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ABSTRACT 

Introduction: Accurate prediction of risk of death following acute myocardial infarction (AMI) 

can guide the triage of care services and shared decision-making. Contemporary machine-

learning may improve risk-prediction by identifying complex relationships between predictors 

and outcomes. 

Methods and Results: We studied 993,905 patients in the American College of Cardiology 

Chest Pain-MI Registry hospitalized with AMI (mean age 64 ± 13 years, 34% women) between 

January 2011 and December 2016. We developed and validated three machine learning models 

to predict in-hospital mortality and compared the performance characteristics with a logistic 

regression model. In an independent validation cohort, we compared logistic regression with 

lasso regularization (c-statistic, 0.891 [95% CI, 0.890-0.892]), gradient descent boosting (c-

statistic, 0.902 [0.901-0.903]), and meta-classification that combined gradient descent boosting 

with a neural network (c-statistic, 0.904 [0.903-0.905]) with traditional logistic regression (c-

statistic, 0.882 [0.881-0.883]). There were improvements in classification of individuals across 

the spectrum of patient risk with each of the three methods; the meta-classifier model – our best 

performing model - reclassified 20.9% of individuals deemed high-risk for mortality in logistic 

regression appropriately as low-to-moderate risk, and 8.2% of deemed low-risk to moderate-to-

high risk based consistent with the actual event rates. 

Conclusions: Machine-learning methods improved the prediction of in-hospital mortality for 

AMI compared with logistic regression. Machine learning methods enhance the utility of risk 

models developed using traditional statistical approaches through additional exploration of the 

relationship between variables and outcomes. 
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INTRODUCTION 

An assessment of risk of death following an AMI is useful for guiding individual 

decisions for patients and producing estimates of hospital performance 1-4. New analytic 

approaches may enhance risk prediction with existing data beyond traditional statistical 

approaches. Previous models have generally neither included non-linear effects for continuous 

variables nor accounted for complex interactions between variables. With advances in 

computation and analytics, however, it may be possible to create more accurate models. 

Specifically, the application of machine learning techniques has the potential to improve upon 

accuracy in the prediction of in-hospital mortality following AMI 5-7 

 A current gold standard for risk prediction among patients with AMI is derived from the 

National Cardiovascular Data Registry’s Chest Pain-MI Registry (formerly known as the 

ACTION Registry, henceforth called the CP-MI Registry), a national quality program from the  

American College of Cardiology. The CP-MI Registry includes information on AMI 

hospitalizations at 1,163 hospitals across the United States and includes more than a million 

patients. Two models for mortality following AMI were recently published using carefully 

constructed logistic regression models. 8,9 The more contemporary model is being used for 

comparison with alternative approaches. Accordingly, our study evaluated whether the 

application of machine-learning techniques to data collected in the CP-MI registry could improve 

upon the prediction of in-hospital AMI mortality over that offered by the well-constructed 

logistic regression model using these data.  

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/540369doi: bioRxiv preprint 

https://doi.org/10.1101/540369
http://creativecommons.org/licenses/by-nc-nd/4.0/


METHODS 

Chest pain-MI Registry 

The CP-MI Registry is a voluntary registry that collects data from participating hospitals on 

patients admitted with AMI, defined as either ST-elevation myocardial infarction (MI) or non-

ST-elevation MI. Patient data are collected through retrospective chart review and submitted to 

the registry using a standardized data collection tool. Collected data includes patient 

demographics, presentation information, pre-hospital vital signs, selected laboratory data from 

the hospital course, procedures, timing of procedures, and select in-hospital outcomes. The 

NCDR data quality program, which includes audits and feedback, is designed to enhance data 

completeness and accuracy.8   

  

Patient population 

Between January of 2011 and December 2016, a total of 993,905 patients with AMI from 1,128 

hospitals were included. We excluded patients transferred to another facility for management (n 

= 47,308), those missing information on two or more risk factors previously shown to be 

important for predicting mortality outcomes (n = 191,195). These variables included history of 

prior MI, history of prior PCI, history of heart failure, history of prior atrial fibrillation, or history 

of CABG. After exclusion of these patients, 755,402 patients remained for modeling.  

