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 2 

Abstract 24 

Background: Antibiotic stewardship interventions aim to combat antibiotic resistance 25 

by reducing inappropriate antibiotic use. One obstacle to the rational design of 26 

outpatient stewardship programs is that small-scale pilot experiments that aim to reduce 27 

antibiotic resistance by reducing antibiotic use may produce results that are 28 

systematically different from results observed in larger-scale implementations. Here, we 29 

investigate the relationship between geographic scale and the effect of reductions in 30 

antibiotic use. 31 

 32 

Methods and findings: First, we show that dynamical models of antibiotic resistance 33 

exhibit “spillover”, such that resistance in an intervention population is partly due to 34 

antibiotic use in surrounding populations, which attenuates the intervention’s effect size. 35 

Second, using observational antibiotic use and resistance data from US states and 36 

European countries for 3 pathogen-antibiotic combinations, we show that use-37 

resistance associations are robust to aggregation above the level of US states or 38 

European countries. Finally, we did not detect differences in the strength of use-39 

resistance associations measured between pairs of adjacent states or countries, which 40 

presumably have stronger spillover, compared to the associations among non-adjacent 41 

pairs. 42 

 43 

Conclusions: These results imply that interventions at the level of US states will yield 44 

effect sizes that can be used to estimate the effects of regional or national interventions. 45 

 46 
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 47 

Introduction 48 

Antibiotic resistance is a major threat to public health (1). Outpatient antibiotic use, 49 

which accounts for approximately 80% of all human antibiotic use (2,3), is considered a 50 

principal driver of antibiotic resistance in the community (4). Antibiotic stewardship 51 

initiatives reduce antibiotic use with the goal of lowering healthcare costs (5), preventing 52 

adverse drug events (6,7), and mitigating antibiotic resistance (8–10). Rational design of 53 

stewardship initiatives requires quantitative models that predict the outcome of an 54 

intervention. It is relatively simple to predict what reduction in antibiotic use is required 55 

to achieve a target reduction in monetary costs or adverse events: each avoided 56 

antibiotic prescription prevents the cost of that prescription and the risk of an adverse 57 

event from that prescription. In contrast, quantitative predictions about how a reduction 58 

in antibiotic use will affect antibiotic resistance are more challenging because resistance 59 

is a complex, temporally dynamic phenomenon (11–14). 60 

 61 

A critical feature of this complexity is that resistant bacteria can be transmitted, so that 62 

the risk that an individual’s infection is antibiotic resistant depends on that individual’s 63 

antibiotic use (15,16) as well as the rates of antibiotic use among that individual’s 64 

contacts (17), such as their family members (18–20). This effect of resistance “spilling 65 

over” can be so strong that, for example, an individual in the hospital who has no recent 66 

antibiotic use may have a higher risk of antibiotic resistance than an individual in the 67 

community with a high antibiotic use rate (21). The same spillover phenomenon occurs 68 

at the level of populations, such that resistance in a hospital can be affected by 69 
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resistance in nearby hospitals or by antibiotic use in the surrounding community (22–70 

24). 71 

 72 

If resistance spills over into an outpatient stewardship intervention population from 73 

surrounding populations not affected by the intervention, the effect on antibiotic 74 

resistance in the intervention population may be smaller than it would be if the 75 

intervention population were completely isolated, because spillover from the 76 

surrounding population is not changed by the intervention. Conversely, an outpatient 77 

stewardship intervention targeting a small population might underestimate the effect that 78 

a certain reduction in antibiotic use would have when applied to a larger population. 79 

