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Abstract 24 

Cardiometabolic diseases (CMD) impose greater impact on every aspect of health care 25 

than any other disease group.  Accurate and in-time risk assessment of individuals for their 26 

propensity to develop CMD events is one of the most critical paths in preventing these 27 

conditions.  The principal objective of the present study is to report the development, and 28 

validation of a next generation risk engine to predict CMD.  UK Biobank population data was 29 

used to derive predictive models for six CMD.  Missing data were imputed using imputation 30 

algorithms.  Cox proportional hazard models were used to estimate annual absolute risk and 31 

relative risk of different risk factors for these conditions.  In addition to conventional risk 32 

factors, the applied model included socioeconomic data, lifestyle factors and comorbidities as 33 

predictors of outcomes. In total, 416,936 individuals were included in the analysis.  The 34 

derived prediction models achieved consistent and moderate-to-high discrimination 35 

performance (C-index) for all diseases: coronary artery disease (0.79), hypertension (0.82), 36 

type 2 diabetes mellitus (0.87), stroke (0.79), deep vein thrombosis (0.75), and abdominal 37 

aortic aneurysm (0.90).  These results were consistent across age groups (37-73 years) and 38 

showed similar predictive abilities amongst those with pre-existing diabetes or hypertension.  39 

Calibration of risk scores showed that there was moderate overestimation of CMD-related 40 

conditions only in the highest decile of risk scores for all models. In summary, the newly 41 

developed algorithms, based on Cox proportional models, resulted in high disclination and 42 

good calibration for several CMD.  The integrations of these algorithms on a single platform 43 

may have direct clinical impact. 44 

  45 
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Introduction 46 

Cardiometabolic diseases (CMD) continue to be the leading causes of death in the United 47 

States since the 1920s, and 45% of the U.S. population is projected to suffer from any of these 48 

diseases by 2035 [1].  The healthcare cost associated with these diseases represent one of the 49 

greatest global economic burdens [2].  As with any chronic condition, appropriate prevention 50 

and selective treatment for CMD are the most effective approaches to defer their clinical and 51 

financial impact on individuals and across populations.  52 

Primary prevention of chronic diseases is a resource intensive, costly, and non-effective if 53 

applied through non-selective implementation [3]. Therefore, accurate population and 54 

individual stratification is needed to provide individualized, as well as population-specific 55 

care.  In order to achieve clinically relevant risk stratification, established risk factors and 56 

novel population-specific data should be considered to derive clinically applicable prediction 57 

algorithms. 58 

For over 20 years, the concept of cardiovascular risk assessment has been tested through 59 

prediction models that are utilized in the clinical setting [4-6].  Current prediction models 60 

have good discrimination abilities to identify individuals who will develop CMD.  However, 61 

there are opportunities to address the limitations of current models, such as inclusion of 62 

contemporary risk factors, biomarkers and genetic information as part of the algorithms [7].  63 

Also, the currently systems are limited to only a few diseases, such as coronary artery disease 64 

and stroke, without consideration of major comorbidities.  Moreover, current models do not 65 

allow for imputation for missing data; and finally, they are primarily directed to prevention of 66 

disease over a 10-year span.  In this study, the development and validation of a next-gen 67 

stratification platform that integrates conventional clinical risk factors and biomarkers, 68 
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socioeconomic, lifestyle factors and other co-morbidities data for six cardiometabolic diseases 69 

(CMD) is presented.  To derive these new predictions models, we used data provided by the 70 

UK Biobank (UKBB) project [8], including over 400,000 men and women aged 37–73 years, 71 

with 6.1 years of median longitudinal follow-up.  72 

  73 
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Materials and methods 74 

Baseline data preparation 75 

Baseline data on 502,616 UKBB participants collected at assessment centers to derive the 76 

prediction models. Overall, 95% of the UKBB participants were self-described as white, with 77 

women comprising 54.4% of the total.  CMD outcomes were determined based on 78 

International Classification of Diseases (ICD) edition 10 (ICD-10) codes, as well as self-79 

reports for coronary artery disease (CAD), hypertension (HPT), type 2 diabetes mellitus 80 

(DM2), and deep vein thrombosis (DVT), and medications for CAD, HPT, and DM2. Six 81 

distinct datasets for each CMD were engineered. CAD was defined as I20–I25 and T82 codes. 82 