 

Patient variables and data definitions 
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 Patient variables available to a clinician at the time of presentation were selected for 

modeling. These variables include patient demographics, history and risk factors, 

electrocardiogram findings, initial medical presentation information, initial laboratory values, 

and home medications. The eTable 1 (online supplement) includes a full list of candidate 

variables. The outcome of our study was death from any cause during hospitalization.  

A priori, we excluded continuous or categorical variables missing in more than 10% of 

patients, resulting in 8 candidates (of 14 continuous variables). We calculated three additional 

continuous variables: body mass index (BMI), creatinine-clearance (using the Cockcroft-Gault 

equation), and the troponin ratio (value divided by laboratory-specific upper limit of normal). 

Among categorical variables, 48 of 56 remained after exclusion criteria were applied. The 

missing rate of the final set of 59 continuous and categorical variables used in modeling was < 

1%. For these, we imputed missing values to the mode for categorical variables and median for 

continuous variables.   

 

Statistical analysis   

Prior to modeling, the cohort was randomly divided 40:40:20 into three samples with 

equal event rates in each sample for training and validation purposes using the Caret package in 

R (version 6.0-0.8)  To establish a baseline for comparison, we applied the most recent and 

accepted model based on conventional logistic regression by McNamara et al using the twenty-

seven regression variables.9  

We compared three modeling strategies with logistic regression: 1) logistic regression 

with lasso regularization (referred to as lasso), 2) gradient descent boosting, and 3) a meta-
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classification approach combining lasso, a gradient descent boosting, and a neural network. 

Lasso couples the fitting of a logistic regression model with a cost function that penalizes 

additional variables, producing a parsimonious set of variables that maximizes predictive 

capabilities by shrinking the logistic regression coefficients of less important variables to zero. 

Unlike conventional logistic regression, lasso requires no additional forward or backward 

selection step to derive a parsimonious variable set 10. The lasso was implemented using the 

glmnet R package (version 2.0-16) 11.  Gradient descent boosting models make predictions using 

a series of decision-trees. Unlike logistic regression, tree-based methods can include higher order 

interactions and account for nonlinear relationships, making them more effective in identifying 

complex relationships between model variables and outcomes. The method of gradient descent 

boosting chosen was extreme gradient boosting, or “XGBoost”, And was implemented using the 

Xgboost R package (version 0.71.1).12 Xgboost incorporates a measure of how much model 

accuracy is improved by the addition of a given variable – a higher gain value implies greater 

importance in generating a prediction. Finally, the meta-classification approach uses an XGBoost 

model to combine the outputs of three supervised learning models including lasso, XGBoost, and 

a neural network (Figure 1). Neural networks are a type of machine learning technique that, like 

the human brain, connect layers of nodes (neurons), to model an output. The neural network was 

implemented in Python using the scikit-learn package (version 0.19.1) as an input for 

metaclassifier approach but was not reported separately.13 In the context of our analyses, the 

lasso and XGBoost models were classified as level 1 classifiers as they were applied to the 

patient characteristics directly. The metaclassifier was a level 2 classifier as the model was based 

on the prediction results of the level 1 classifiers.  
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The computational approach is shown in Figure 1. The first 40% of the data was used to 

train four methods – logistic regression, lasso, XGBoost, and a neural network. The second 40% 

of the data were then used as a training set for the level 2 metaclassifier. We validated the 

various approaches with the remaining 20% of the sample.  

In all machine learning models, variables that were imputed were specifically identified 

and the identifier was included for modeling. None of these flags met statistical significance in 

any of the models, which suggest that the imputation of these variables was an unlikely source of 

bias.  With the exception of neural network modeling all statistical analysis was done using the 

open-source R programming language for statistical computing.14 

The Yale University Institutional Review Board reviewed the study and given the de-

identified nature of the data included in the study, waived the requirement for informed consent. 

