
Scen 3 - θ = 0 w = N1 0.0190 0.0169 0.0222 0.089 0.020
Scen 3 - θ = 0.5 w = 0.5N1 0.0362 0.0234 0.0309 0.186 0.078
Scen 4 - θ = 0 w = 2N1 0.0260 0.0169 0.0223 0.230 0.119
Scen 4 - θ = 0.5 w = N1 0.0379 0.0222 0.0293 0.247 0.132

Pleiotropy-robust Mendelian randomization 709

Existing methods 710

Mendelian randomization in the presence of invalid instruments is a very active area of 711

research. A wide range of statistical techniques have been used to either identify the 712

pleiotropic variants and remove them from the analysis, or robustify the process of 713

causal effect estimation. One of the most widely used approaches is MR-Egger 714

regression [5], which yields consistent causal effect estimates under the assumption that 715

instrument strength is independent of the genetic variants’ direct effects on the outcome 716

(InSIDE). Another common approach is to estimate the causal effect of interest by the 717

(weighted or unweighted) median of univariate estimates for all available genetic variants. 718

This median estimator is robust to outlying pleiotropic effects and is asymptotically 719

unbiased if more than 50% of the available genetic variants are valid instruments. 720

More recent approaches have utilized a wide range of statistical techniques to 721

address the problem of invalid instruments. Mode-based estimation [27] fits a kernel 722

density to the univariate causal effect estimates and uses the mode of that density as 723

the overall estimate; this approach weakens the majority assumption of the median and 724

yields accurate causal effect estimates if only a plurality of genetic instruments are valid. 725

Other authors have relied on variable selection to identify the pleiotropic variants: [8, 9] 726

use Lasso regularization while [11] performs outlier detection and deletion. Finally, [12] 727

relies on profile likelihood and robust regression techniques for causal effect estimation. 728

The list of methods we have considered in our simulation study is not exhaustive. 729

For example, we have not implemented the heterogeneity penalization approach 730

presented in [10]. Similar to JAM-MR, this approach relies on model averaging, but 731

instead of our algorithm’s stochastic search it uses exhaustive search over possible 732

models, and is therefore only applicable for small numbers of genetic variants. We have 733

also not considered the mixture modelling method of [13] and the modified Q-statistics 734

approach of [14]. 735

Several algorithms for Mendelian randomization in the presence of pleiotropic 736

variants were compared in a recent review [15]. 737

It is also worth mentioning that Reversible-Jump MCMC has been used for 738

instrumental variables analysis in [32]. An important difference with our work is that 739

the algorithms developed in [32] rely on the availability of individual-level data, while in 740

this paper we only require access to summarized data for the instrument-risk factor and 741

instrument-outcome associations. Some modelling assumptions are also different: [32] do 742

not use the Bayesian loss function framework as JAM-MR does. 743
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Implementation of Mendelian randomization methods in the simulation 744

study 745

For the implementation of the various Mendelian randomization methods in our 746

simulation study, we used available R packages. In particular, we used the packages 747

“MendelianRandomization” (for the IVW, MR-Egger, median and mode-based methods), 748

“MRPRESSO” (for MR-Presso) and “mr.raps” (for MR-Raps). For the Lasso method, 749

we used the R code provided in the Appendix of [9]. 750

For the median and mode-based methods we implemented both an unweighted and a 751

weighted version. For the lasso method we used the “heterogeneity” approach described 752

in [9] to specify a value for the tuning parameter. MR-Raps was implemented using the 753