 80 

As the population targeted by the intervention increases, the amount of bacterial 81 

transmission and resistance spillover into the population presumably decreases relative 82 

to the amount of transmission within the population, thus also mitigating the spillover 83 

effect and providing ever more accurate predictions of an intervention’s effect. It is 84 

unclear if stewardship interventions at small scales can accurately inform the design of 85 

interventions targeting larger populations. For example, an intervention at the level of a 86 

city may not provide results that can be projected to predict the effects of that 87 

intervention implemented at the level of a US state, which in turn may or may not be an 88 

accurate prediction of a nationwide intervention’s effect. 89 

 90 

Ideally, one could determine what population size is sufficiently large to mitigate 91 

spillover by consulting the results of randomized, controlled experiments that measure 92 
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how a reduction in antibiotic use affects resistance for the relevant pathogen and 93 

antibiotic. In practice, interventions are often not controlled (25,26). Only a few 94 

population-level, randomized experiments modulating antibiotic use have been 95 

conducted (27,28), and many of those were intentional increases in antibiotic use as 96 

part of mass drug administrations (29). 97 

 98 

In contrast, the association between antibiotic use and antibiotic resistance has been 99 

characterized in many observational studies, including ecological studies at the level of 100 

US states (30–32), European countries (33,34), and smaller geographical areas (35–101 

37). However, even for observational data, it is not clear what kinds of populations 102 

should be used to minimize the spillover problem (38,39). For example, larger 103 

geographical areas would be expected to have less spillover. Aggregating smaller 104 

geographical units into larger units for the purposes of analysis might therefore average 105 

over the relevant scales of transmission, producing stronger correlations between use 106 

and resistance (32,40). Conversely, it has been suggested that analyses at smaller 107 

geographic scales may be more likely to detect relationships between use and 108 

resistance (10), possibly because aggregating over larger areas obscures important 109 

variations in use or resistance (41). In principle, multilevel models with individual-level 110 

data can account for correlations between geographical units, but the selection of the 111 

units will still affect the results (28,42,43) and few studies of antibiotic use and 112 

resistance have assessed the sensitivity of the results to the choice of population used 113 

in the analysis. 114 

 115 
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In this study, we aim to determine whether outpatient stewardship experiments at the 116 

level of US states or European countries can be expected to provide accurate estimates 117 

of the effect that the same reduction in antibiotic use would have if applied over a larger 118 

area, indicating that interventions in smaller populations can be used to predict the 119 

effect of an intervention in a larger population. First, we show that the spillover effect 120 

does occur in mathematical models of antibiotic use and resistance, and we measure 121 

how interactions between theoretical populations attenuate use-resistance associations. 122 

Second, we look for empirical evidence that spillover has a measurably different effect 123 

at scales above US states or European countries. 124 

 125 

 126 

Methods 127 

Dynamical model of antibiotic resistance 128 

To examine how interactions between populations could theoretically affect the 129 

association between antibiotic use and resistance, we use the within-host neutrality 130 

(WHN) mathematical model presented by Davies et al. (44) and described in the 131 

Supplemental Methods. Briefly, the model predicts the prevalence ρ of antibiotic 132 

resistance that results from an antibiotic use rate τ in a single, well-mixed population. To 133 

verify that conclusions drawn from the WHN model are not specific to the model 134 

structure, we repeated all analyses with the “D-types” model of use and resistance (45). 135 

Parameter values and simulation methodology for both models are in the Supplemental 136 

Methods. In the simulations, antibiotic use as monthly treatments per capita and 137 

resistance as the proportion of colonized hosts carrying resistant strains. 138 
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 139 

We adapted the WHN model to include multiple, interacting populations using a 140 

structured host population approach inspired by Blanquart et al. (46). Interactions 141 

between populations are modulated by the proportion ε of a population’s contacts that 142 

are in other populations. For ε = 0, each population is completely separate. For ε = 1, 143 

contacts across populations are just as likely as contacts within populations 144 

(Supplemental Methods). 145 

 146 

We simulated a situation in which an intervention population has a lower antibiotic use 147 

rate 𝜏"#$ than a control population with use rate 𝜏%&#$ > 𝜏"#$. To measure how contacts 148 

between the two populations affect the intervention’s effect size, we varied three 149 

parameters, setting ε to each of the values 0.00, 0.01, 0.10, 0.25, and 0.50; and setting 150 