 

Performance metrics 

Model discrimination was measured using the area under the receiver operator characteristic 

curve (AUC, or c-statistic) and its 95% confidence intervals 15. In addition, the positive 

predictive value (or precision) and the sensitivity (recall) across all possible risk thresholds for 

predicting mortality were plotted using the precision-recall curve. The precision-recall curve, 

unlike the AUC, is unaffected by the number of true negatives. In datasets with a small event rate 

and therefore a large expected true negative rate, such as the one studied here, the precision-

recall curve is well-suited for comparing different models. For both c-statistic and area under the 

precision-recall curve, values closer to one correspond to more accurate models.  
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We also calculate the F-score, sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV). The F-score is the harmonic mean of the sensitivity and PPV at 

a certain risk threshold, which classifies an individual risk estimate as either a death (if above the 

threshold) or no death (if below the threshold). Once a risk threshold is set, the number of true 

positives, false positives, true negatives, and false negatives can be calculated and used to derive 

sensitivity, specificity, PPV, and NPV. Here, the risk threshold associated with the highest F-

score was selected as the overall risk-threshold for the method, and used to determine the 

sensitivity, specificity, PPV, and NPV for the overall model. The risk threshold is therefore 

determined using a data-driven approach and optimized for each model.  

We also calculated a Brier Score for each model as a measure of model accuracy. It is 

equal to the “reliability” minus the “resolution”, plus an “error” term, and represents the mean 

squared error between the observed and predicted risk.16, 17  The “reliability” component above is 

defined as the mean-squared error between the deciles of predicted risk and observed risk – a 

schematic representation is included in eFigure 1. Notably, since the reliability score measures 

the error between predicted and observed risk, lower values represent more reliable predictions. 

The “resolution” component is used to assess the ability of the model to spread patients across a 

spectrum of risk, which is important for risk stratification of patients. Resolution is calculated as 

the mean-squared error between deciles of predicted risk and the event rate of the entire cohort. 

Models with greater resolution have a greater difference between observed mortality rates 

amongst risk groups and are better performing in that they better spread estimates across a 

spectrum of risk rather than clustering predictions near the average risk of the population. The 

“error” term of the Brier Score is based on the event rate in the study cohort and therefore does 

not vary with different models based on the same cohort.  Model calibration was measured using 
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the (a) calibration slope, which was calculated as the regression slope of the observed mortality 

rates across the deciles of predicted mortality rates, and (b) reliability component of the Brier 

Score.  

Finally, we evaluated whether improvements in risk prediction occurred in low- and 

high-risk groups, where a change in predicted risk is likely to be clinically significant. For this, 

we first classified patients in the validation cohort into deciles based on their predicted risk based 

on logistic regression. Within these deciles, we compared the mean predicted risk based on 

logistic regression with the mean risk based on each of the three machine learning models and 

the observed rates of events for individuals within these deciles. We then calculated rates of 

observed events among individuals reclassified across low, moderate, or high-risk (<1%, 1-5%, 

>5% risk of mortality, respectively) categories based on logistic regression and one of the 

machine learning models to identify models that were more likely to capture the risk of patients 

when there was discordance in the predicted risk based on different modeling strategies. 

 

RESULTS 

Characteristics of study population  

Of the 993,905 individuals with AMI in CP-MI during the study period, 755,402 satisfied our 

inclusion criteria. The overall in-hospital mortality rate was 4.3%. The derivation cohort 

consisted of 302,161 patients used to derive the level 1 classifiers, 302,161 to train the meta-

classifier model, and the remaining 151,080 patients represented the validation cohort. Table 1 

includes characteristics for the derivation and validation cohorts. The mean age at presentation 

was 64 years, the mean weight was 87 kg, 34% were women, and 85% and 12% were of white 
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and black race, respectively. Of note, 74% of patients had hypertension, 34% had diabetes 

mellitus, 25% had experienced a prior MI, 13% had a diagnosis of heart failure, and 26% had 

undergone previous PCI. In addition, 39% presented with an ST-elevation MI, 13% presented in 

heart failure, 4% in cardiogenic shock, and 4% following a cardiac arrest (Table 1).  