Tukey loss function and either a simple or an overdispersed model. For the other 754

methods, we used the default settings in the corresponding R packages. For the “oracle” 755

method, we estimated the causal effect of interest by IVW, using only the genetic 756

variants that were valid instruments. 757

For the implementation of JAM-MR we did not simulate a reference dataset since 758

genetic variants were assumed to be independent. Instead, the genetic correlation 759

matrix GTG was approximated by setting the off-diagonal elements equal to zero and 760

computing the diagonal elements as (GTG)jj = 2N1fj(1− fj) where fj is the effect 761

allele frequency. 762

The computational cost of implementing JAM-MR was slightly higher than that for 763

most other methods. Nevertheless, the cost is not prohibitive in an absolute scale: 764

running the algorithm for 106 iterations with 50 genetic variants and a single value of w 765

only required a few seconds. When using multiple w values, the algorithm has to be run 766

separately for each value; in the modern era, many researchers have access to high 767

performance computing, in which case the algorithm can be run in parallel for several w 768

values in the same amount of time as would be required for a single w. The cost 769

increases when modelling correlated data, due to the need to perform matrix operations 770

with the genetic correlation matrix. 771

Supporting information 772

S1 Appendix. Additional simulations. Contains the setting and results of 773

additional simulations conducted, varying the sample size and the proportion of 774

pleiotropic SNPs. 775

S1 Table. Blood Pressure SNPs Contains summary statistics and JAM-MR 776

selection probabilities for the genetic variants associated with systolic and diastolic 777

blood pressure in the real-data application. 778
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Appendix - additional simulations 891

Further to the simulations presented in the paper, we conducted two additional sets of 892

simulations to investigate the performance of JAM-MR with varying sample sizes and 893

different numbers of pleiotropic instruments. In the first set, we implemented 894

simulations similar to those in Tables 2-5 with a larger sample size of 895

N1 = N2 = 200000. We generated P = 100 genetic variants, of which P1 = 30 were 896

pleiotropic. Genetic effects were simulated in the interval (0.025, 0.05), which loosely 897

corresponds to genome-wide significant variants with p-values between 10−100 and 10−8. 898

Pleiotropic effects were drawn uniformly at random from the interval (−0.05, 0.05) in 899

the first scenario, (0, 0.05) in the second and fourth scenario, and were fixed at 0.03 in 900

the third scenario. Genetic effects on the confounder for pleiotropic variants in scenario 901

4 were drawn uniformly from the interval (−0.05, 0.05). Otherwise, the simulations were 902

the same as those in the main body of the paper. 903

The simulations were repeated 1000 times. As in Tables 2-5, we report the mean 904

causal effect estimate, standard error, theoretical standard error (computed as the 905

standard deviation of causal effect estimates among the 1000 replications), Mean 906

Squared Error and Type I error rate (for θ = 0.5, we define this to be the empirical 907

probability of rejecting H0 : θ = 0.5) at a 95% significance level. The results are 908

presented in Tables 8-11. 909

In the second set of simulations, we considered variations of scenarios 1-4 with 910

different numbers of pleiotropic variants. We considered simulations with 10%, 20% and 911

40% of the genetic variants being pleiotropic (this corresponds to 5, 10 and 20 variants 912

respectively). Three simulation experiments were performed for each of the four 913

simulation scenarios: balanced pleiotropy, directional pleiotropy, directional pleiotropy 914

with common direct effects and directional pleiotropy with InSIDE violation. This 915

resulted in 12 sets of simulations, and 1000 replications were performed for each set. 916

Except for the number of pleiotropic variants, the simulations were identical to those 917

presented in the paper. Results are reported in Tables 12-15. 918

For both sets of simulations, the results were similar to those in the main part of the 919

paper. JAM-MR was generally able to accurately estimate the causal effect of interest 920

and, when properly tuned, was among the methods with the smallest bias across the 921

simulations. This was the case even for a fairly large (40%) proportion of invalid 922

instruments. The “smallest causal standard error” criterion performed well, typically 923

selecting a JAM-MR implementation with small bias and mean squared error. 924

Among the established Mendelian randomization methods, mode-based estimation 925

emerged as the main competitor to JAM-MR in terms of accuracy of causal effect 926

estimates. This was especially the case in simulations with many pleiotropic variants, 927

where several other methods exhibited severe biases. This can be explained by the fact 928

that the mode-based method makes rather weak assumptions on the proportion of 929

pleiotropic variants (it only requires a plurality of instruments to be valid, instead of the 930

more common majority assumption) and hence it is more likely to work well when many 931

instruments are invalid. We note, however, that the method’s process of computing 932

standard errors was rather unstable in simulation scenario 4 with N1 = N2 = 200000. 933

