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Abstract 

The identification of biomarkers that discriminate individual ageing trajectories is a principal target 

in ageing research. Some of the most promising predictors of biological ageing have been developed 

using DNA methylation. One recent candidate, which tracks age-related phenotypes in addition to 

chronological age, is ‘DNAm PhenoAge’. Here, we performed a phenome-wide association analysis of 

this biomarker in a cohort of older adults to assess its relationship with a comprehensive set of both 

historical and contemporaneously-measured phenotypes. Higher than expected DNAm PhenoAge 

compared to chronological age, known as epigenetic age acceleration, was found to associate with a 

number of blood, cognitive, physical fitness and lifestyle variables, and with mortality. Notably, 

DNAm PhenoAge, assessed at age 70, was associated with cognitive ability at age 11, and with 

educational attainment. Adjusting for age 11 cognitive ability attenuated the majority of the cross-

sectional later-life associations between DNAm PhenoAge and health outcomes. These results 

highlight the importance of early-life factors on healthy ageing.   
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Introduction 

A key objective in ageing research is the development of biomarkers that distinguish individuals on 

different ageing trajectories. Due to the distinct and calculable pattern of age-related changes in 

DNA methylation across the genome with chronological age, a number of DNA methylation-based 

biomarkers of ageing, or ‘epigenetic clocks’, have been developed. Accelerated epigenetic ageing 

has been linked with a number of age-related morbidities and with increased risk of mortality (1, 2). 

Whereas the first-generation of epigenetic clocks were developed using solely chronological age as 

the reference, a more recent effort additionally incorporated age-related phenotypes including 

blood cell profiles and inflammatory markers (3). This newer clock, termed DNAm PhenoAge, aimed 

to capture a truer and more efficacious epigenetic biomarker of physiological age, one which 

discriminates morbidity and mortality more definitively among individuals of the same chronological 

age.  

DNAm PhenoAge was found to associate with diverse morbidities and mortality, with improved 

predictive power over other epigenetic clocks (3). However, many of the associations were with 

composite indices of health outcomes, rather than individual phenotypes. Moreover, the 

associations between DNAm PhenoAge and early life factors are currently unknown. It has been 

acknowledged that childhood and life-course traits and circumstances might have an enduring 

impact on later health. For example, greater childhood deprivation, lower childhood intelligence, 

relatively little formal education, and more manual adult occupations have been associated with 

increased morbidity and mortality in older age (2-4). Accordingly, for a more complete picture of the 

validity of DNAm PhenoAge, in addition to testing its relationship with individual ageing outcomes 

and mortality, it would be desirable to examine whether it can be predicted by these life history 

variables. 

Here, we conduct a phenome-wide association study (PheWAS), in which multiple phenotypes are 

related to a single outcome, to investigate the link between accelerated DNAm PhenoAge and a 

comprehensive set of both historical and contemporaneously-assessed phenotypes in a large, 

longitudinal cohort study of ageing: the Lothian Birth Cohort 1936 (LBC1936). This cohort is 

unusually valuable because data are available on their general cognitive ability and social 

circumstances at age 11 which can inform the understanding of possible early life confounders of 

later-life outcomes.  
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Methods 

Study population 

The Lothian Birth Cohort 1936 (LBC1936) is a longitudinal study of ageing. The cohort comprises a 

community-dwelling sample of participants born in 1936, most of whom undertook a general 

intelligence test - the Moray House Test No. 12 - in 1947, aged around 11 years. In total 1,091 

participants were recruited to the study at a mean age of about 70 years, and have subsequently 

been re-examined at three furthers waves, aged around 73, 76 and 79 years. Participants have been 

comprehensively phenotyped at each wave of the study with data collected on cognitive measures, 

physical and health outcomes, genetics, lifestyle factors and psycho-social aspects of ageing. Full 

details on the background, recruitment and data collection procedures of the study are provided 

elsewhere (4, 5).  

Ethics and consent 

Ethical permission for LBC1936 was obtained from the Multi-Centre Research Ethics Committee for 

Scotland (MREC/01/0/56) and the Lothian Research Ethics Committee (Wave 1: LREC/2003/2/29) 

and the Scotland A Research Ethics Committee (Waves 2, 3 and 4: 07/MRE00/58). Written informed 

consent was obtained from all participants.  