 

Comparison of Model Performance 

Based upon c-statistics, the machine learning models had significantly superior discrimination 

compared with the conventional modeling techniques. The area under the precision-recall curves 

was greatest for the XGBoost and meta-classifier models with values of 0.46 and 0.47, 

respectively, and smallest for logistic regression model (0.39) (Figure 2).  

 With respect to calibration slopes, the XGBoost model was 1.006 (95% CI 0.98-1.03), 

which was a significantly better fit than the logistic regression (0.958 [95% CI 0.94-0.98)]). 

Neither the lasso model (slope = 0.918, 95% CI 0.90-0.93), or the meta-classifier model (slope = 

0.978, 95% CI 0.97-0.98) were superior to the logistic regression model. The components and 

overall Brier score for the different models are included in Table 2. Models with lower values of 

“reliability” indicate higher agreement between predicted and observed risk and therefore have 

better performance. The reliability of the meta-classifier (4.9 x 10-6 ± 4.4 x 10-6) and XGBoost 

models (7.3 x 10-6 ± 3.3 x 10-6) were significantly smaller (therefore, more accurate) compared 

with the logistic regression model (15.0 x 10-6 ± 6.6 x 10-6, p < 0.05). The machine learning 

models had significantly greater resolution – higher range of accurate prediction across the 

spectrum of risk -than the model based on logistic regression. The meta-classifier had the highest 
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resolution of 7.2 ± 0.2 x 10-3, followed by the XGBoost model (7.0 ± 0.2 x 10-3), the lasso model 

(6.6 ± 0.2 x 10-3), and finally the logistic regression model (6.1 ± 0.2 x 10-3).  

    

Comparison of Individual Risk Prediction 

An assessment of risk among those expected to be at the highest and lowest risk based on 

current prediction algorithms further highlight the improvement offered by machine learning 

techniques. Figure 3 presents the risk predicted by all machine learning methods across deciles 

of risk among the 151,080 patients in the test set based on logistic regression, and the 

corresponding observed mortality rates in these deciles. Notably, while deciles of predicted risk 

based on the logistic regression model were consistent with the predicted risk based on the 

machine learning models across deciles, the mean risk in machine learning models, XGBoost 

and meta-classifier model more closely approximated the observed risk in these groups (Figure 

3). 

 A shift table presented as Table 3 further illustrates differences between logistic 

regression and machine learning methods. It shows actual event rates among groups based on 

their predicted risk across different models (<1%, low risk, 1-5% moderate risk, >5% high risk). 

These tables highlighted that individuals reclassified by machine learning methods were 

accurately classified into groups with a rate of events most consistent with their expected risk. 

For example, among patients predicted to low risk based on the lasso model, and low, moderate 

or a high risk by logistic regression, there was a negligible difference in the mortality rate among 

those also predicted to be low-risk by logistic regression (mortality rate, 0.3%) or moderate or 

high risk (mortality rate, 0.7%), despite logistic regression predicting a risk of mortality of over 
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1% in the latter group. This suggest minimal improvement in risk prediction over and above the 

lasso model. In contrast, for patients predicted to be low-risk based on logistic regression, the 

observed mortality rate among those predicted to be low risk in the lasso model was 0.3% but 

was 42.9% among those predicted to be high-risk based on the lasso model. Notably, for the 

latter group of individuals, logistic regression predicted an event rate less than 1%. Similar 

results are seen across all three machine learning methods (Table 3).  