HPT was defined as I10, I15, and R03.0 codes. DM2 was defined as E11, E13, and E14 83 

codes. Stroke was defined as G46.3, G46.4, I63, I66, I67, and I693 codes. DVT was defined 84 

as H34.8, H40.8, I23.6, I24.0, I63, I67.6, I74, I81, I82, I87.2, I87.3, K64.5, N48.8, N52.0, 85 

O03.3, O03.8, O04.8, O07.3, O08.7, 022, O87, Q26, T82.8, T83.8,  T84.8, T85.8, and Z86.7 86 

codes. Abdominal aortic aneurysm (AAA) was defined as I71 and I79.0 codes. 87 

The UKBB data were subsequently linked to hospital episode statistics (HES) data from 88 

hospitals in England, Scotland and Wales. The age and date of a CMD event were determined 89 

based on primary or secondary ICD-10 codes in the HES data corresponding to the event 90 

using the earliest hospital record. The date of inclusion into the UKBB was defined as 91 

baseline and was used as starting point for time-to-event calculations. The exit date was 92 

determined as either date of death, end of follow-up (February 29, 2016), or a CMD event, 93 

whichever happened first. Only those CMD-positive cases that were identified by ICD-10 94 

codes, self-reports, or medication as described above and had the date of the event determined 95 
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based on the HES data were included into analyses, reducing the number of participants to 96 

416,936. In addition, participants with prior CMD events (before baseline) were excluded 97 

from analyses of that specific event, e.g. those with prior CAD event were excluded from the 98 

CAD analyses and so on. 99 

The datasets created for each CMD were spitted into training and testing sets based on 100 

80%/20% ratio. Testing sets were used for model validation and calibration. Age- and CMD-101 

specific testing sets were created by applying corresponding age and disease filters onto 102 

general test datasets (without reusing any data from the training sets to avoid overfitting). 103 

Variable definition 104 

To develop highly predictive CMD risk prediction models, in addition to using already 105 

available UKBB data fields, the new variables were derived that captured sociodemographic 106 

and socioeconomic factors, laboratory test results, physiological measurements, physical 107 

activity, nutrition, alcohol consumption, family history of CMD; as well as the presence of 108 

diseases, disorders, or previous surgeries as shown in Table 1. 109 

 110 

 111 

 112 

 113 

 114 

 115 

 116 
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 117 

Table 1. Profile of variables for predicting the risk of six CMD. 118 

 Type N 5% 25% 50% 75% 95% 

Sex binary 416936 women women women men men 

BMI continuous 414265 20.84 23.94 26.48 29.58 35.82 

DBP continuous 415742 66 75 81 88 98.5 

Age continuous 416936 42 49 57 63 68 

FEV1 continuous 376770 60.83 82.19 93.79 104.38 119.88 

Current smoking binary 414793 no no no no yes 

Past smoking binary 412557 no no yes yes yes 

Family history of CAD categorical 359472 no no no yes (1)a yes (2)b 

Family history of DM2 categorical 385973 no no no no mother 

Family history of high 
blood pressure 

categorical 389301 no no no father 
father and 

mother 

Family history of stroke categorical 386630 no no no father mother 

Physical activity                     
(MET x hours/week) 

continuous 379178 5.78 16 32 63 175.1 

Coffee consumption 
(cups) 

continuous 415021 0 0 2 3 6 

Alcohol score continuous 288169 0 0 2.5 10 10 

AHEI score continuous 199435 2.5 10 10 20.08 44.5 

Surgery history binary 322522 no no no no yes 

Hormone replacement 
therapy 

categorical 403518 no no no no 
recent user          
(<3 years) 

Hypercholesterolemia 
medication excluding 

aspirin 
binary 416936 no no no no yes 

Sleep apnea binary 416936 no no no no no 

Irritable bowel syndrome binary 416936 no no no no no 

Heart valve problem binary 416936 no no no no no 

Arrhythmia binary 416936 no no no no no 

Congestive heart failure binary 416936 no no no no no 

Hyperthyroidism binary 416936 no no no no no 

Education categorical 408500 no professional professional 
college or 
university 

college or 
university 

Income (£) categorical 353335 <18,000 18,000 - 30,999 31,000 - 51,999 
52,000 - 
100,000 