LBC1936 DNA methylation 

The LBC1936 methylation profiling has been fully detailed previously (6, 7). Briefly, DNA was 

extracted from whole-blood samples at Wave 1 of the study and methylation was measured at 

485,512 probes. Quality control analysis resulted in the removal of CpG sites with a low detection 

rate (<95% at p<0.01). Probes with low quality (inadequate hybridisation, bisulfite conversion, 

nucleotide extension and staining signal) were additionally identified and removed after manual 

inspection of the array control probe signals. Finally, probes with a low call rate (<450,000 probes 

detected at p<0.01), XY probes, and samples in which the predicted sex did not match the reported 

sex, were excluded.  

DNAm PhenoAge 

The DNAm PhenoAge biomarker was developed in a two-step process by Levine et al (3) . Briefly, a 

novel measure of ‘phenotypic age’ was developed using penalised regression where the hazard of 

mortality was regressed on 42 clinical markers from the third National Health and Nutrition 

Examination Survey (NHANES-III). The optimal model selected nine variables (albumin, creatinine, 

serum glucose (HbA1c), C-reactive protein (CRP), percentage lymphocytes, mean cell volume, red cell 

distribution width, alkaline phosphatase and white blood cell count) in addition to chronological age 
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for inclusion in the phenotypic age predictor. An epigenetic biomarker of phenotypic age was then 

developed using the Invecchiare in Chianti (InCHIANTI) cohort (8), by regressing computed 

phenotypic age on whole-blood DNA methylation data, producing an estimate of DNAm PhenoAge 

based on methylation profiles at 513 CpGs.  

DNAm PhenoAge was calculated in LBC1936 by multiplying methylation beta values with the 

regression weights from the above analysis (3). One CpG (cg06533629) from the 513 used in the 

original computation was not available in the LBC1936 methylation data. At Wave 1, 889 individuals 

within the LBC1936 cohort had full methylation data available for the calculation of DNAm 

PhenoAge. 

Phenotypic data 

The PheWAS included 107 phenotypes broadly associated with health and wellbeing. The 

phenotypes encompassed seven subgroups: blood, cardiovascular, cognitive, personality and mood, 

lifestyle, physical, and life-history, and were measured on a binary (n=15), continuous (n=89) or 

ordinal (n=3) scale. Six of the phenotypes included in the PheWAS (white cell counts, blood glucose, 

CRP, creatinine, albumin and mean cell volume) were incorporated in the original phenotypic age 

predictor.  

Descriptive statistics for the phenotypes are presented in Supplementary file 1. Data collection 

protocols are detailed in Supplementary file 2 and have been described fully previously (9).  

Statistical Analysis 

DNAm PhenoAge acceleration (DNAm PhenoAgeAccel) – defined as the residuals resulting from 

regressing DNAm PhenoAge on chronological age - was calculated for all participants at LBC1936’s 

Wave 1, at a mean age of 70 years.   

Linear regression models were used to obtain the associations between the continuous variables 

with DNAm PhenoAgeAccel. All continuous variables were scaled to have a mean of zero and unit 

variance to ensure comparable effect sizes across all traits. Generalised linear models with a logit 

link function (logistic regression) were used to investigate the association between the binary 

variables and DNAm PhenoAgeAccel, and ordinal regression models were used for the ordered 

categorical measures of smoking (3 levels), physical activity (5 levels) and occupational social class (6 

levels). DNAm PhenoAgeAccel was the independent variable of interest in each regression model. 

Height and smoking status (Wave 1) were included as covariates in the models for lung function 

(forced expiratory volume FEV1; forced vital capacity: FVC; forced expiratory ratio: FER; and peak 

expiratory flow: PEF). All models were adjusted for chronological age and sex. To investigate the 
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influence of childhood cognitive ability, all models that showed significant associations with DNAm 

PhenoAgeAccel were repeated adjusting for age-11 IQ scores. 