Similarly, among patients with a low-risk based meta-classifier model, a moderate/high 

risk predicted by logistic regression did not reflect an elevated rate of mortality, with an observed 

mortality rate of <1% across low to high predicted risk by logistic regression (Table 3). In 

contrast, among those with a low predicted logistic regression risk, a low meta-classifier risk was 

associated with a mortality rate of 0.2%, moderate risk was associated with a mortality of 1.6%, 

and a high mortality risk by meta-classifier was associated with an observed mortality rate of 

11.6%. The techniques also appropriately reclassified patients. Notably, 6125 of 29,352 (or 

20.9%) of individuals deemed high-risk in logistic regression were appropriately reclassified as 

low-to-moderate risk, and 4905 of 59,774 (or 8.2%) deemed low-risk by logistic regression were 

reclassified as moderate-to-high risk, which was consistent with the actual observed risk. 

 

DISCUSSION 

Our study demonstrates the incremental value of machine learning techniques over 

traditional logistic models in predicting in-hospital death with AMI in a cohort derived from a 

US national registry 9. Specifically, the new models more precisely identified patient risk across 

the spectrum of actual risk, with the highest performing machine learning model tested in our 
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study – the meta-classifier – leading to reclassification of 1 in every 5 patients deemed high-risk 

for mortality in logistic regression accurately as low-to-moderate risk, and 1 in every 12 patients 

of deemed low-risk to moderate-to-high risk based consistent with the actual observed risk. 

These observations are particularly notable as the improved performance for models occurs at no 

additional collection cost and is likely to improve with actual implementation due to the iterative 

of model performance that occurs in machine learning methods. Moreover, improvements in 

prediction were achieved those at greatest risk of adverse outcomes, and, therefore, machine 

learning models have the potential to guide appropriate therapy and outcomes. 

Our work presents a proof-of-concept for the improvement in risk-prediction for AMI 

mortality by applying machine learning techniques. The modeling strategies improve upon the 

application of logistic regression models that are limited in their performance by the 

characteristics of the data as well as correlations between variables available for risk-prediction.5-

7 In addition, some models have traditionally relied on literature review or expert opinion for 

variable selection used in predictive modeling, which can further lead to loss of information 

about potential predictors and relationships.  

Our findings have several important implications. First, through more accurate and 

precise prediction of risk across the spectrum of individual mortality risk, these advanced 

modeling techniques have the potential to better calibrate the intensity of treatment to risk of 

adverse outcomes and to improve the communication of the risk for adverse outcomes to patients 

and their families. An accurate assessment of risk is critical for addressing goals of care and 

treatment strategies. While the overall improvement in prediction accuracy of the machine 

learning models over logistic regression was modest, through greater predictive range, these 

improvements occurred in critical areas by accurately re-classifying individuals at low and high-
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risk to categories more accurately reflecting their risk. Notably, nearly 5000 individuals were 

expected to be at low-risk for in-hospital death based on the currently accepted risk-assessment, 

guiding both their in-hospital treatment and communicating their risk to patients for shared 

decision-making, but were accurately noted to be at a much higher risk based on the machine 

learning models. Second, the improvement in prediction of risk of adverse outcomes based on 

presentation characteristics should be able to improve the profiling of hospital performance 

through better adjustment for baseline patient risk. The study offers insights into the future 

research on the nature of improvements to risk-prediction offered through application of machine 

learning techniques to the study of healthcare delivery. The advantage of a greater reliance on 

these techniques will also manifest with their clinical application. These models offer an 

opportunity to continually improve risk-prediction in real time, especially as predictors and their 

relationship to each other evolve over time. This is an important feature of machine learning 

strategies that makes them more adept at clinical applications over other risk-prediction 

algorithms relying on static models for their derivation, or requiring manual recalibration. 