>100,000 

Insomnia categorical 415605 never/rarely sometimes sometimes usually usually 

Sleep duration (hours) categorical 416117 
>4 and <6 or       
>9 and <11 

>=6 and <7 or 
>8 and <=9 

>=7 and <=8 >=7 and <=9 >=7 and <=10 

Lymphocyte categorical 395894 >0.8 and <4.8 >0.8 and <4.8 >0.8 and <4.10 >0.8 and <4.10 >0.8 and <4.10 

Monocyte categorical 395894 >0.2 and <0.9 >0.2 and <0.9 >0.2 and <0.9 >0.2 and <0.9 <=0.2 

MCH categorical 396632 >=27 and <=34 >=27 and <=34 >=27 and <=34 >=27 and <=34 >34 

Platelet categorical 396631 
>=150 and         

<= 440 
>=150 and         

<= 440 
>=150 and           

<= 440 
>=150 and             

<= 440 
>=150 and               

<= 440 

RDW categorical 396633 
>= 11.6 and          

<= 14.6 
>= 11.6 and      

<= 14.6 
>= 11.6 and         

<= 14.6 
>= 11.6 and           

<= 14.6 
>14.6 

CAD age continuous 13607 45 54 58 62 67 

DM2 age continuous 8316 43 53 58 63 67 

HPT age continuous 36546 44 54 59 63 67 

DVT age continuous 7379 41 51 58 62 67 
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Types of variables, number of UKBB participants for each variable, and mean values (mode 119 

categories for categorical and binary variables) for different percentiles are shown. The 120 

number of participants for the CMD age variables corresponds to the number of prevalent 121 

cases.  122 

aEither father, mother, or sibling 123 

bAny combination of two of the following: father, mother, or sibling 124 

 125 

Physical activity was assessed as the metabolic equivalent of task (MET) calculated in 126 

hours/week according to the "Guidelines for Data Processing and Analysis of the International 127 

Physical Activity Questionnaire (IPAQ) [9]. MET coefficients are indicated in Table 1. 128 

Alcohol score was calculated according to Alternative Healthy Eating Index (AHEI) 129 

guidelines [10]. One alcohol serving corresponded to 11.4 grams of alcohol. Further, a 130 

nutrition AHEI score was calculated as a sum of scores for the following nutrition categories: 131 

vegetables, fruits, grains, sugar sweetened beverages and fruit juices, nuts, meat, fish, PUFA, 132 

and alcohol. The nutrition scores were calculated according to AHEI guidelines [10].  133 

In addition to the predicted CMD (target CMD), participants could of course experience 134 

other competing CMD outcomes. We used the age of experiencing these non-target diseases 135 

as an additional risk factor. For participants that did not experience a CMD event before 136 

baseline (CMD-negative cases), the age of CMD was set to 100. This approach allowed for 137 

incorporating time-dependent data without using the limitations of a modification of the Cox 138 

model, such as a Cox proportional hazards time varying model, which is often used to address 139 

time-dependency of predictors. 140 
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Imputation of missing values 141 

Multiple imputation by chained equations (MICE) implemented in Python (fancyimpute 142 

0.3.1) and Bayesian ridge regression with the regularization parameter lambda of 0.001 was 143 

used for the imputation of missing values of continuous variables [11]. Parameters included 144 

initial filling with mean values, monotone visit sequence, the number of imputations = 100, 145 

the number of burn-in iterations = 10, no maximum and minimum possible imputed values, 146 

imputing with samples from posterior predictive distribution, the number of nearest neighbors 147 

for probabilistic moment matching = 5, and use of all columns to estimate current column. 148 

Cases with missing values in categorical variables were dropped before the imputation, and 149 

continuous variables were scaled to a range between 0 and 1. 150 

Variable selection for predictive modeling 151 

Several approaches were employed for selecting variables included in the prediction 152 

model.  Multicollinearity was first identified using pairwise correlation matrix (pandas 153 

0.20.1), and the variables with the Pearson correlation coefficient higher than 0.3 were 154 

removed from the dataset.  Recursive variable elimination with stratified 2-fold cross-155 

validation (RFECV) on training datasets was then used to determine optimal number of 156 

variables by recursively considering smaller and smaller sets of variables (scikit-learn 0.20.0).  157 

One variable was removed at each iteration, minimum number of variables to be selected was 158 

one, and accuracy was used for scoring. 159 

RFECV was used in combination with balanced random forest (imbalanced-learn 0.4.2) 160 

bivariate classification model. Parameters of the random forest model included the number of 161 

estimators = 100, Gini impurity as the quality of split, ‘auto’ sampling strategy, maximum 162 
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depth of the decision tree = 0, minimum number of samples required to split an internal node 163 