In the longitudinal analysis, linear mixed-effects models were used to assess if baseline DNAm 

PhenoAgeAccel was associated with longitudinal change over the four waves of data (~70 years to 

~79 years) in a subset of the cognitive and physical phenotypes that are known to decline with age 

and correlate with functional impairment. Here, Wave 1 DNAm PhenoAgeAccel was included as a 

fixed-effect interaction with chronological age, and participant was added as a random-effect 

intercept term. As above, height and smoking status were included in the models for lung function, 

and all models co-varied for sex. Cox proportional-hazards model was implemented to analyse the 

effect of DNAm PhenoAgeAccel on survival (time-to-death). 

Correction for multiple testing was applied using the false discovery rate (FDR) method for each 

group of variables (10) .  

Statistical analysis was conducted in R version 3.5.0 using the ‘lm’ and ‘glm’ function in the ‘stats’ 

library and the ‘lme4’, ‘lmerTest’, ‘rms’ and ‘Survival’ packages (11-16).  

Results 

Cohort information 

Details of the baseline (Wave 1) characteristics of LBC1936 are presented in Supplementary file 1. 

49.8% of the cohort was female. Mean chronological age for both males and females was 69.5 years 

(SD 0.8) and mean DNAm PhenoAge was 57.8 years (females = 56.7 [SD = 8.1], males = 58.8 [SD 

8.2]). The discrepancy between the chronological and epigenetic age measures is probably reflective 

of the overall good health of the cohort.   

PheWAS 

Only associations with an FDR-corrected significant p-value (<0.05) are presented here and in Figure 

1. Full results are presented in Supplementary file 3 and Supplementary file 4.  

- Blood 

Significant associations between DNAm PhenoAgeAccel and blood phenotypes are presented in 

Figure 1. Full results are presented in Supplementary file 3: Figure 1 and Supplementary file 4. Of 

the six measures included in the phenotypic age reference, three significant positive associations 

were found with DNAm PhenoAgeAccel: white cell counts (β = 0.22, SE = 0.03, p = 2.5x10-9) HbA1c (β 

= 0.13, SE = 0.03, p = 5.8x10-4) and C-reactive protein (CRP; β = 0.11, SE = 0.03, p = 0.006).  
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Significant positive relationships were additionally identified between DNAm PhenoAgeAccel and 

neutrophils (β = 0.25, SE = 0.03, p = 2.9x10-12), monocytes (β = 0.14, SE = 0.03, p = 1.6x10-4) and 

fibrinogen (β = 0.09, SE = 0.03, p = 0.043). A negative association was found between DNAm 

PhenoAgeAccel and total cholesterol levels (β = -0.09, SE = 0.03, p = 0.043).  

- Cardiovascular 

No significant associations were found between DNAm PhenoAgeAccel and any of the cardiovascular 

variables (Supplementary file 3: Figure 2, FDR- corrected p ≥ 0.12). 

- Cognitive 

Significant associations between DNAm PhenoAgeAccel and cognitive phenotypes are presented in 

Figure 1. Full results are presented in Supplementary file 3: Figure 3 and Supplementary file 4. 

Higher DNAm PhenoAgeAccel associated with lower scores on one test of the processing speed 

domain (digit symbol coding: β = -0.11, SE = 0.03, p = 0.015), one test of the memory domain (verbal 

paired associates: β = -0.09, SE = 0.03, p = 0.034), the mini-mental state examination (MMSE; β = -

0.10, SE = 0.03, p = 0.034) and two tests of crystallised ability (national adult reading test [NART]: β = 

-0.09, SE = 0.03, p = 0.034; verbal fluency: β = -0.09, SE = 0.03, p = 0.034).  

- Personality and mood 

No significant associations were found between DNAm PhenoAgeAccel and any of the personality 

and mood phenotypes (Supplementary file 3: Figure 4). 

- Physical 

Significant associations between DNAm PhenoAgeAccel and physical phenotypes are presented in 

Figure 1. Full results are presented in Supplementary file 3: Figure 5 and Supplementary file 4. We 

found significant inverse associations between DNAm PhenoAgeAccel and FEV1 (β = -0.07, SE = 0.02, 

p = 0.023), FVC (β = -0.07, SE = 0.02, p = 0.023), and grip strength in both right and left hands (both: 

β = -0.05, SE = 0.02, p = 0.045). Higher DNAm PhenoAgeAccel was associated with a diagnosis of 

diabetes (OR = 1.39, 95% CI [1.01, 1.78], p = 0.038), a slower six metre walk time (β = 0.01, SE = 0.03, 

p = 0.038), and a higher score on the Townsend’s Disability Scale (activities of daily living; β = 0.09, 

SE = 0.03, p = 0.045). 

