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ABSTRACT2

Alzheimer’s disease (AD) has been categorized by the Centers for Disease Control and3
Prevention (CDC) as the 6th leading cause of death in the United States. AD is a significant4
health-care burden because of its increased occurrence (specifically in the elderly population)5
and the lack of effective treatments and preventive methods. With an increase in life expectancy,6
the CDC expects AD cases to rise to 15 million by 2060. Aging has been previously associated7
with susceptibility to AD, and there are ongoing efforts to effectively differentiate between normal8
and AD age-related brain degeneration and memory loss. AD targets neuronal function and can9
cause neuronal loss due to the buildup of amyloid-beta plaques and intracellular neurofibrillary10
tangles.11

Our study aims to identify temporal changes within gene expression profiles of healthy controls12
and AD subjects. We conducted a meta-analysis using publicly available microarray expression13
data from AD and healthy cohorts. For our meta-analysis, we selected datasets that reported14
donor age and gender, and used Affymetrix and Illumina microarray platforms (8 datasets, 2,08815
samples). Raw microarray expression data were re-analyzed, and normalized across arrays. We16
then performed an analysis of variance, using a linear model that incorporated age, tissue type,17
sex, and disease state as effects, as well as study to account for batch effects, and including18
binary interaction between factors. Our results identified 3,735 statistically significant (Bonferroni19
adjusted p<0.05) gene expression differences between AD and healthy controls, which we20
filtered for biological effect (10% two-tailed quantiles of mean differences between groups) to21
obtain 352 genes. Interesting pathways identified as enriched comprised of neurodegenerative22
diseases pathways (including AD), and also mitochondrial translation and dysfunction, synaptic23
vesicle cycle and GABAergic synapse, and gene ontology terms enrichment in neuronal system,24
transmission across chemical synapses and mitochondrial translation.25

Overall our approach allowed us to effectively combine multiple available microarray datasets26
and identify gene expression differences between AD and healthy individuals including full age27
and tissue type considerations. Our findings provide potential gene and pathway associations28
that can be targeted to improve AD diagnostics and potentially treatment or prevention. (US).29
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1 INTRODUCTION

Aging refers to the physiological changes that occur within the body overtime (Lopez-Otin et al., 2013).31
These changes are accompanied by deteriorating cell and organ function due to cellular and immune32
senescence and DNA and protein damage (Lopez-Otin et al., 2013; Van Deursen, 2014; Childs et al., 2015).33
Aging causes an increased risk for diseases. Age-related diseases are becoming a public health concern34
due to an overall increase in the older population and the average human life span in developed countries35
(Rowe et al., 2016; Black et al., 2015). It is predicted that by the year 2050, the number of Americans over36
85 years of age will triple from 2015 (Jaul and Barron, 2017; United Nations Department of Economic and37
Social Affairs, 2015). Larger percentages of the elderly and their increased risk for diseases can affect the38
economy, social and health care costs (Dallmeyer et al., 2017). For instance, immune system dysfunction39
and cognitive decline due to aging increases the risk of neurodegenerative diseases such as Alzheimer’s40
disease (AD) (Jevtic et al., 2017; Mattson and Arumugam, 2018). Previous research explored brain aging41
and found notable changes in brain size , brain structure and function (Drayer, 1988). Changes in the42
brain due as we age are also known as hallmarks of brain aging. These hallmarks include: mitchondrial43
dysfunction, damage to proteins and DNA due to oxidation, neuroinflammation due to immune system44
dyfunction, reduction in brain volume size and gray and white matter, impaired regulation of neuronal45
Ca2+ (Mattson and Arumugam, 2018; Drayer, 1988). These alterations render the aging brain vulnerable to46
neurodegenerative diseases such as AD.47

AD, the most common form of dementia, is currently the 6th leading cause of death (Taylor et al., 2017)48
in the United States (US. In 2010, an estimate of 4.7 million people in the US had AD, and the number49
of AD patients is expected to increase to 13.8 million in 2050 and to 15 million by 2060 (Matthews50
et al., 2018; Brookmeyer et al., 2018; Hebert et al., 2013). As with other age-related diseases, the risk of51
AD increases with age. AD is currently characterized by the accumulation of amyloid-beta (Aβ) plaques52
and neurofibrillary tangles due to tau protein modifications (Masters et al., 2015). These two protein53
changes are the main pathological changes in AD (Masters et al., 2015). Aβ is formed when the amyloid54
precursor protein (APP) is cleaved by γ-secretases and β-secretases. Cleavage of APP forms fragments of55
Aβ which aggregate and deposit on neurons as plaques, which causes neuronal death in conjunction with56
neurofibrillary tangles (Masters et al., 2015).57