= 2, minimum number of samples required to be at a leaf node = 1, minimum weighted 164 

fraction of the sum total of weights required to be at a leaf node = 0, the number of variables 165 

to consider when looking for the best split = 'auto', unlimited number of leaf nodes, minimum 166 

impurity decrease threshold for node splitting = 0, bootstrapping, random sampling without 167 

replacement, no use out-of-bag samples to estimate the generalization accuracy, the number 168 

of jobs to run in parallel for both fit and predict = 1, resampling all classes, but the minority 169 

class, the verbosity of the tree building process = 0, and balanced class weights. 170 

In addition, principal component analysis (PCA) was used to validate the selection of 171 

variables and to avoid overfitting and poor calibration by determining that the number of 172 

selected variables is similar to the optimal number of principal components (scikit learn 173 

0.20.0). The number of components to be retained was determined by using maximum-174 

likelihood density estimation and full singular value decomposition (utilizing LAPACK 175 

library solver) as parameters of the PCA function, which applies Bayesian model selection to 176 

probabilistic PCA in this configuration [12].  177 

Predictive models and performance metrics 178 

Linear Cox proportional hazard (PH) models and non-linear ensemble survival models 179 

were developed using lifelines 0.13.0 and scikit-survival 0.5 Python libraries, respectively.  180 

Two types of non-linear models were developed: decision tree-based gradient-boosting using 181 

Cox PH loss and gradient boosting with component-wise cubic smoothing splines as base 182 

learners. 183 
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Discriminative ability of the risk prediction models was assessed by Harrell’s 184 

concordance index (c-index) [13, 14, 15] calculated for testing datasets as the proportion of all 185 

comparable pairs in which the predictions and outcomes were concordant. Case pairs were 186 

comparable if at least one of them was CMD-positive. If the estimated risk was larger for the 187 

case with a lower time of event/censoring, the prediction of that pair was counted as 188 

concordant. If predictions were identical for a pair, 0.5 was added to the count of 189 

concordance. A pair was not comparable if an event occurred for both of them at the same 190 

time or an event occurred for one of them, but the time of censoring was smaller than the time 191 

of event of the first one. Prognostic indexes were used for the calculation of c-index. 192 

In addition to c-index, we also used an additional metric for assessing the discriminative 193 

ability of Cox PH models, which was based on statistical ‘distance’ between the probabilities 194 

of experiencing a CMD event at certain time predicted for individuals from CMD-positive 195 

and CMD-negative groups. In the ‘distance’ approach, statistical significance of the difference 196 

between the two groups of probabilities was determined using one-way ANOVA. The result 197 

of this test was reported as an F-statistic with corresponding p-value. 198 

Calibration of Cox PH models was evaluated by the Hosmer-Lemeshov goodness-of-fit 199 

test [16] and a calibration plot. The Hosmer-Lemeshow test was computed by partitioning the 200 

testing set into decile groups based on the predicted absolute risk of CMD events at time 201 

horizon of 5 years. Then, the number of CMD-positive and CMD-negative cases and the sum 202 

of the predicted probabilities for the both types of cases was calculated in each group as 203 

observed and not observed, and expected and not expected numbers, correspondingly. The 204 

Hosmer-Lemeshow test statistic was calculated using the following formula: 205 
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𝐻 =  ∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 𝐴 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑. 𝐴)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑. 𝐴

10

𝑞=1

+  
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 𝑛𝑜𝑡. 𝐴 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑. 𝑛𝑜𝑡. 𝐴)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑. 𝑛𝑜𝑡. 𝐴
               206 

The resulted chi-square statistic was assessed using 8 degrees of freedom and was reported 207 

with p-value. A calibration plot was created by plotting the predicted risk probabilities against 208 

the observed risks for each group.  209 
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Results 210 

The study characteristics and the prevalence of six CMD at baseline for 416,936 UKB 211 

participants that include CMD-positive cases that were identified by ICD-10 codes, self-212 

reports, or medication and had the date of the event determined based on the HES data are 213 

shown in Tables 1 and 2.  Average age of men and women in this population was 56.3 ± 8.3 214 

and 56 ± 8.1 years, correspondingly.  During follow-up (median 6.1 years), 98,254 incident 215 

CMD events occurred in 67,785 participants that were free from the disease at baseline (Table 216 