- Lifestyle  

Significant associations between DNAm PhenoAgeAccel and lifestyle phenotypes are presented in 

Figure 1. Full results are presented in Supplementary file 3: Figure 6 and Supplementary file 4. A 

significant inverse association was found between baseline DNAm PhenoAgeAccel and deprivation 
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index (β = -0.08, SE = 0.03, p = 0.025). Additionally, a higher DNAm PhenoAgeAccel was associated 

with lower levels of physical activity (OR = 0.77, 95% CI [0.67, 0.88], p = 0.0003) and with higher odds 

of being either a current or an ex-smoker, compared to a never smoker (OR = 1.31, 95% CI [1.15, 

1.49], p = 0.0003). 

- Life-history 

Significant associations between DNAm PhenoAgeAccel and life-history phenotypes are presented in 

Figure 1. Full results are presented in Supplementary file 3: Figure 7 and Supplementary file 4. A 

higher baseline DNAm PhenoAgeAccel was associated with a lower age-11 IQ (β = -0.13, SE = 0.03, p 

= 0.001) and fewer years of education (β = -0.09, SE = 0.03, p = 0.013). 

Longitudinal association between DNAm PhenoAgeAccel and phenotypes 

All the cognitive and physical fitness measures included in the longitudinal analysis showed changes 

over time that were consistent with declining health (Supplementary file 5). The rate of decline 

ranged from 0.02 SDs per year (digit span backwards) to 0.08 SDs per year (telomere length). Six 

metre walk time increased by 0.1 SDs per year (all p ≤ 2x10-8). 

Baseline DNAm PhenoAgeAccel was not found to associate with subsequent change in any of the 

assessed phenotypes (FDR-corrected p ≥ 0.322, Table 1).  

DNAm PhenoAge and survival 

We tested the association of DNAm PhenoAge with all-cause mortality (ndeaths= 209, over 9 years of 

follow-up, average age of death = 76.8 years, SD 3.3) and found that a higher DNAm PhenoAgeAccel 

was significantly associated with risk of death (HR = 1.17 per SD increase in DNAm PhenoAgeAccel, 

95% CI [1.02, 1.34], p = 0.025). A Kaplan-Meier survival curve for DNAm PhenoAgeAccel, split into 

highest and lowest quartiles, is presented in Figure 2, illustrating the higher mortality risk for those 

with a higher DNAm PhenoAgeAccel.  

Adjusting for Age-11 IQ 

To test for potential confounding of the associations by childhood intelligence, the models for all of 

the significant associations identified in the PheWAS were re-run adjusting for age-11 IQ. Results are 

presented in Figure 1 and Table 2.  

The associations with 12 out of the 23 phenotypes that were originally found to be significant in the 

PheWAS, became non-significant upon adjustment, inclusive all of the cognitive associations. Of the 

associations that became non-significant, the effect sizes were attenuated by a mean of 39% (range: 
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13.4% to 82.4%).The survival model was also no longer significant following adjustment for age-11 

IQ (HR = 1.13, 95% CI [0.98, 1.31], p = 0.08).  

All of the associations with blood phenotypes, excepting fibrinogen, were still significant following 

adjustment for age-11 IQ, as were the lung function measures, smoking status, physical activity and 

diabetes. 

Discussion 

In this study we performed a comprehensive PheWAS to investigate the associations between 107 

phenotypes with a new epigenetic predictor - DNAm PhenoAge - in a large cohort of older adults. 

We identified significant correlations at a mean age of 70 years between accelerated DNAm 

PhenoAge and a number of blood-based, physical, cognitive, and lifestyle phenotypes, in addition to 

mortality. Importantly, we found that the life-history variables of general cognitive ability, measured 

at age 11, and number of years of education, related to DNAm PhenoAge at age 70. Moreover, 

adjustment for age 11 cognitive ability attenuated the majority of the cross-sectional later-life 

associations between DNAm PhenoAge and health outcomes. Most of the blood-based phenotypes 

– many of which were used to derive the PhenoAge predictor – remained significant, along with 

some measures of physical fitness and smoking status. We found no link between baseline DNAm 

PhenoAgeAccel and longitudinal change in any of the assessed phenotypes. 