(𝜏%&#$, 𝜏"#$) to (0.15, 0.10) or (0.20, 0.05) treatments per person per month. 151 

 152 

Mathematical models with nested population structure 153 

To examine the effect of population structure on associations between antibiotic use 154 

and resistance, we further adapted the multi-population model to include a nested 155 

population structure with 𝑛super × 𝑛sub populations. The populations are grouped into 156 

𝑛super “super-populations” representing geographic regions. Each super-population has 157 

𝑛sub constituent subpopulations, each representing a smaller geographic area like a US 158 

state or European country. Populations within a super-population interact according to 159 

the parameter 𝜀sub, while populations in different super-populations interact according to 160 

𝜀super ≤ 𝜀sub (Figure 1a, Supplemental Methods). The inequality encodes the idea that 161 
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US states within a region will interact more strongly with one another than with states in 162 

other regions, for example. 163 

 164 

To measure the effect of population structure on use-resistance associations, we set 165 

𝑛super = 𝑛sub = 4 and varied three parameters, setting 𝜀sub to 0.00, 0.01, 0.10, and 0.50; 166 

𝜀super to the same values, subject to 𝜀super ≤ 𝜀sub; and setting 𝜏7 to a range of values 167 

between 0.05 and 0.20 treatments per person per month (Supplemental Table 1). 168 

 169 

Observational data 170 

In this study, we examined antibiotic use and resistance for 3 pathogen-antibiotic 171 

combinations: S. pneumoniae and macrolides, S. pneumoniae and β-lactams, and 172 

Escherichia coli and quinolones. We considered these 3 combinations because they are 173 

the subject of many modeling (44,45) and empirical studies (15,30). 174 

 175 

Observational data were drawn from 3 sources. First, we used MarketScan (47) and 176 

ResistanceOpen (48) as previously described (32). The MarketScan data includes 177 

outpatient pharmacy antibiotic prescription claims for 62 million unique people during 178 

2011-2014. ResistanceOpen includes antibiotic resistance data collected during 2012-179 

2015 from 230 hospitals, laboratories, and surveillance units in 44 states. Second, we 180 

used the QuintilesIMS Xponent database (49) and the US Centers for Disease Control 181 

and Prevention’s (CDC) National Healthcare Safety Network (NHSN) (50). The Xponent 182 

data includes state-level data on US quinolone use during 2011-2014. NHSN includes 183 

state-level data on quinolone resistance among E. coli catheter-associated urinary tract 184 
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infections during 2011-2014. Third, we used the European Center for Disease 185 

Prevention and Control’s (ECDC) ESAC-Net antimicrobial consumption database (51) 186 

and EARS-Net Surveillance Atlas of Infectious Disease (52) for 2011-2015. The ESAC-187 

Net data includes country-level outpatient antibiotic use data provided by WHO and 188 

Ministries of Health from member countries. The EARS-Net data includes country-level 189 

resistance data. In the observational data, we quantified antibiotic use as yearly 190 

treatments per capita and resistance as the proportion of collected isolates that were 191 

non-susceptible. Further details about preparation of these data sources and their 192 

availability are in the Supplemental Methods. 193 

 194 

Use-resistance associations by scale of aggregation 195 

To test the idea that use-resistance associations are stronger when analyzing larger 196 

populations, presumably by decreasing spillover, we measured use-resistance 197 

associations when US states were aggregated into the 9 Census divisions or 4 Census 198 

regions and when European countries were aggregated into the 4 United Nations 199 

geoscheme sub-regions (53). Aggregate antibiotic use rates were computed as the 200 

population-weighted mean antibiotic use (Supplemental Methods). Aggregate 201 

resistance values were computed by summing the numerator number of resistant 202 

isolates and the denominator number of total isolates. Use-resistance associations were 203 

measured by logistic regression. Confidence intervals on the regression fits were 204 

evaluated using 1,000 bootstrap replications. 205 

 206 

Use-resistance relationships by adjacency 207 
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To test the idea that the same difference in antibiotic use will be associated with smaller 208 

differences in antibiotic resistance when the two populations have stronger interactions, 209 

we tested whether the use-resistance association is weaker for geographic units (US 210 

states or European countries) that are physically adjacent to one another. Two units 211 

were considered adjacent if they share a land or river border (Supplemental Methods). 212 