In terms of magnitude of Mean Squared Errors, the Lasso method competed with 934

JAM-MR and was among the best methods, closely followed by MR-Presso and (in 935

some simulations) MR-Raps. However, we note that these methods come with their own 936

issues related to coverage of confidence intervals and Type I error rate inflation. On the 937

other hand, the MR-Egger method had well-calibrated Type I error rates, although this 938

came at the cost of excessively wide confidence intervals. The median method also had 939

well-calibrated standard errors, especially in simple simulations (balanced pleiotropy 940

and/or 10% invalid instruments), but Type I error rates were inflated due to bias in 941

more challenging simulations. 942
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We conclude by pointing out that the various Mendelian randomization methods 943

make different assumptions and work well in different simulation scenarios. In practice, 944

it is useful as a sensitivity analysis tool to implement multiple methods and compare 945

their results. 946

Table 8. Simulation A1: Balanced pleiotropy. P = 100 genetic variants, N1 = N2 = 200000.

Method
θ = 0 θ = 0.5

Mean StDev StdError MSE Type I Mean StDev StdError MSE Type I

IVW -0.001 0.043 0.042 0.0036 0.068 0.496 0.045 0.043 0.0039 0.060
MR-Egger -0.010 0.210 0.210 0.0889 0.040 0.455 0.216 0.214 0.0952 0.052

Median (Simple) 0.000 0.012 0.012 0.0003 0.052 0.500 0.017 0.017 0.0006 0.044
Median (Weighted) 0.000 0.012 0.012 0.0003 0.060 0.495 0.017 0.016 0.0006 0.056
Mode (Simple) 0.001 0.015 0.020 0.0006 0.008 0.498 0.022 0.030 0.0014 0.012

Mode (Weighted) 0.000 0.014 0.018 0.0005 0.008 0.490 0.020 0.027 0.0012 0.012
Lasso 0.000 0.009 0.008 0.0001 0.096 0.499 0.014 0.010 0.0003 0.128

MR-Presso 0.000 0.010 0.008 0.0002 0.068 0.498 0.014 0.012 0.0004 0.100
MR-Raps (Simple) -0.020 0.517 0.008 0.2671 0.364 0.501 0.013 0.010 0.0003 0.148

MR-Raps (Overdispersed) 0.001 0.009 0.006 0.0001 0.128 0.501 0.017 0.011 0.0004 0.140

JAM-MR (w = 0) -0.001 0.043 0.042 0.0036 0.068 0.496 0.045 0.043 0.0039 0.060
JAM-MR (w = 0.1N1) 0.001 0.035 0.024 0.0018 0.180 0.499 0.037 0.025 0.0020 0.176
JAM-MR (w = 0.2N1) 0.000 0.021 0.016 0.0007 0.140 0.499 0.023 0.017 0.0008 0.172
JAM-MR (w = 0.5N1) 0.001 0.012 0.010 0.0002 0.072 0.497 0.016 0.012 0.0004 0.116
JAM-MR (w = N1) 0.000 0.010 0.008 0.0002 0.108 0.496 0.015 0.011 0.0004 0.140
JAM-MR (w = 2N1) 0.001 0.010 0.008 0.0002 0.104 0.495 0.016 0.011 0.0004 0.179
JAM-MR (w = 5N1) 0.001 0.012 0.009 0.0002 0.165 0.494 0.024 0.013 0.0008 0.313

Oracle 0.001 0.008 0.008 0.0001 0.052 0.498 0.012 0.012 0.0003 0.060

Table 9. Simulation A2: Directional pleiotropy. P = 100 genetic variants, N1 = N2 = 200000.