PheWAS results 

- Blood 

Higher DNAm PhenoAgeAccel associated with raised levels of various blood-based immune and 

inflammatory cells (white cell counts, monocytes and neutrophils), alongside elevated blood glucose 

(HbA1c), and two inflammatory mediators - fibrinogen and CRP. The associations identified with 

white cell counts, glucose and CRP are largely unsurprising given the derivation of phenotypic age. 

Conversely, an inverse relationship was found with total cholesterol. High total cholesterol 

concentrations have previously been shown to have protective effects in older age, associating with 

longevity (17). Taken together, these results suggest that DNAm PhenoAge captures features of age-

related inflammation and immunosenescence. These findings seem congruous with the ‘inflamm-

aging’ theory, which posits that chronic, low-grade, sterile inflammation is a central driver of the 

ageing process (18).   

- Cognitive 

As cognitive decline is one of the most feared aspects of growing older, characterising its association 

with a predictor of ageing outcomes is important. The negative association between DNAm 
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PhenoAgeAccel and the MMSE suggests a potential link between a higher epigenetic age and lower 

cognitive ability in older age; however only two out of eleven of the tests of cognitive function 

domains that typically decline in older age (visual paired associates [memory] and digit-symbol 

coding [processing speed]) were found to have a significant inverse relationship with DNAm 

PheonAgeAccel. We found that higher DNAm PhenoAgeAccel was associated with lower scores on 

two cognitive tests that comprise measures of crystallised intelligence (NART and verbal fluency). 

Given that crystallised ability typically remains relatively stable throughout the life course (19), this 

result seems reflective of a link between accelerated biological ageing and generalised lower scores 

in the crystallised domain. 

- Physical 

Akin to the findings from Levine et al. that higher DNAm PhenoAge is associated with increased 

physical functioning problems, we found significant associations between more impaired scores on 

measures of age-related physical fitness – gait speed, grip strength, lung function and the Townsend 

Disability Scale (activities of daily living) - with higher DNAm PhenoAgeAccel. The only overt disease 

phenotype found to correlate with DNAm PhenoAgeAccel was diabetes. This association may be a 

result of the inclusion of HbA1c in the phenotypic age measure capturing recognised alterations in 

blood glucose seen in diabetes.   

- Lifestyle 

We observed that lower levels of physical activity and ranking on a more deprived socioeconomic 

scale correlated with an increased DNAm PhenoAgeAccel. The association with social deprivation is 

conceivably due to its link with more biologically direct risk factors for ageing and morbidity. For 

instance, various lifestyle variables have been shown to associate with socioeconomic status, 

including smoking and BMI – two of the largest risk factors for a host of age-related diseases (20, 

21). The association identified between smoking status and DNAm PhenoAgeAccel is not surprising 

given the significant impact smoking has on disease risk and life expectancy and on DNA methylation 

(22). Overall, these findings iterate the protective effects of a higher socioeconomic status, exercise 

and abstention from smoking in the mitigation of susceptibility to age-related decline. 

- Life-history 

Of the assessed life-history variables, fewer education years correlated with an increased DNAm 

PhenoAgeAccel as did lower age-11 IQ scores. While these may be independent associations, 

childhood cognitive function is a substantial predictor of educational attainment (23). The 

association between DNAm PhenoAgeAccel with IQ measured almost 60 years previously is a key 
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finding and is indicative of a lifelong, enduring association between cognition and DNAm 

PhenoAgeAccel rather than one specific to ageing. This bolsters cognitive epidemiology findings 

indicating that general intelligence in childhood, as measured by psychometric tests, predicts, or is 

associated with, substantial life-course differences in health and morbidity (24, 25). Various, non-

exclusive, mechanisms are thought to govern this association, including better health literacy and 

disease management, higher socioeconomic standing, and the ‘system integrity’ hypothesis which 

postulates that higher scores on cognitive ability tests are capturing a systemic level of good 

functioning rather than isolated brain efficiency (26). It is possible that individual differences in 

DNAm PhenoAgeAccel in older age are, in part, caused by intelligence differences over the 

lifecourse, or that both are a result of a shared genetic architecture or early environmental event. 