2). 217 

Table 2. Prevalent and incident events for various CMD.  218 

 
Men Women 

Prevalent events Incident events Prevalent events Incident events 

CAD 9442 (5.11%) 9560 (5.17%) 4165 (1.79%) 5479 (2.36%) 

HTN 19489 (10.54%) 27939 (15.11%) 17057 (7.35%) 24724 (10.66%) 

DM2 5155 (2.79%) 7590 (4.1%) 3161 (1.36%) 5209 (2.25%) 

Stroke 740 (0.4%) 1866 (1.01%) 446 (0.19%) 1290 (0.56%) 

DVT 3870 (2.09%) 7387 (4.0%) 3509 (1.51%) 6447 (2.78%) 

AAA 241 (0.13%) 644 (0.35%) 38 (0.016%) 119 (0.051%) 

The prevalence of CMD at the baseline and incidence of CMD during the follow-up are shown in 219 

parenthesis.  220 

 221 

Imputation of missing data 222 
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Initial data quality evaluation showed that the number of missing values for examined 223 

variables (Table 1) varied from 0 to ~52% with the mean of 6.3%, resulting in the no-null 224 

values dataset sizes of ~78K – 81K (vs. initial ~380K – 416K).  As discussed in the methods, 225 

imputation of missing values for all continuous variables (Table 1) excluding CMD age 226 

variables, increased the sizes of CMD-specific datasets for predictive modeling to up to 227 

~195K – 215K.  The discriminative ability of the CAD risk model trained on the imputed 228 

dataset with the sample size of 165,877 was tested on both imputed and unimputed datasets 229 

with the same sample size of 41,470 to validate the imputation.  C-indexes calculated on the 230 

imputed and unimputed testing sets were 0.787 and 0.803, implying higher discriminative 231 

ability of the CAD model when tested on original, unimputed data. 232 

Predictive modeling 233 

The discriminative ability of all Cox PH CMD models trained on the general population 234 

after the imputation of missing data varied between the diseases with highest and lowest c-235 

indexes of 0.88 and 0.748 for AAA and DVT, respectively (Table 3).  Cox PH models were 236 

further applied to calculate the risk probabilities of occurrence of a CMD event at 5 years 237 

following the initial observation.  This time-to-event prediction was evaluated through 238 

determination of the statistical ‘distance’ between CMD-positive and CMD-negative test 239 

subgroups’ risk scores (Table 3).  F-statistic values for the CMD models were highest for the 240 

models with high discriminative ability, except for the AAA model due to the low prevalence 241 

of this disease. 242 

 243 

 244 
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Table 3: Performance of CMD risk prediction models. 245 

 C-index 

Hosmer-Lemeshov 
test 

ANOVA test 

chi-2 p-value F-statistic p-value 

CAD 0.787 55 < 0.0001 24.7 1.80E-04 

HPT 0.817 155 < 0.0001 44.6 8.04E-07 

DM2 0.873 54 < 0.0001 36.6 1.20E-06 

Stroke 0.783 18 0.02 17.6 6.20E-03 

DVT 0.748 45 < 0.0001 18.7 5.00E-03 

AAA 0.88 17 0.03 15 1.20E-03 
Performance is by c-index (discrimination), Hosmer-Lemeshov test (calibration), and the 246 

statistical ‘distance’ approach based on one-way ANOVA test (discrimination of risk 247 

probabilities). CMD-positive and negative groups were bootstrap sampled with replacement 248 

(N=100) to provide comparable F-statistic (p-values) across different disease endpoints. 249 

 250 

Probability density function, which specifies the probability of predictions falling within 251 

a particular range of values for individuals from CMD-positive and CMD-negative test 252 

subgroups (Fig 1) was used for the visualization of the statistical ‘distance’ approach.  The 253 

probability density function of the risk scores, as well as their distributions derived from 254 

different CMD models demonstrated that the range of risk scores for the CMD-positive 255 

subgroup was higher than that for the CMD-negative subgroup, and increased for CMD 256 

models characterized by higher c-index.  Higher ratio between maximum values of the two 257 

probability density functions corresponded to higher discriminative ability. 258 
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Fig 1. Statistical ‘distance’ approach. Probability density function expressed in relation to 260 

risk scores for six diseases (A-F) comparing participants developing CMD (CMD-positive, 261 

_1) and those who did not develop (CMD-negative, _0) within 5 years of follow up. 262 