While AD’s prevalence is on the rise due to increased life expectancy, there is still no treatment available58
and diagnosis of AD is challenging. How AD progresses is still not completely understood (De Jager59
et al., 2018). New technologies are available such as positron-emission tomography (PET) imaging and60
monitoring levels of Aβ and tau in cerbrospinal fluid (Masters et al., 2015). Co-morbidities that can exist61
due to aging such as hippocampal sclerosis further complicate AD diagnosis(Toepper, 2017). Furthermore,62
questions have been raised regarding whether or not AD is simply an accelerated form of aging due to63
them both being associated with changes in cognition (Toepper, 2017). However, studies have identified64
clear neurocognitive differences in cognition, brain size and function in AD compared to healthy aged65
subjects. For example, AD patients have more grey matter loss compared to white matter, impaired verbal66
and semantic abilities and more intense memory dysfunction compared to healthy seniors (Toepper, 2017).67

Pathological changes within the brain are observed prior to clinical diagnosis of AD. In most cases68
AD cannot be confirmed until postmortem examination of the brain. Researchers are investigating novel69
biomarkers to detect for earlier diagnosis before diseased individuals become functionally impaired. Meta-70
analysis of microarray datasets is becoming more popular for it provides stronger power to studies due to71
larger sample sizes, obtained through statistically combining multiple datasets. Microarray data are also72
available in large quantities on public online data repositories. In the case of AD, Winkler et al., performed73

This is a provisional file, not the final typeset article 2

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/498527doi: bioRxiv preprint 

https://doi.org/10.1101/498527
http://creativecommons.org/licenses/by-nc/4.0/


Brooks et al. Gene Expression Variability in Alzheimer’s

a meta-analysis that compared neurons within the hippocampus of AD patients and healthy controls. They74
identified that processes such as apoptosis, and protein synthesis, were affected by AD and were regulated75
by androgen and estrogen receptors(Winkler and Fox, 2013). Researchers have also explored differences76
in gene expression in Parkinson’s and AD subjects via a meta-analysis approach (Wang et al., 2017),77
and identified functionally enriched genes and pathways that showed overlap between the two diseases78
(Wang et al., 2017). Most recently, Moradifard et al. identified differentially expressed microRNAs and79
genes when comparing AD to healthy controls via a meta-analysis approach. They also identified two key80
microRNAs that act as regulators in the AD gene network(Moradifard et al., 2018).81

In our investigation, our goal was to identify age, sex, and tissue effects on gene expression variability82
in AD by comparing age-matched healthy controls to AD subjects via a meta-analysis approach. In this83
data-driven approach, we explored global gene expression changes in 2,088 total samples (771 healthy,84
868 AD , and 449 possible AD, curated from 8 studies) from 26 different tissues, to identify genes and85
pathways of interest in AD that can be affected by factors such as age,sex and tissue. Our findings provide86
potential gene and pathway associations that can be targeted to improve AD diagnostics and potentially87
treatment or prevention.88

2 METHODS

We conducted a meta-analysis using 8 publicly available microarray expression datasets (Table 1) from89
varying tissues and microarray platforms on AD. We developed a thorough computational pipeline (Figure90
1A) that involved curating and downloading raw microarray expression data, pre-processing the raw91
expression data and conducting a linear model analysis of the gene expression profiles. Statistically92
different genes based on disease state were identified following analysis of variance (ANOVA) on the linear93
model which compared gene expression changes due to disease state, sex, age and tissue. These genes94
were further analyzed using a Tukey Honest Significant Difference (TukeyHSD) test to determine their95
biological significance (Tukey, 1949). In addition to the p-values, we also obtained the mean differrences96
between binary comparisons of groups (also generated by the TukeyHSD), as a measure of biological effect97
size. We examined the TukeyHSD results by filtering by each factor, and identified up and down regulated98
genes. Using these genes we used R packages ReactomePA (Yu and He, 2016) and clusterProfiler (Yu99
et al., 2012) to conduct gene enrichment and pathway analyses of the differentially expressed genes. We100
used BINGO in Cytoscape v.3.7.0 for gene ontology (GO) analysis on each gene set for each factor (Maere101
et al., 2005; Shannon et al., 2003).102