We performed robust linear regressions (Tukey’s bisquare) predicting the log odds ratio 213 

of resistance between two units. Regressions were computed using the rlm function in 214 

the MASS package (54) in R (version 3.5.1) (55). Predictors in the model were the 215 

differences in antibiotic use, population density, per capita income, and mean 216 

temperature (31) between the two units (Supplemental Methods). The model also 217 

included an interaction term between antibiotic use and adjacency, which allows 218 

adjacent pairs of geographic units to have a different use-resistance association from 219 

non-adjacent pairs: 220 

ΔLO(𝜌)7 = 𝛽=(Δ𝜏)7 + 𝛽=?(Δ𝜏)7𝑎7 + 𝛽AB#CΔdens7 + 𝛽"#%&FBΔincome7 + 𝛽$BFKΔtemp7 + 𝜀7 221 

where i indexes the pairs of units, ΔLO(ρ) is the log odds ratio of resistance between the 222 

two units Δτ is the difference in antibiotic use, a is a flag for whether the units in the pair 223 

are adjacent, and ε is the error term. Confidence intervals on the regression fits were 224 

evaluated using 1,000 bootstrap replications resampling the geographic units and 225 

assembling new lists of pairs in each replication. 226 

 227 

 228 

Results 229 
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In simulations of two populations, representing an intervention and control group, 230 

interactions between the two groups attenuated the effect of the intervention (Figure 1). 231 

With increasing interaction strength, the same difference in antibiotic use between the 232 

populations was associated with a smaller difference in antibiotic resistance.  233 

Similar results held for the D-types model (Supplemental Figure 1). 234 

 235 

In simulations of nested populations, with state-like populations grouped into region-like 236 

“super-populations”, interactions within super-populations modulate use-resistance 237 

associations within super-populations, while interactions across super-populations 238 

modulate the use-resistance association across all populations (Figure 2a). When 239 

aggregating the populations into super-populations, the use-resistance associations 240 

across all super-populations are similar to the associations across all populations 241 

(Figure 2b). However, analysis of pairs of populations can detect the within-super-242 

population interactions (Figure 2c) because pairs of populations from different super-243 

populations tend to have differences in resistance that scale with their differences in 244 

antibiotic use, while pairs in the same super-population tend to have much smaller 245 

differences in resistance for the same differences in antibiotic use. Similar results were 246 

observed in the D-types model (Supplemental Figure 2). 247 

 248 

In observational data of antibiotic use and resistance for 3 pathogen-antibiotic 249 

combinations, we found that aggregating geographic units (US states or European 250 

countries) into regional units (US Census division, US Census regions, or European 251 

regions) produced similar use-resistance associations. Associations varied by 252 
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pathogen-antibiotic-dataset combination (Figure 3, Supplemental Figures 3). However, 253 

similar to the theoretical prediction (Figure 2b), associations were similar when 254 

measured across the original geographic units or across regional aggregations of those 255 

units (Supplemental Figure 4). 256 

 257 

Using the observational data, we evaluated whether use-resistance associations 258 

between pairs of US states or European countries were weaker for adjacent pairs than 259 

for non-adjacent pairs, as occurred for some parameterizations in theoretical 260 

simulations (Figure 2c). We found no evidence for differences in the use-resistance 261 

associations among adjacent pairs compared to non-adjacent pairs (Figure 4, 262 

Supplemental Figure 5, Supplemental Table 2). 263 

 264 

 265 

Discussion 266 

We used theoretical models to show that interactions between a control and intervention 267 

group can attenuate the reduction in antibiotic resistance expected from an antibiotic 268 