 263 

Assessment of the calibration properties for the CMD predictive models as calculated by 264 

the Hosmer-Lemeshow test (Table 3) and visualized by the calibration plot (Fig 2) showed 265 

adequate overall calibration, but moderate overestimation of CMD risk in the highest decile of 266 

risk scores. 267 
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Fig 2. Calibration plots for CMD prediction models. Risk probabilities for six diseases (A-269 

F), were split into deciles and mean risk probability for each decile was plotted vs. the portion 270 

of positive CMD cases in the decile for time horizon of 5 years. 271 

 272 

In this study, the predictive performance of linear Cox PH models was compared with 273 

ensemble non-linear models as discussed in the methods. Non-linear survival models 274 

demonstrated comparable performance with the linear Cox model; however, this required 275 

significantly more computation time. 276 

CMD risk factors 277 

To better understand the contribution of various risk factors to the pathophysiology of 278 

CMD, we ranked predictors of the risk of various CMD by the values of their regression 279 

coefficients (Table 4), indicating the degree of the association between the predictor and the 280 

outcome. Predictors presented in Table 4 represented only those with absolute values of 281 

coefficients larger than 0.8 and p-values less than 0.001 (see S1 Table for all coefficients). 282 

Statistical significance depended on the sample size and was affected by the prevalence of 283 

CMD.  Accordingly, the number of predictors varied for each disease model. 284 

 285 

 286 

 287 

 288 

 289 
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Table 4. Ranked regression coefficients of predictors of the risk of various CMD models. 290 

 Variable Coefficient lower 95% CI upper 95% CI p-value 

CAD 

Forced expiratory volume -3.45 -4.08 -2.82 3.18E-27 

Body mass index 2.94 2.62 3.25 3.69E-76 

Age 2.29 2.15 2.43 8.19E-225 

Heart valve problem 0.99 0.82 1.16 3.15E-29 
Sex 0.94 0.88 1.01 3.15E-156 

Family history of CAD (both 
parents) 0.87 0.73 1.00 4.50E-36 

Hypercholesterol medication 0.84 0.78 0.89 9.91E-189 

HPT 

Diastolic blood pressure 4.72 4.58 4.87 0.00E+00 
Body mass index 3.69 3.54 3.83 0.00E+00 

Forced expiratory volume -3.33 -3.67 -2.98 3.47E-81 

Age 2.43 2.35 2.51 0.00E+00 

Coffee consumption -1.61 -2.11 -1.11 2.72E-10 

Congestive heart failure 1.32 0.93 1.70 2.45E-11 

Hypercholesterol medication 1.20 1.17 1.23 0.00E+00 
CAD age -1.16 -1.25 -1.06 6.57E-124 

DM2 

Body mass index 6.99 6.75 7.23 0.00E+00 

Forced expiratory volume -6.54 -7.23 -5.85 2.11E-77 

MET hours -1.84 -2.76 -0.92 9.17E-05 

Hypercholesterol medication 1.82 1.76 1.89 0.00E+00 

Coffee consumption -1.66 -2.64 -0.68 9.27E-04 
Age 1.45 1.30 1.61 1.55E-77 

Family history of DM2 (both 
parents) 1.40 1.26 1.54 2.04E-85 

AHEI score 0.93 0.69 1.16 4.87E-15 

Stroke 

Forced expiratory volume -5.34 -6.73 -3.96 3.93E-14 

Age 3.17 2.83 3.50 7.46E-77 
Diastolic blood pressure 2.26 1.67 2.86 1.21E-13 

DVT age -1.14 -1.50 -0.77 1.25E-09 

Diabetes age -0.87 -1.22 -0.53 8.06E-07 

AHEI score 0.85 0.37 1.33 5.58E-04 

DVT 

Forced expiratory volume -3.55 -4.20 -2.89 2.00E-26 

Body mass index 2.58 2.26 2.90 3.42E-57 
Age 1.94 1.80 2.08 3.18E-156 

AAA 

Forced expiratory volume -5.99 -8.64 -3.33 9.78E-06 

Age 5.20 4.43 5.97 3.54E-40 

AHEI score 1.98 1.12 2.83 5.83E-06 

Heart valve problem 1.52 0.99 2.04 1.67E-08 
Sex 1.47 1.06 1.88 1.98E-12 

Current smoking 1.15 0.89 1.40 3.68E-18 

Hypercholesterol medication 0.90 0.65 1.15 1.27E-12 

Positive and negative signs indicate that corresponding factors increase or decrease the risk of 291 