Microarray Data Curation103

We curated microarray expression data from two data repositories: National Center for Biotechnology104
Information (NCBI) Gene Expression Omnibus (GEO) (Edgar et al., 2002) and Array Express (Brazma et al.,105
2003) (Figure 1B). We searched these repositories by using entrez programming utilities in Mathematica106
(Mias, 2018b). In this search, we used the following keywords: Homo sapiens, Alzheimer’s Disease and107
expression profiling by array (Figure 1B). This search resulted in 105 datasets from GEO and 8 from Array108
Express. We further filtered the search results by excluding data from cell lines, selecting for expression109
data from Illumina and Affymetrix microarray platforms, and focusing on datasets that provided the110
ages of their samples (Figure 1B). After filtering through the databases, we found 7 datasets from GEO111
(GSE84422, GSE28146, GSE48350, GSE5281,GSE63060,GSE63061,GSE29378) and 1 dataset from112
Array Express (E-MEXP-2280) to conduct our meta-analysis of expression profiling to assess differences113
in gene expression due to disease state, sex, age and tissue (Table 1). Additionally, we downloaded the raw114
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expression data from each dataset, and created a demographics file per study which included characteristics115
about the samples (Table 2). To ensure uniform annotation of the subjects we made some changes to subject116
information provided from the databases. For GSE28146, we grouped the sub-types of AD: incipient,117
moderate and severe as AD because we did not have classification information for our other AD samples.118
We changed all the GSE29378 tissue types to hippocampus, relabeled the ”probable AD” disease state to119
”possible AD” in GSE84422, only used AD and control subjects from the E-MEXP-2280 and GSM238944120
with an age of >90 (not a definite age) was removed from GSE5281. We should note also that the 1,053121
samples from the GSE84422 dataset included different tissues from the same subjects.122

Pre-processing and Data Normalization123

We downloaded the raw expression data from the database repositories in Mathematica (Wolfram124
Research, Inc., 2017) and pre-processed each file in R (R Core Team, 2018) using the appropriate R125
packages based on the microarray platform. The affy package was used to pre-process all the .CEL data126
files from affymetrix, and limma for Illumina summary data files. We performed background correction,127
normalization and annotated and summarized all probes (Figure 1C). We merged all 8 datasets into one128
large matrix file via common gene names. After merging the datasets, we performed a BoxCox power129
transformation (Sakia, 1992) and data standardization in Mathematica (Figure 1C) (see ST2 of online130
supplemental data).131

Correcting for Batch Effects132

Merging expression data from different studies, array platforms and tissues can introduce confounding133
factors and manipulate interpretation of results. To address this, and assess whether batch effects were134
evident and could be accounted for, we used the ComBat (Nygaard et al., 2016) (Johnson et al., 2007)135
algorithm to adjust data for known batch effects . In this study, the batch effect was the study (i.e. different136
experiments/groups), and we also noted that there was a one-to-one correspondence between study and137
platform. Using data from prior to and post ComBat corrections, we used principal component analysis138
(PCA) plots to visualize the variability in the data and the effectiveness of possible batch effect removal139
(Irizarry and Love, 2015).140

Linear Model Analysis and Analysis of Variance141

We modeled the merged expression data (see model breakdown below) prior to running analysis of142
variance (ANOVA) to analyze differences among the different study factors (Figure 1D) (Pavlidis, 2003).143
We defined age group, sex, disease state, study and tissue as factors.144

x ∼
∑
i

xi +
∑

i,j;j>i

xi : xj (1)

where xi ∈ {age group, sex, tissue, disease status} and the factors have the following levels145

• disease status = {control, possible AD, AD}146

• sex = {male, female}147

• age group = {under 60, 60-65, 65-70, 70-75, 75-80, 80-85, 85-90, 90-95, over 95}148

• tissue = {amygdala, anterior cingulate, blood, caudate nucleus, dorsolateral prefrontal cortex, entorhinal149
cortex, frontal pole, hippocampus, inferior frontal gyrus, inferior temporal gyrus, medial temporal lobe,150
middle temporal gyrus, nucleus accumbens, occipital visual cortex, parahippocampal gyrus, posterior151
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cingulate cortex, precentral gyrus, prefrontal cortex, primary visual cortex, putamen, superior frontal152
gyrus, superior parietal lobule, superior temporal gyrus, temporal pole}153

• study = {GSE84422, GSE28146, GSE48350, GSE5281, GSE63060, GSE63061, GSE29378, E-MEXP-154
2280}155

The p-values following the ANOVA were adjusted using Bonferroni correction for multiple hypothesis156
testing (Pavlidis, 2003). Genes with p-values <0.05 were considered statistically significant. We found157
significantly different disease genes by filtering on the disease status for p-values <0.05. Additionally, we158
used the clusterprofiler package in R for Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment159
analysis on these genes (Yu et al., 2012; Kanehisa and Goto, 2000). This package adjusts p-values using160
the Benjamini Hochberg method for False Discovery Rate (FDR) control. Pathways with adjusted p-value161
<0.05 were considered significantly enriched (Yu et al., 2012).162