stewardship intervention. However, consistent with at least one previous study (40), 269 

empirical data did not provide robust evidence that aggregating US states or European 270 

countries into regions yielded stronger use-resistance associations. Furthermore, the 271 

same difference in antibiotic use between a pair of US states or European countries 272 

was associated with similar differences in antibiotic resistance between the units in the 273 

pair regardless of whether the units were physically adjacent or not. These results 274 

suggest that spillover at the level of US states and European countries is not 275 
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substantially stronger than spillover at regional scales. Thus, outpatient stewardship 276 

experiments at the level of US states may have effect sizes similar to those that would 277 

be achieved in a national intervention. States may serve as accurate pilot populations 278 

for designing national interventions. 279 

 280 

Our study has multiple limitations. First, we used observational data to address 281 

questions about the design of outpatient stewardship interventions, which requires 282 

interpreting the theoretical results and ecological data as if the association between 283 

antibiotic use and resistance were causal and deterministic. In fact, antibiotic resistance 284 

is associated with factors beyond antibiotic use (31,56), and we used only a limited 285 

number of determinants of resistance besides antibiotic use in our distance analysis. 286 

 287 

Second, decreases in the use of an antibiotic may not necessarily lead to declines in 288 

resistance to that antibiotic in a target pathogen (13,27,57,58). We do not address co-289 

resistance and cross-selection (59,60), and we assumed that resistance equilibrates on 290 

a timescale comparable to the intervention. Previous research has shown that 291 

resistance among E. coli, S. pneumoniae, N. gonorrhoeae and other organisms can 292 

respond to changes in antibiotic use on the timescale of months (61–64), but the 293 

expected delay between a perturbation to antibiotic use and the resulting change in 294 

resistance remains a subject of active study (14,61,65,66). 295 

 296 

Third, we only considered geographical populations. Although people within a US state 297 

interact more often with other residents of that state than with residents of other states, 298 
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geography averages over important dimensions of population structure like age (67), 299 

sexual networks (68), and race/ethnicity (69). Use-resistance relationships measured 300 

across geographical units may be different from those that appear among 301 

geographically-proximate populations with dissimilar antibiotic use rates, such as the 302 

sexes (70) and racial/ethnic groups (71). 303 

 304 

A final caveat is that our data sources limited us to analyzing geographical populations 305 

at or larger than the scale of US states or European countries. Previous research has 306 

shown that spillover is important for individuals (17–20), and the results of this study 307 

suggest that US states and European countries do not have substantially stronger 308 

spillover than larger regions, but the importance of spillover at smaller scales remains 309 

unclear. Depending on the epidemiology of bacterial transmission and the distribution of 310 

antibiotic use within the targeted populations, it may be that cities, daycares, schools, 311 

workplaces, or even families represent the optimal trade-off between logistical feasibility 312 

and the accuracy of measured effect size for a particular pathogen and antibiotic. 313 

 314 

We suggest 3 lines of investigation that could help address the knowledge gap about 315 

the important of spillover at levels between individuals and US states or European 316 

countries. First, further mathematical modeling studies with more realistic structuring of 317 

the host population might articulate more detailed theoretical expectations about the 318 

relationship between intervention scale and spillover. For example, models could be 319 

parameterized with epidemiological information about individuals’ contacts and travel 320 

patterns, as has been done for other infectious diseases (72). Second, meta-analysis of 321 
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existing studies of use-resistance relationships (28–30), both experimental and 322 

observational, might determine how increasing population scales are associated with 323 

increasing use-resistance associations. Finally, future experimental outpatient antibiotic 324 

stewardship interventions should make careful and deliberate decisions about the sizes 325 

and interconnectedness of the populations they target. The results of this study suggest 326 

that outpatient interventions can be effective at scales smaller than US states. We hope 327 

this means that outpatient stewardship can be effectively addressed by more 328 

organizations, such as state and city health departments. 329 

  330 
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Figures and figure legends 573 

 574 

Figure 1. Interactions between populations attenuate the effect of interventions. 575 