Method
θ = 0 θ = 0.5

Mean StDev StdError MSE Type I Mean StDev StdError MSE Type I

IVW 0.192 0.025 0.037 0.0387 1.000 0.689 0.023 0.038 0.0376 1.000
MR-Egger 0.001 0.194 0.184 0.0718 0.084 0.418 0.194 0.188 0.0802 0.084

Median (Simple) 0.037 0.012 0.012 0.0017 0.852 0.550 0.016 0.018 0.0031 0.812
Median (Weighted) 0.033 0.012 0.012 0.0014 0.792 0.540 0.016 0.017 0.0022 0.636
Mode (Simple) 0.004 0.014 0.018 0.0005 0.012 0.502 0.021 0.027 0.0012 0.012

Mode (Weighted) 0.004 0.014 0.016 0.0005 0.016 0.495 0.019 0.024 0.0010 0.008
Lasso 0.015 0.010 0.008 0.0004 0.484 0.522 0.015 0.011 0.0008 0.496

MR-Presso 0.065 0.019 0.013 0.0048 1.000 0.553 0.017 0.016 0.0033 0.940
MR-Raps (Simple) 0.535 0.466 0.010 0.5032 0.700 0.514 0.013 0.009 0.0005 0.364

MR-Raps (Overdispersed) 0.009 0.017 0.007 0.0004 0.312 0.539 0.050 0.015 0.0043 0.532

JAM-MR (w = 0) 0.192 0.025 0.037 0.0387 1.000 0.689 0.023 0.038 0.0376 1.000
JAM-MR (w = 0.1N1) 0.101 0.028 0.024 0.0115 1.000 0.594 0.029 0.025 0.0103 0.988
JAM-MR (w = 0.2N1) 0.050 0.020 0.016 0.0031 0.908 0.545 0.022 0.017 0.0028 0.692
JAM-MR (w = 0.5N1) 0.019 0.012 0.010 0.0006 0.472 0.515 0.016 0.012 0.0006 0.268
JAM-MR (w = N1) 0.010 0.011 0.008 0.0003 0.252 0.505 0.014 0.011 0.0004 0.136
JAM-MR (w = 2N1) 0.006 0.010 0.008 0.0002 0.160 0.500 0.017 0.011 0.0004 0.198
JAM-MR (w = 5N1) 0.004 0.014 0.009 0.0003 0.209 0.500 0.025 0.013 0.0008 0.310

Oracle 0.001 0.009 0.008 0.0001 0.068 0.498 0.011 0.012 0.0003 0.032
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Table 10. Simulation A3: Directional pleiotropy with common direct effects for pleiotropic variants. P = 100 genetic
variants, N1 = N2 = 200000.

Method
θ = 0 θ = 0.5

Mean StDev StdError MSE Type I Mean StDev StdError MSE Type I

IVW 0.230 0.013 0.037 0.0545 1.000 0.728 0.016 0.038 0.0538 1.000
MR-Egger -0.019 0.183 0.184 0.0678 0.044 0.454 0.180 0.189 0.0703 0.048

Median (Simple) 0.041 0.011 0.013 0.0020 0.932 0.556 0.016 0.020 0.0038 0.888
Median (Weighted) 0.036 0.012 0.013 0.0016 0.820 0.547 0.017 0.019 0.0028 0.724
Mode (Simple) -0.001 0.013 0.015 0.0004 0.012 0.497 0.019 0.022 0.0008 0.016

Mode (Weighted) -0.001 0.012 0.014 0.0003 0.004 0.491 0.017 0.020 0.0008 0.040
Lasso 0.004 0.010 0.008 0.0002 0.128 0.506 0.014 0.011 0.0004 0.148

MR-Presso 0.047 0.011 0.010 0.0024 1.000 0.538 0.019 0.015 0.0020 0.684
MR-Raps (Simple) 0.771 0.101 0.011 0.6052 0.992 0.499 0.012 0.009 0.0002 0.152

MR-Raps (Overdispersed) 0.096 0.038 0.024 0.0112 0.960 0.698 0.030 0.040 0.0417 0.996