 Our study has several limitations. First, while the CP-MI registry captures granular 

clinical data on AMI patients, relevant information such as duration of comorbidities, control of 

chronic diseases (besides diabetes) were not captured and are, therefore, not included in our 

assessment. Second, machine learning methods assess complex relationship between predictors 

and are not accompanied by usual associations for individual variables and outcomes based on 

clinical judgement or empirical evidence of associations. Notably, however, the models are 

based on sound mathematical principles and are easily replicated in these data. The study, also 

does not identify whether the excess risk identified for patients using these models is actually 

reversible through improved care, and needs dedicated investigation in the future. Finally, the 
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study is generalizable to the data in the NCDR CP-MI Registry and may not apply to patients not 

included or hospitals not participating in the registry. However, since the data included in the 

modelling strategy are collected as a part of routine clinical care at participating hospitals, other 

hospitals collecting similar data could likely apply these modeling strategies.  

 In conclusion, we developed machine learning models that outperformed carefully 

designed risk-prediction models based on traditional methodology in the prediction of death 

following an AMI. These models offer greater resolution of risk without collection of additional 

data and can better clarify individual risk for adverse outcomes and more accurately compare 

hospital performance for AMI care. 
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Table 1. Baseline characteristics of derivation and validation cohorts 

 Derivation (N = 302,161) Validation (N = 151,080) 

Demographics 

Age, years 64 ± 13 64 ± 13 

Weight, kg 87 ± 22 87 ± 22 

Female 104,291 (34%)  51,962 (34%) 

Race white 256,514 (85%) 128,112 (85%) 

Race black 34,728 (11%) 17,375 (11%) 

Medical History 

History of diabetes mellitus 102,831 (34%) 51,631 (34%) 

History of hypertension 224,967 (74%) 112,393 (74%) 

History of dyslipidemia 184,628 (61%) 92,182 (61%) 

Current/recent smoker 101,662 (34%) 50,738 (35%) 

History of chronic lung disease 27,216 (9%) 13,604 (9%) 

Current dialysis  7,529 (2%)  3,894 (3%) 

History of MI 75,091 (25%) 37,560 (25%) 

History of HF 37,790 (13%) 19,072 (13%) 

Prior PCI 77,077 (26%) 38,682 (26%) 

Prior CABG 40,252 (13%) 20,300 (13%) 

History of atrial fibrillation 24,798 (8%) 12,451 (8%) 

Prior cerebrovascular disease 36,667 (12%) 18,342 (12%) 

Prior peripheral arterial disease 27,111 (9%) 13,510 (9%) 

Presentation 

Presentation after cardiac arrest 11,828 (4%) 13,510 (4%) 

In cardiogenic shock 11,437 (4%) 5,895 (4%) 

In HF 38,092 (13%) 5,780 (13%) 

Heart rate 84 ± 23 82 ± 24 

SBP at presentation 147 ± 35 147 ± 35 

Presentation ECG 

STEMI 117,078 (39%) 58,241 (39%) 

New or presumed new ST-

depressions 

33,479 (11%) 16,766 (11%)  

New or presumed new T-wave 

inversions 

22,694 (8%) 11,344 (8%) 

Transient ST-segment elevation 

lasting < 20 min 

3,352 (1%) 1,674 (1%) 

Initial laboratory values 

Troponin Ratio  3.2 (0.75-13.4) 3.4 (0.75-13.5) 

Creatinine, mg/dl 1.3 ± 1.2 1.3 ± 1.2 

Creatinine clearance, ml/min 85 ± 42 85 ± 42 

Hemoglobin, g/dl 14 ± 2 14 ± 2 

Values are mean ± SD, n (%), or mean (interquartile range) 

HF = heart failure, PCI = percutaneous coronary intervention, CABG = coronary artery bypass 

graft, SBP = systolic blood pressure, STEMI = ST-segment elevation myocardial infarction  
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Table 2. Summary of population-based performance metrics for logistic regression, lasso model, 

XGBoost model, and meta-classifier models 

  Logistic 

regression 

(McNamara) 

Lasso XGBoost  

 

Meta-

classifier 

Performance 

metrics 

     

 ROC AUC  

(C-statistic), 

[95% CI] 

0.882 [0.881, 

0.883] 

0.891 

[0.890, 

0.892] 