CMD, respectively.  For the purpose of better presentation, only coefficients with absolute 292 

values larger than 0.8 and p-values less than 0.001 are presented. 293 
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Across all disease models, age and low forced expiratory volume (FEV1) ranked as the 294 

most important predictors.  Higher body mass index (BMI) and hypercholesterolemia 295 

medication were also among the strongest predictors for several models.  Sex was ranked high 296 

only for the CAD and AAA, which is in a good agreement with our observation that the 297 

prevalence of these diseases was higher in men than in women.  Family history ranked high 298 

only in predicting CAD and DM2.  Nutrition was among the most important predictors for 299 

DM2, stroke, and AAA, which is likely explained by a healthier diet among individuals with 300 

certain risk factors and predispositions.  Similarly, coffee consumption was an important 301 

predictor of HTN and DM2, possibly due to lower consumption in individuals with specific 302 

risk factor profiles.  Physical activity was an important predictor only for DM2, and younger 303 

age of first occurrence of CAD, DVT and DM2 was among most important predictors for 304 

HTN and stroke, respectively.  305 

Validation 306 

C-indexes for corresponding risk prediction benchmark models, with age and sex as the 307 

only predictors, were lower (delta, 0.04 – 0.2) when compared to those of our newly 308 

developed models.  Broad range applicability and consistency of the performance of the 309 

developed risk prediction models for each disease were further determined by assessing the 310 

discriminative ability across subpopulations (Table 5).  These subpopulations included (1) 311 

‘healthy’ participants without any of the six target CMD at the baseline; (2) participants with 312 

at least one pre-existing non-target CMD at the baseline; and (3) various age categories.  The 313 

performance of the models was highest in younger age and the healthy subgroup; while it 314 

significantly dropped in the subpopulation with pre-existing CMD. 315 
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Table 5. Validation of CMD risk prediction models. 316 

Subpopulation 

CAD HPT DM2 Stroke DVT AAA 

Cases, 

% 

C-

index 

Cases, 

% 

C-

index 

Cases, 

% 

C-

index 

Cases, 

% 

C-

index 

Cases, 

% 

C-

index 

Cases, 

% 

C-

index 

General 

(benchmark 

model) 

3.6 0.716 13.8 0.689 3 0.673 0.7 0.712 3.5 0.678 0.19 0.837 

Healthy + 

target CMD 
3.2 0.785 12.9 0.813 2.4 0.883 0.6 0.772 2.8 0.722 0.12 0.874 

Unhealthy + 

target CMD 
9.3 0.656 43.5 0.693 7.9 0.724 1.8 0.677 9.5 0.62 0.66 0.794 

CAD 100 n/a 56.8 0.642 11.2 0.697 2.5 0.684 12.1 0.568 1.22 0.817 

HPT 9.4 0.65 100 n/a 7.8 0.72 1.7 0.655 9 0.637 0.74 0.775 

DM2 14.5 0.631 52.5 0.624 100 n/a 3.3 0.662 11.3 0.57 0.34 0.812 

DVT 8.8 0.695 26.1 0.734 7.5 0.752 2.3 0.733 100 n/a 0.7 0.907 

Age < 45 0.9 0.842 3.3 0.864 0.8 0.872 0.13 0.676 0.9 0.669 0.04 0.872 

Age  45-55 1.9 0.769 7.6 0.824 1.9 0.894 0.4 0.744 2 0.711 0.02 0.725 

Age 55-65 4.4 0.736 16.9 0.774 3.4 0.85 0.7 0.744 3.8 0.704 0.19 0.843 

Age 65-75 7.7 0.707 26.5 0.736 5.2 0.825 1.9 0.661 7 0.665 0.54 0.823 

The performance of CMD models was tested on four different age group subpopulations. 317 

Healthy subpopulation included individuals without any CMD at the baseline. Unhealthy 318 

subpopulation included cases with any non-target CMD at the baseline. 319 

  320 
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Discussion 321 

Principal findings 322 

In this study, development and validation of a risk assessment platform applicable to six 323 