JAM-MR (w = 0) 0.230 0.013 0.037 0.0545 1.000 0.728 0.016 0.038 0.0538 1.000
JAM-MR (w = 0.1N1) 0.154 0.035 0.032 0.0259 1.000 0.653 0.035 0.032 0.0258 1.000
JAM-MR (w = 0.2N1) 0.033 0.033 0.016 0.0025 0.418 0.535 0.036 0.019 0.0029 0.425
JAM-MR (w = 0.5N1) 0.000 0.008 0.008 0.0001 0.044 0.494 0.013 0.011 0.0003 0.107
JAM-MR (w = N1) 0.000 0.008 0.008 0.0001 0.044 0.493 0.014 0.011 0.0004 0.144
JAM-MR (w = 2N1) 0.000 0.009 0.008 0.0002 0.088 0.493 0.016 0.012 0.0004 0.162
JAM-MR (w = 5N1) 0.000 0.013 0.009 0.0002 0.129 0.495 0.025 0.014 0.0008 0.286

Oracle 0.000 0.008 0.008 0.0001 0.032 0.496 0.012 0.012 0.0003 0.076

Table 11. Simulation A4: InSIDE violation. P = 100 genetic variants, N1 = N2 = 200000.

Method
θ = 0 θ = 0.5

Mean StDev StdError MSE Type I Mean StDev StdError MSE Type I

IVW 0.161 0.028 0.035 0.0281 1.000 0.592 0.032 0.043 0.0114 0.588
MR-Egger 0.245 0.134 0.089 0.0863 0.688 0.522 0.185 0.111 0.0473 0.236

Median (Simple) 0.027 0.012 0.012 0.0010 0.572 0.526 0.017 0.017 0.0012 0.340
Median (Weighted) 0.051 0.018 0.013 0.0031 0.964 0.525 0.022 0.017 0.0014 0.404
Mode (Simple) 0.023 0.168 1.180 106.6855 0.000 0.521 0.243 1.322 38.0741 0.004

Mode (Weighted) 0.013 0.143 1.180 106.6483 0.004 0.511 0.246 1.321 38.0731 0.008
Lasso 0.017 0.012 0.008 0.0005 0.512 0.511 0.016 0.010 0.0005 0.308

MR-Presso 0.053 0.021 0.011 0.0034 0.980 0.525 0.019 0.013 0.0011 0.452
MR-Raps (Simple) 1.881 9.251 0.594 118.0576 0.776 2.911 49.030 11.464 18561.3280 0.700

MR-Raps (Overdispersed) 0.009 0.019 0.006 0.0005 0.308 0.508 0.020 0.010 0.0006 0.316

JAM-MR (w = 0) 0.161 0.028 0.032 0.0278 1.000 0.592 0.032 0.037 0.0108 0.754
JAM-MR (w = 0.1N1) 0.133 0.029 0.024 0.0192 1.000 0.558 0.028 0.020 0.0045 0.736
JAM-MR (w = 0.2N1) 0.119 0.030 0.022 0.0156 1.000 0.547 0.027 0.019 0.0033 0.660
JAM-MR (w = 0.5N1) 0.092 0.030 0.019 0.0097 0.992 0.532 0.026 0.016 0.0020 0.496
JAM-MR (w = N1) 0.060 0.028 0.015 0.0046 0.923 0.519 0.024 0.014 0.0012 0.377
JAM-MR (w = 2N1) 0.030 0.019 0.010 0.0014 0.687 0.506 0.026 0.012 0.0008 0.371
JAM-MR (w = 5N1) 0.015 0.017 0.009 0.0006 0.459 0.497 0.030 0.012 0.0010 0.431

Oracle 0.000 0.008 0.008 0.0001 0.044 0.498 0.013 0.012 0.0003 0.080
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Table 12. Simulation A5: Balanced pleiotropy. Various numbers of pleiotropic instruments.