0.902 [0.901, 

0.903] 

0.904 

[0.903 

0.905] 

 Precision-

recall AUC  

0.39 0.43 0.46 0.47 

 F-score 0.42 0.44 0.46 0.46 

 Sensitivity 0.44 0.42 0.46 0.46 

 Specificity 0.97 0.98 0.98 0.98 

 PPV 0.40 0.46 0.46 0.46 

 NPV 0.97 0.97 0.97 0.97 

Brier Score       

 Reliability  

(x10-6)  

15.0 ± 6.6 47.3 ± 

1.3 

7.3 ± 3.3 4.9 ± 4.4 

 Resolution 

(x10-3) 

6.1 ± 0.2 6.6 ± 0.2 7.0 ± 0.2 7.2 ± 0.2 

 Uncertainty 0.04 0.04 0.04 0.04 

 Overall (x10-

2) 

3.6 3.6 3.5 3.5 

 

Values given with 95% [CI] or value ± standard deviation, where shown 
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Table 3. Shift table representing actual observed event rates for pairs of models. Three 

categories of predicted risk based on the logistic regression are compared against the predicted 

risk for the same patients using lasso model, XGBoost model, and the meta-classifier (bottom 

third). Event rate is reported as a percentage for each cohort, and the cohort size is shown 

in parentheses.   

Logistic regression risk  

  Low (< 1%) 

N = 59,744 

(40%) 

Moderate (1-

5%) 

N = 61,984 

(41%) 

High (>5%)  

N = 29,352 (19%) 

 

Lasso risk 

Low (<1%) 

N = 56,732 (38%) 

0.3% (51,838) 0.7% (4,894) - 

Moderate (1-5%) 

N = 65,780 (43%) 

0.9% (7,899) 1.8% (51,531) 4.6% (6,350) 

High (>5%) 

N = 28,568 (19%) 

42.9% (7) 6.5% (5,559) 21.2% (23,002) 

 

  Low (< 1%) Moderate (1-

5%) 

High (>5%)  

 

XGBoost risk 

Low (<1%) 

N = 76,978 (51%) 

0.3% (54,864) 0.5% (21,861) 0.8% (253) 

Moderate (1-5%) 

N = 47,338 (31%) 

1.4% (4,738) 2.4% (35,347) 4.3% (7,253) 

High (>5%) 

N = 26,764 (18%) 

9.2% (142) 7.9% (4,776) 22.2% (21,846) 

 

  Low (< 1%) Moderate (1-

5%) 

High (>5%)  

 

Meta-

classifier risk 

Low (<1%) 

N = 77,072 (51%) 

0.2% (54,839) 0.5% (22,147) 0% (86) 

Moderate (1-5%) 

N = 45,330 (30%) 

1.6% (4,819) 2.3% (34,472) 3.7% (6,039) 

High (>5%) 

N = 28,678 (19%) 

11.6% (86) 8.1% (5,365) 21.3% (23,227) 
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Figures 

Figure 1. Meta-classifier algorithm design 

 

 

The level 1 classifiers consist of three independent models each trained on the same initial 

training sample (A) including logistic regression with lasso, XGBoost, and a neural network. The 

next training sample (B) is then input into the level 1 classifiers, resulting in three risk estimates 

for each observation in (B), one from each level 1 model. These three risk estimates are then 

used to train the level 2 XGBoost classifier (C). A final sample (D) is input into the level 1 

classifiers to obtain risk estimates for input into the level 2 classifier. Performance of the level 1 

and level 2 classifiers is assessed using this final training set (D). 
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Figure 2. Receiver Operator Characteristic (A) and Precision-recall curves (B) for logistic 

regression, lasso, XGBoost, and meta-classifier models 

 

 