Identifying Up and Down Regulated Genes by Factor163

To identify which of the 3,735 genes that show biologically significant differences, we conducted a Tukey164
Honest Significant Difference (TukeyHSD) test to determine statistically significant up and down-regulated165
genes using the difference in the means of pairwise comparisons between the levels within each factor166
(Tukey, 1949; Mias, 2018a). We carried out TukeyHSD testing on the statistically significantly different167
disease genes we obtained from the ANOVA. To account for multiple hypothesis testing in the TukeyHSD168
results, we used <0.00013 (0.05/number of genes ran through TukeyHSD) as a Bonferroni adjusted cutoff169
for significance.170

We selected the TukeyHSD results from the disease status factor, and focused on the ”Control-AD”171
pairwise comparison to assess statistically significant gene expression differences. To assess biological172
effect, and select an appropriate fold-change-like cutoff (as our results had already been transformed173
using a Box-Cox transformation), we calculated the quantiles based on the TukeyHSD difference of174
mean difference values (Supplemental Table 1). We used a two-tailed 10% and 90% quantile to identify175
significantly up and down regulated genes (Supplemental Table 1).176

The differentially expressed genes (DEG) by disease status factor were subsequently used to determine177
whether or not there was a sex, age or tissue effect on them. For sex, we used the DEG to filter the178
TukeyHSD results for sex factor differences, identified statistically significant sex-relevant genes based on179
p-value cutoff, and again computed the 10% and 90% quantile based on the difference of means between180
male and female groups. We repeated the above steps for age group, but focused only on the binary181
comparisons where all age groups were compared to the <60 age group, which was used as a baseline182
(i.e. computed the mean gene expression differences per group comparison, i-< 60, where i stands for any183
age group). This was carried out to enable us to compare the progression with age, relative to a common184
reference across all age groups. As for tissue, we carried out the same steps as above to determined DEG185
based on comparisons both a hippocampus-based baseline, as well a blood-based baseline.186

Following the identification of the DEG by disease status and sex, we visualized the raw expression data187
for these genes in heatmaps. In addition to this, we generated heatmaps using the difference of means188
values for the significantly different age group and tissue genes.189

Gene Ontology and Reactome Pathway Analysis190

For the disease and sex DEG sets, we used the R package reactomePA to find enriched pathways(Yu and191
He, 2016). We also built networks to determine if genes overlapped across pathways. Additionally, we192
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used BINGO in Cytoscape for GO analysis to determine the biological processes the genes were enriched193
in (Maere et al., 2005). Results were considered significant based on Benjamini-Hochberg adjusted p-value194
<0.05.195

3 RESULTS

With our data selection criteria outlined in Figure 1B we identified 8 datasets from GEO and Array Express196
to conduct our meta-analysis to assess differences in gene expression due to disease state, sex, age and197
tissue (Table 1). We merged the processed expression data by common gene names, which gave us a total198
of 2,088 samples and 16,257 genes. The 2,088 samples consisted of 771 healthy controls, 868 AD subjects,199
449 subjects reported as possibly having AD, 1308 females and 780 males.200

ComBat Batch Effect Correction201

Combining data from different platforms, tissues and different laboratories introduces batch effects.202
Batch effects are sources of non-biological variations that can affect conclusions. We used ComBat in203
R which works by adjusting the data based on a known batch effect. For our analysis we classified the204
study variable as our batch (and also the study and type of platform are directly related). We used PCA to205
visualize variation in the merged expression data before and after ComBat. In Figure 2 before correcting206
for batch effects, the datasets separate into 4 main clusters with a variance of 54.3% in PC1 and 13% in207
PC2. Following ComBat, those main clusters appear to be removed, with an overall reduction in variation208
for both principal components. We also looked at how the data separated by factor. In Figure 2B, there are209
two clear groups and this separation is accounted for when we look at the separation in the data by tissue210
(Figure 3). In Figure 3, before correction the 4 groups observed in Figure 2 are still evident. Following211
ComBat, the tissues: amygdala and nucleus accumbens cluster together in one group while all other tissues212
are in another. Visualizing and understanding the variation within the expression data following the merge213
confirmed the need to include the study as a factor in the linear model analysis.214