CMD is presented.  The population-specific modeling for this platform was done using a 324 

dataset from the UK Biobank – a very large, longitudinal cohort study.  This allowed us to 325 

derive prediction models and identify the most important contributing risk factors even for 326 

diseases with low incidence.  Inclusion of a broad spectrum of risk factors allowed for 327 

modification of the array of input variables for the CMD risk prediction models included into 328 

the platform without significant decrease in their predictive performance.  The models 329 

performed with high discriminative ability as demonstrated through extensive validation for 330 

different disease and age group subpopulations. Accordingly, this platform can accommodate 331 

different types of data sets and is applicable to population analysis, as well as individual 332 

assessment.  333 

There is an abundance of risk predictors for CMD, and multiple prior attempts of 334 

combining them into risk calculators [17-19].  One of the major impediments for wide-spread 335 

application of these risk predictors includes lack of uniform validation through large 336 

population analyses.  A comprehensive review found 363 models for cardiovascular risk 337 

stratification that have been developed and reported [20].  Only a minor collection of these 338 

models had sufficient evaluation according to contemporaneous analysis standards for either 339 

development or validation.  For example, 39% of the 363 models analyzed utilized C-statistics 340 

for their development, and just over 60% for their validation.  An even smaller number of the 341 

models utilized calibration as any part the performance measures.  Although, the more recent 342 
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models (since 2009) were more consistent in providing performance reports: 76% as part of 343 

their development, and up to 90% as part of validation [20]. 344 

In the current study, the discriminative ability of the developed models was similar or 345 

exceeded established models when available.  For example, the Framingham Risk Score for 346 

coronary artery disease have been determined to be close to 0.76 and 0.79 for men and women, 347 

respectively [21]; these reported results were obtained only in the presence of all of the 348 

laboratory data and for a pre-selected small population.  The modeling described for the platform 349 

in this report allows for incorporation of contemporary risk information.  This is becoming 350 

increasingly important, since such more limited risk calculators may fail to express the accurate 351 

and true risk for a significant population.  As demonstrated previously, either 50% of patients 352 

with CMD lack conventional risk factors or the conventional risk factors fail to explain more 353 

than 15-50% of the incidence of CHD [22-26]. 354 

The ability to incorporate socioeconomical data and nutritional information collectively 355 

can complement the basic information that is equivalent to conventional biomarkers.  This is 356 

demonstrated in this study, as the performance of the current platform was achieved without 357 

the utilization of the blood laboratory information, such as lipid levels or blood glucose levels 358 

(as those were not available in UKBB at the time of this study).  Utilization of a polygenic 359 

scoring is underway and can reveal a population at risk or protected from development of 360 

CMD [27-29].  It is expected that incorporation of the polygenic scoring will further increase 361 

the predicative performance of the current platform. 362 

Limitations of this study 363 

Considering the fact that the UKBB population is not a complete representative of the 364 

UK or US populations, the main limitation of this study is that the developed models may 365 
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need to be examined with inclusion of more diverse population.  Predictive performance of 366 

the models was higher when tested on healthier and younger subpopulations. At the same 367 

time, training and calibration on CMD-specific datasets are required to improve 368 

discriminative ability of the models across CMD subpopulations.  Considering the fact that 369 

the datasets used in predictive modeling were almost identical for different CMD, various 370 

predictive performances of the CMD models imply that despite overlapping 371 

pathophysiological pathways for various CMD, there are predictors specific for different 372 

CMD. 373 

Future directions  374 

Considering computational limitations of non-linear survival models, bivariate time-375 

dependent classification models utilizing machine learning algorithms can be used in future 376 

for determining the probability of CMD events at certain time horizons. The availability of 377 

relatively large healthcare datasets will further support the application of deep learning in 378 

time-dependent risk predictive modeling feasible.  Incorporation of genetic and other -omics 379 

data may further improve the predictive functionality provided by this platform. 380 

Conclusions 381 

In this report, we present development and validation of a new generation of disease risk 382 

prediction models. The differentiation variables of this platform include: a) assessment of 383 

multiple related diseases according to their associated outcomes (not just coronary artery 384 

disease); b) inclusion of contemporary risk factors; c) variable engineering and processing 385 

that allows for inclusion of data from different sources and addressing missing data points; d) 386 

population-specific stratification to assess risk prediction in different subgroups; e) being 387 

modular in nature to allow for inclusion of other risk determinants, such as genetic 388 
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information; and f) being applicable at individual, as well as population level.  These 389 

variables were designed into the platform in order to provide applicability of risk prediction to 390 

managing and changing the course of cardiometabolic diseases. 391 

 392 
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