Longitudinal association and mortality 

Similar to Levine et al. original paper, we found accelerated DNAm PhenoAge to be associated with a 

higher risk of mortality. However, we found no evidence to suggest that DNAm PhenoAgeAccel 

associates with longitudinal changes in ageing phenotypes, limiting its potential as a prospective 

biomarker of ageing.  

Adjusting for age-11 IQ 

All of the associations found between DNAm PhenoAgeAccel with concurrent cognitive measures 

ceased to be significant following adjustment for age-11 IQ. Comparably, all of the associations with 

the physical fitness phenotypes, excepting the lung function measures, were attenuated with 

P>0.05. This suggests that the relationship found between DNAm PhenoAgeAccel and 

contemporaneous cognition in older age, in addition to walking speed, grip strength and physical 

ability, is partially mediated through childhood cognitive ability, solidifying the aforementioned 

lifetime association between intelligence and health. The associations with education duration and 

socioeconomic status were also attenuated and no longer significant upon adjustment. As previously 

mentioned, childhood IQ has been shown to predict educational outcomes and the two are 

significantly genetically correlated (27, 28). Additionally, it has been demonstrated that lower 

childhood IQ associates with adult socioeconomic deprivation and reciprocally, higher IQ in 

childhood was found to be a predictor of upward social mobility (29-31). Childhood IQ has frequently 

been associated with both all-cause (32) and cause-specific mortality (33-36) and the survival model 

in our analyses also became non-significant following adjustment. These findings are consistent with 

the theory of confounding or reverse causation; that is, cognitive ability at age 11 accounts for most 

of the cross-sectional associations between epigenetic age acceleration and various health and 

wellbeing phenotypes in later-life. 
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Though the majority of the formerly significant relationships were attenuated and became non-

significant in the adjusted models, the associations with most of the blood phenotypes, including the 

three that were incorporated in the phenotypic age predictor, remained significant. Additionally, 

though the effect sizes attenuated by 30% and 22% respectively, the associations with the lung 

function measures of FEV1 and FVC remained significant. There was little attenuation of the 

associations with levels of physical activity and not smoking, perhaps exhibitive of their importance 

in terms of biological ageing. 

Strengths and Limitations 

This is the first independent test of DNAm PhenoAge in a large cohort of older adults with the 

availability of historical variables, as well as longitudinal measures for an extensive number of health 

and ageing-related phenotypes. Moreover, these data are available across the 8th decade, a time 

when risk of dementia and functional decline increases substantially. Critically, the availability of 

childhood IQ measures enabled us to show that many cross-sectional associations between DNAm 

PhenoAge and health are confounded by early life cognitive ability.  

LBC1936 are a predominantly healthy older ageing cohort, reflected by the young estimation of 

DNAm PhenoAge compared to chronological age, which might preclude the generalisation of these 

findings to the broader ageing population in which manifold co-existing morbidities are commonly 

prevalent. Furthermore, most of the disease assessments within the study are concluded from self-

reports which are often unreliable, limiting their use as indicators of verifiable pathologies. These 

aspects perhaps hindered additional findings of disease-related associations, and future studies 

could consider DNAm PhenoAge associations in larger, longitudinal cohorts with clinical end-points.  

Conclusion 

We have verified associations between an innovative and novel marker of epigenetic age and a 

number of pertinent, proxy health-related phenotypes and mortality in older adults. Additionally, 

intelligence at age 11 and educational attainment were found to associate with DNAm PhenoAge at 

age 70. Most notably, adjustment for childhood cognitive ability attenuated over half of the late-life 

associations of health and DNAm PhenoAge by 13%-82%. While it does seem DNAm PhenoAge 

independently captures some measures of age-related functional fitness and blood-based 

phenotypes, future studies utilising it as a biomarker should be aware of potentially mediating 

factors in the interpretation of results. 
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Figure 1. FDR-corrected significant associations between DNAm PhenoAgeAccel and blood, cognitive, lifestyle, physical and life-history variables. 