Method
10% invalid 20% invalid 40% invalid

Mean SE MSE Type I Mean SE MSE Type I Mean SE MSE Type I

IVW -0.002 0.036 0.0027 0.059 0.001 0.049 0.0051 0.060 0.000 0.068 0.0098 0.067
MR-Egger 0.002 0.171 0.0636 0.067 0.006 0.236 0.1215 0.066 -0.019 0.326 0.2266 0.062

Median (Simple) 0.000 0.021 0.0008 0.043 0.001 0.022 0.0009 0.044 0.001 0.025 0.0014 0.081
Median (Weighted) 0.000 0.020 0.0008 0.044 0.001 0.021 0.0009 0.037 0.000 0.024 0.0013 0.072
Mode (Simple) 0.000 0.040 0.0025 0.006 0.002 0.038 0.0022 0.009 0.001 0.034 0.0019 0.010

Mode (Weighted) 0.000 0.036 0.0021 0.008 0.001 0.034 0.0019 0.009 0.000 0.030 0.0016 0.012
Lasso 0.000 0.014 0.0005 0.112 0.001 0.015 0.0005 0.096 0.001 0.016 0.0008 0.156

MR-Presso 0.000 0.014 0.0004 0.085 0.000 0.015 0.0005 0.075 0.001 0.019 0.0010 0.129
MR-Raps (Simple) -0.002 0.013 0.0021 0.094 -0.010 0.014 0.0376 0.138 0.019 0.014 0.0967 0.289

MR-Raps (Overdispersed) 0.000 0.014 0.0004 0.080 0.001 0.014 0.0005 0.106 0.002 0.041 0.0048 0.095

JAM-MR (w = 0) -0.002 0.036 0.0027 0.059 0.001 0.049 0.0051 0.060 0.000 0.068 0.0098 0.067
JAM-MR (w = 0.1N1) 0.000 0.022 0.0012 0.081 0.001 0.028 0.0022 0.124 -0.001 0.040 0.0052 0.178
JAM-MR (w = 0.2N1) 0.000 0.017 0.0007 0.080 0.002 0.020 0.0011 0.103 0.000 0.027 0.0021 0.137
JAM-MR (w = 0.5N1) 0.000 0.015 0.0005 0.082 0.001 0.016 0.0006 0.086 0.001 0.019 0.0010 0.137
JAM-MR (w = N1) 0.000 0.015 0.0005 0.092 0.001 0.015 0.0006 0.099 0.001 0.018 0.0009 0.131
JAM-MR (w = 2N1) 0.000 0.015 0.0006 0.114 0.001 0.016 0.0007 0.107 0.001 0.019 0.0011 0.173
JAM-MR (w = 5N1) 0.000 0.017 0.0011 0.213 0.001 0.019 0.0012 0.199 0.000 0.023 0.0019 0.227

Oracle 0.000 0.015 0.0004 0.058 0.001 0.016 0.0005 0.037 0.001 0.018 0.0006 0.042

Table 13. Simulation A6: Directional pleiotropy. Various numbers of pleiotropic instruments.

Method
10% invalid 20% invalid 40% invalid

Mean SE MSE Type I Mean SE MSE Type I Mean SE MSE Type I

IVW 0.065 0.035 0.0061 0.416 0.127 0.046 0.0193 0.954 0.256 0.059 0.0707 1.000
MR-Egger 0.007 0.168 0.0594 0.058 -0.017 0.220 0.1008 0.056 -0.008 0.279 0.1627 0.071

Median (Simple) 0.013 0.021 0.0009 0.064 0.028 0.022 0.0017 0.214 0.081 0.028 0.0080 0.864
Median (Weighted) 0.012 0.020 0.0009 0.059 0.025 0.022 0.0015 0.195 0.073 0.027 0.0069 0.784
Mode (Simple) 0.002 0.040 0.0024 0.002 0.002 0.036 0.0020 0.006 0.008 0.030 0.0015 0.018

Mode (Weighted) 0.001 0.036 0.0020 0.006 0.002 0.032 0.0018 0.006 0.008 0.027 0.0013 0.029
Lasso 0.009 0.014 0.0005 0.133 0.012 0.015 0.0007 0.177 0.045 0.017 0.0029 0.703

MR-Presso 0.007 0.014 0.0005 0.091 0.023 0.017 0.0012 0.294 0.116 0.030 0.0157 0.987
MR-Raps (Simple) 0.011 0.014 0.0098 0.096 0.131 0.015 0.1420 0.250 0.371 0.017 0.3419 0.674