(A, left) Receiver Operator Characteristic curves plot the model sensitivity against the false 

positive rate across a range of all possible risk thresholds for deciding the binary mortality 

outcome. Curves for baseline logistic regression (LR, purple), lasso (blue), XGBoost (red), and 

meta-classifier models (cyan) are shown with. The black line shows the performance of an 

imperfect (random) classifier. Area under the curve (or c-statistic) for each model is shown in the 

legend. (B, right) Precision-Recall curves for logistic regression (LR, purple), lasso (blue), 

XGBoost (red), and Meta-classifier models (cyan). Models with precision-recall curves nearest 

to the top right-hand corner of the graph have the best performance. Area under the curve for 

each model is shown in the legend.   
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Figure 3. Comparison of individual risk estimates across deciles of risk based on the logistic 

regression (LR) model 

(A) Observed mortality and lasso-predicted risk of mortality 
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(B) Observed mortality and XGBoost-predicted risk of mortality (Xgb) 
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(C) Observed mortality and meta-classifier-predicted risk (meta) 
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Online Supplement 

eTable 1: List of patient variables used in modeling. * denotes model variables used in 

McNamara et al. study.9 Creatinine clearance calculated via Cockgroft-Gault equation. 

 

 Model Variables  

Demographics Age* 

Weight, kg* 

BMI kg/m2 

Sex* 

Race (White, Black, Asian, American Indian, Native Hawaiian) 

Hispanic origin 

Medical History History of diabetes mellitus* 

Diabetes control 

History of hypertension* 

History of dyslipidemia* 

Current/recent smoker* 

Current Dialysis* 

History of MI* 

History of heart failure* 

Prior PCI* 

Prior CABG* 

History of atrial fibrillation* 

Prior cerebrovascular disease* 

Prior stroke 

Prior transient ischemic attack 

Presentation After Cardiac Arrest* 

In Cardiogenic shock* 

In heart failure* 

Heart rate, bpm* 

SBP, mmHg* 

Presentation ECG STEMI* 

New or presumed new ST-segment depression* 

New or presumed new T-wave inversion* 

Transient ST-segment elevation < 20 minutes* 

ST elevation  

Left bundle branch block 

Isolated posterior MI 

Home Medications Aspirin 

Clopidogrel 

ACE inhibitor 

Angiotensin receptor blocker 

Beta blocker 

Statin 
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Non-statin lipid-lowering agent 

Prasugrel 

Warfarin 

Aldosterone blocking agent 

Initial Laboratory 

Tests 

Initial CKMB collected 

Initial Troponin collected 

Initial Creatinine collected 

Initial Hemoglobin collected 

Lipid panel collected 

Initial BNP collected 

Initial pro-BNP collected 

Troponin Ratio* 

Creatinine mg/dL* 

Creatinine Clearance* 

Hemoglobin, g/dL* 
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eTable 2. Importance of level 1 models to meta-classifier 

 

Level 1 Model Importance (%) 

XGBoost 65.3 

Neural network 34.6 

Logistic regression with lasso 0.1 

 

Importance describes the relative contribution of each of the Level 1 models to the output of the 

meta-classifier as measured by the XGBoost algorithm. Here, the Level 1 XGBoost model is the 

major contributor to the meta-classifier model followed by the neural network.  
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eFigure 1. Derivation of Brier Score components based on calibration curve 

 

 

 

In the figure, each point represents the predicted versus observed risk at a given decile of risk. 

Reliability is the sum of the mean-squared error between the deciles of predicted risk and 

observed risk, and Resolution is the mean-squared error between deciles of predicted risk and the 

event rate of the entire cohort 
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eFigure 2. Calibration curves for logistic regression (LR, A), XGBoost (B), Lasso (C) and Meta-

Classifier (d) models for validation cohort predictions 

 

 

Slope and intercept of the linear fit to each calibration plot are given in the top-left of each pane 

with corresponding p-values for each coefficient, where a p-value < 0.05 for the slope coefficient 

indicates that the slope is non-zero and that there is a significant association between the 

observed and expected rate, and a p-value < 0.05 for the intercept coefficient indicates that the 

intercept is non-zero. 
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