(a) Schematic of the 2-population WHN model. (b) Results of simulations of the 2-576 

population WHN model for a modest intervention (difference in antibiotic use between 577 

populations Δτ = 0.05 monthly treatments per capita). As interaction strength (ε, 578 

horizontal axis) increases, the difference in antibiotic resistance between the two 579 

populations decreases. (c) The same pattern holds for a stronger intervention (Δτ = 580 

0.15). Compare Supplemental Figure 1, which shows the analogous results for the D-581 

types model. 582 
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Figure 2. Theoretical use-resistance associations with regional population 585 

structure. (a) Results of simulations of nested population simulations using the WHN 586 

model for 3 parameter sets (panel columns). Populations (circles) in the same super-587 

population (color) interact more strongly (𝜀sub) with populations in the same super-588 

population than with other populations (𝜀super ≤ 𝜀sub). Lines show linear best fit within 589 

each super-population. (b) Points show the populations in panel a but aggregated into 590 

super-populations. Each super-population’s use and resistance is the mean of its 591 

constituent populations’ values. Lines show linear best fit across super-populations. (c) 592 

Each point represents a pair of populations from panel a. Points’ positions represent the 593 

differences in antibiotic use and resistance between the populations in the pair. Colors 594 

indicate whether the two populations are in the same super-population. Lines show best 595 

fit among the same-super-population and different-super-population pairs. Compare 596 

Supplemental Figure 2, which shows the analogous results for the D-types model. 597 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/536714doi: bioRxiv preprint 

https://doi.org/10.1101/536714
http://creativecommons.org/licenses/by/4.0/


 26 

  598 

0

25

50

75

100

re
si

st
an

ce
 (%

)

0

25

50

75

100

re
si

st
an

ce
 (%

)

−25
0

25
50
75

100

re
si

st
an

ce
 d

iff
er

en
ce

 (%
)  

  
esuper = 0, esub = 0 esuper = 0, esub = 0.5 esuper = 0.5, esub = 0.5

different super−pop.

same super−pop.

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
antibiotic use (monthly treatments per capita)

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
antibiotic use (monthly treatments per capita)

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
difference in antibiotic use (monthly treatments per capita)

a

b

c

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/536714doi: bioRxiv preprint 

https://doi.org/10.1101/536714
http://creativecommons.org/licenses/by/4.0/


 27 

Figure 3. Use-resistance associations when regionally aggregated. Panels show 599 

use-resistance relationships for 3 pathogen-antibiotic combinations in the 600 

MarketScan/ResistanceOpen dataset. Points represent geographic units of analysis at 601 

different aggregation levels (black, US states; green, US Census divisions; orange, US 602 

Census regions). Curves show logistic regression fits. Shaded regions show 95% 603 

bootstrap confidence intervals. Compare Figure 2b, which shows that theoretical 604 

models predict the same use-resistance associations across aggregated and 605 

unaggregated data. Compare also Supplemental Figure 3, which shows analogous 606 

results using the other datasets. 607 
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Figure 4. Use-resistance relationships by adjacency. Each point represents a pair of 610 

US states. The point’s position represents the difference in use of macrolides between 611 

the two states (horizontal axis) and the difference in macrolide resistance among S. 612 

pneumoniae between the states (log odds ratio) using the MarketScan/ResistanceOpen 613 

data, shown in one of the panels of Figure 3. The point’s color indicates whether the 614 

states are physically adjacent (red = adjacent, black = not adjacent). Lines show 615 

predictions from robust linear regressions on the adjacent and non-adjacent pairs, using 616 

the indicated difference in antibiotic use and mean values for the other model 617 

predictors. Shaded areas indicate regressions’ 95% bootstrap confidence intervals. 618 

Compare Figure 2c, which shows that adjacency effects can be detected in theoretical 619 

models. Compare also Supplemental Figure 5, which shows analogous results for other 620 

pathogen-antibiotic combinations and other datasets. 621 
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