MR-Raps (Overdispersed) 0.004 0.014 0.0004 0.081 0.008 0.014 0.0006 0.145 0.191 0.053 0.0442 0.963

JAM-MR (w = 0) 0.065 0.035 0.0061 0.415 0.127 0.046 0.0193 0.954 0.256 0.059 0.0707 1.000
JAM-MR (w = 0.1N1) 0.028 0.022 0.0018 0.208 0.058 0.028 0.0052 0.542 0.139 0.040 0.0236 0.935
JAM-MR (w = 0.2N1) 0.015 0.017 0.0009 0.133 0.029 0.021 0.0019 0.275 0.067 0.027 0.0069 0.650
JAM-MR (w = 0.5N1) 0.006 0.015 0.0005 0.082 0.011 0.016 0.0007 0.136 0.026 0.019 0.0018 0.310
JAM-MR (w = N1) 0.004 0.015 0.0005 0.102 0.006 0.015 0.0006 0.110 0.013 0.018 0.0011 0.206
JAM-MR (w = 2N1) 0.002 0.015 0.0006 0.110 0.003 0.016 0.0007 0.119 0.007 0.019 0.0012 0.186
JAM-MR (w = 5N1) 0.002 0.017 0.0010 0.197 0.002 0.019 0.0013 0.219 0.008 0.023 0.0021 0.253

Oracle 0.001 0.015 0.0004 0.038 0.000 0.016 0.0005 0.047 0.000 0.018 0.0007 0.046
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Table 14. Simulation A7: Directional pleiotropy with common direct effects for all pleiotropic variants. Various numbers of
pleiotropic instruments.

Method
10% invalid 20% invalid 40% invalid

Mean SE MSE Type I Mean SE MSE Type I Mean SE MSE Type I

IVW 0.064 0.031 0.0053 0.559 0.127 0.040 0.0181 0.997 0.256 0.048 0.0682 1.000
MR-Egger -0.001 0.148 0.0436 0.052 -0.005 0.190 0.0739 0.055 -0.002 0.229 0.1057 0.061

Median (Simple) 0.014 0.021 0.0009 0.066 0.031 0.023 0.0018 0.231 0.098 0.034 0.0116 0.903
Median (Weighted) 0.012 0.021 0.0009 0.060 0.027 0.022 0.0016 0.197 0.091 0.032 0.0109 0.837
Mode (Simple) 0.000 0.038 0.0023 0.005 0.000 0.033 0.0017 0.006 0.001 0.026 0.0011 0.017

Mode (Weighted) 0.001 0.034 0.0019 0.008 -0.001 0.029 0.0014 0.006 0.001 0.023 0.0010 0.023
Lasso 0.006 0.014 0.0005 0.095 0.007 0.015 0.0005 0.092 0.054 0.020 0.0042 0.682

MR-Presso 0.002 0.014 0.0004 0.060 0.011 0.015 0.0006 0.131 0.129 0.037 0.0201 0.942
MR-Raps (Simple) 0.000 0.014 0.0004 0.055 0.030 0.014 0.0237 0.136 0.611 0.018 0.3811 0.993

MR-Raps (Overdispersed) 0.000 0.014 0.0004 0.050 0.074 0.034 0.0080 0.668 0.246 0.053 0.0639 1.000

JAM-MR (w = 0) 0.064 0.031 0.0053 0.560 0.127 0.040 0.0181 0.997 0.256 0.048 0.0682 1.000
JAM-MR (w = 0.1N1) 0.042 0.025 0.0030 0.355 0.089 0.034 0.0101 0.817 0.219 0.046 0.0512 0.998
JAM-MR (w = 0.2N1) 0.024 0.020 0.0015 0.177 0.049 0.026 0.0044 0.436 0.138 0.039 0.0256 0.815
JAM-MR (w = 0.5N1) 0.002 0.015 0.0005 0.052 0.003 0.016 0.0006 0.068 0.003 0.019 0.0010 0.082
JAM-MR (w = N1) 0.000 0.015 0.0005 0.056 0.000 0.016 0.0005 0.071 0.000 0.019 0.0008 0.093
JAM-MR (w = 2N1) 0.000 0.015 0.0005 0.079 0.000 0.016 0.0007 0.108 0.001 0.020 0.0011 0.143
JAM-MR (w = 5N1) 0.001 0.017 0.0010 0.185 0.000 0.019 0.0012 0.201 0.002 0.024 0.0019 0.194