Standardised model β coefficients (for continuous variables) or log odds (for binary variables) are presented along the x-axes. Phenotypes are presented 

along the y-axis. Error bars show the 95% confidence interval. CRP: C-reactive protein; Dep: deprivation; VPA: verbal paired associates; verb: verbal; NART: 

National Adult Reading Test; MMSE: Mini-Mental State Examination; grip: grip strength; FEV1: forced expiratory volume in 1 second; FVC: forced vital 

capacity; ADL: activities of daily living (Townsend Disability Scale).  
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Table 1. Longitudinal associations between baseline DNAm PhenoAgeAccel and phenotypes.  

Phenotype Standardised β Standard error Raw p FDR-corrected p  

Grip strength (r) 0.010 0.008 0.189 0.448  

Grip strength (l) 0.008 0.008 0.288 0.448  

Forced expiratory volume (1s) 0.009 0.008 0.261 0.448  

Forced vital capacity 0.011 0.009 0.192 0.448  

Forced expiratory ratio 0.021 0.015 0.175 0.448  

Peak expiratory flow 0.006 0.011 0.613 0.859  

Digit span backwards <0.001 0.013 0.952 0.952  

Symbol search -0.003 0.013 0.821 0.952  

Digit symbol coding 0.019 0.009 0.046 0.322  

Matrix reasoning 0.004 0.013 0.713 0.908  

Letter number sequencing -0.018 0.013 0.180 0.448  

Block design -0.011 0.011 0.282 0.448  

6m walk time (s) <0.001 0.014 0.945 0.952  

Telomere length -0.025 0.012 0.041 0.322 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/588293doi: bioRxiv preprint 

https://doi.org/10.1101/588293
http://creativecommons.org/licenses/by/4.0/


18 
 

Figure 2. Survival probability by quartiles of DNAm PhenoAgeAccel adjusted for sex and 

chronological age.  
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Table 2. Results before and after adjusting models for age-11 IQ. Standardised β are presented for 

continuous variables and log odds for binary or ordinal phenotypes. FDR-corrected significant results 

are highlighted in bold.  

 Before age-11 IQ adjustment After age-11 IQ adjustment 

Phenotype 
Standardised 

β 
Standard 

error 

FDR-
corrected 

p 

Standardised 
β 

FDR-
corrected 

p 

% 
attenuation 

Neutrophils 0.245 0.033 9.26x10-12 0.241 3.47x10-11 1.7 

White cell count 0.222 0.034 8.24x10-9 0.214 4.22x10-8 3.7 

Monocytes 0.143 0.033 5.3x10-4 0.143 2.72x10-4 0 

HbA1c 0.129 0.033 0.002 0.110 0.004 14.5 

C-reactive protein 0.112 0.033 0.012 0.108 0.006 3.2 

Forced expiratory volume (1s) -0.108 0.023 0.023 -0.076 0.006 30 

Forced vital capacity -0.089 0.023 0.023 -0.069 0.008 22.1 

Cholesterol -0.086 0.032 0.043 -0.088 0.021 -2.6 

Fibrinogen 0.089 0.034 0.043 0.074 0.062 16.6 

Grip strength (r) -0.053 0.022 0.045 -0.046 0.062 13.3 

6m walk time (s) 0.097 0.035 0.037 0.073 0.068 24.9 

Deprivation index -0.082 0.033 0.025 -0.061 0.088 25.8 

Digit symbol coding -0.11 0.033 0.015 -0.057 0.089 48.1 

Grip strength (l) -0.053 0.021 0.045 -0.040 0.094 25.3 

Activities of daily living 0.086 0.034 0.045 0.062 0.098 27.6 

Mini-mental state examination -0.095 0.034 0.034 -0.048 0.140 49.2 

Verbal paired associates -0.087 0.034 0.034 -0.051 0.142 41.9 

Years of education -0.09 0.033 0.012 -0.039 0.216 56.3 

Verbal fluency -0.087 0.033 0.034 -0.040 0.216 53.5 

National adult reading test -0.087 0.033 0.034 -0.015 0.536 82.4 

  Log odds           

Smoking category 0.267 0.067 0.002 0.224 0.004 16.2 

Physical activity -0.266 0.069 0.002 -0.242 0.003 8.9 

Diabetes 0.335 0.124 0.002 0.303 0.039 9.7 
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