Oracle 0.000 0.015 0.0004 0.029 0.000 0.016 0.0005 0.039 0.000 0.018 0.0007 0.042

Table 15. Simulation A8: InSIDE Violation. Various numbers of pleiotropic instruments.

Method
10% invalid 20% invalid 40% invalid

Mean SE MSE Type I Mean SE MSE Type I Mean SE MSE Type I

IVW 0.064 0.034 0.0059 0.420 0.124 0.045 0.0185 0.893 0.242 0.058 0.0635 1.000
MR-Egger 0.005 0.143 0.0835 0.271 0.018 0.170 0.0982 0.217 0.014 0.185 0.0921 0.132

Median (Simple) 0.013 0.021 0.0010 0.069 0.028 0.022 0.0016 0.205 0.081 0.028 0.0080 0.854
Median (Weighted) 0.014 0.020 0.0010 0.082 0.029 0.022 0.0018 0.242 0.085 0.027 0.0095 0.843
Mode (Simple) 0.000 0.046 0.0121 0.006 0.001 0.046 0.0236 0.002 0.013 0.045 0.0290 0.031

Mode (Weighted) 0.001 0.042 0.0117 0.006 0.001 0.043 0.0234 0.010 0.016 0.043 0.0284 0.053
Lasso 0.009 0.014 0.0006 0.148 0.012 0.015 0.0006 0.168 0.046 0.017 0.0030 0.721

MR-Presso 0.008 0.014 0.0005 0.112 0.024 0.017 0.0012 0.291 0.111 0.028 0.0147 0.978
MR-Raps (Simple) 0.038 0.014 0.0672 0.123 0.229 0.022 0.6480 0.266 0.441 0.021 0.6798 0.668

MR-Raps (Overdispersed) 0.004 0.014 0.0005 0.092 0.009 0.014 0.0006 0.146 0.179 0.050 0.0398 0.955

JAM-MR (w = 0) 0.063 0.033 0.0058 0.436 0.122 0.044 0.0181 0.905 0.239 0.056 0.0621 1.000
JAM-MR (w = 0.1N1) 0.039 0.023 0.0029 0.344 0.078 0.031 0.0085 0.709 0.161 0.041 0.0300 0.979
JAM-MR (w = 0.2N1) 0.028 0.020 0.0020 0.273 0.056 0.026 0.0051 0.550 0.119 0.034 0.0181 0.897
JAM-MR (w = 0.5N1) 0.014 0.016 0.0009 0.168 0.026 0.019 0.0017 0.298 0.056 0.024 0.0053 0.587
JAM-MR (w = N1) 0.008 0.015 0.0007 0.138 0.013 0.016 0.0009 0.190 0.028 0.019 0.0020 0.377
JAM-MR (w = 2N1) 0.004 0.015 0.0006 0.146 0.007 0.016 0.0008 0.163 0.017 0.018 0.0016 0.287
JAM-MR (w = 5N1) 0.002 0.017 0.0011 0.216 0.003 0.018 0.0013 0.230 0.014 0.022 0.0025 0.308

Oracle 0.001 0.015 0.0004 0.046 0.000 0.016 0.0005 0.046 0.001 0.018 0.0007 0.055
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Fig 7. Manhattan plot of posterior inclusion probabilities for SNPs associated with
systolic blood pressure, based on the best JAM-MR run (w = 2N1).
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Fig 8. Manhattan plot of posterior inclusion probabilities for SNPs associated with
diastolic blood pressure, based on the best JAM-MR run (w = N1).
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