Analysis of Variance on Gene Expression By Disease State215

Using ANOVA we assessed the variance in gene expression across the different factors in our linear216
model by including the following factors and their pairwise interactions: age group, study, tissue, sex and217
disease state (Pavlidis, 2003). Statistically significantly gene expression differences were determined using218
a Bonferroni((Bland and Altman, 1995) adjusted p-value was (<0.05) (Pavlidis, 2003; Mias, 2018a). With219
our focus on differences by disease status, we filtered genes based on the ANOVA adjusted p-values for220
the disease factor. Selecting for significance by disease status we found 3,735 genes (see ST4 of online221
supplemental data). We conducted GO and pathway analysis on these genes. The KEGG pathway analysis222
results are displayed in Table 3 (see ST5 of online supplemental data for full table). The analysis showed223
that the genes are involved in Reactome pathways such as the Mitochondrial Translation Initiation (55224
gene hits), Signaling by the B Cell Receptor (61 gene hits), Activation of NF-kappaβin B cells (40 gene225
hits), Transmission across Chemical Synapses (83 gene hits) and Neuronal System (119 gene hits) (see226
ST6 of online supplemental data). The KEGG pathways that were enriched for this gene set included227
neurodegenerative disease pathways such as Alzheimer’s (31 gene hits), Huntington’s (76 gene hits) and228
Parkinson’s (53 gene hits) (Table 3) Pathways. There were also some synaptic pathways: Synaptic vesicle229
cycle (30 gene hits), Dopaminergic synapse (48 gene hits) and GABAergic synapse (34 gene hits) (Table230
3). In addition to synapses and neurodegeneration, the long term potentiation (23 gene hits) pathway was231
associated with these genes (see ST5 for full KEGG pathway analysis results). To further explore the232
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enriched genes in the KEGG AD pathway, we used the TukeyHSD results to determine whether genes233
were up- or down- regulated (see ST7 of online supplemental data). To further assess the 73 gene hits234
identified in the enriched AD pathway we computed their mean differences between the AD and control,235
and used MathIOmica (Mias et al., 2016) tools to highlight them in the AD pathway (Figure 4) (Mias,236
2018b; Kanehisa and Goto, 2000; Kanehisa et al., 2016, 2017) (see ST7 on online supplement data for full237
table with difference of means). For instance, APOE gene in the AD pathway is down-regulated in healthy238
controls compared to AD subjects (Figure 4).239

Up and Down- Regulated Gene Expression in AD and Sex Specific Differences240

We conducted a post-hoc analysis (TukeyHSD) on the 3,735 statistically significant disease genes to241
identify level differences and explore up- and down- regulation of genes. We were particularly interested in242
the control compared to AD gene expression differences, and how these could be further sub-categorized243
to explore effects by sex, age and tissue. We used a Bonferroni adjusted p-value cut off for significance244
(<0.000013) and the 10% two-tailed quantile to determine significantly up and down regulated genes245
(Supplemental Table 1). In the Control-AD TukeyHSD comparisons, genes were classified as up- regulated246
(352 DEG) and down- regulated (176 DEG) in AD (or correspondingly up or down- regulated in healthy)247
if their mean differences were ≤ -0.0945 and ≥ 0.1196 respectively (Supplemental Table 1, see also ST8248
of online supplemental data). The top 25 up- and down- regulated genes sorted by the TukeyHSD adjusted249
p-values are outlined in Table 4. After performing gene enrichment and pathway analysis with ReactomePA250
(Yu and He, 2016) on the 352 genes we built pathway-gene networks for the significant Reactome pathways251
(Benjamini-Hochberg adjusted p-value < 0.05) (see ST13 and ST14 of online supplemental data). Some252
of the top 10 enriched Reactome pathways from DEG down regulated in AD include: Mitochondrial253
translation elongation, Mitochondrial translation, Transmission across chemical synapses, neuronal system254
(Figure 5). The network in Figure 5 illustrates that some genes overlap across pathways - the difference of255
means from the TukeyHSD results of these genes are indicated by the color scale. The up-regulated genes in256
AD were enriched in pathways such as Extracellular matrix (ECM) organization and ECM proteoglycans,257
Non-integrin membrane-ECM interactions and potassium channels. Additionally, we used BINGO for GO258
analysis on the 352 disease DEG to determine the biological processes they are involved in (Supplemental259
Figure 6). Some examples of significant terms: Cell signaling development, nervous system development,260
neuron differentiation, cell proliferation, response to chemical stimulus, cell communication and brain and261
nervous system development (Supplemental Figure 6).262

Of the 352 DEG in the above disease analysis, 46 genes differentially expressed by sex: 23 down- and 23263
up- regulated in males compared to females (Supplementary Table 2) based on mean differences (≤ -0.0864264
and ≥ 0.2502 respectively (Supplementary Table 1). We used ReactomePA to build a network of enriched265
genes and pathways with sex differences (Figure 7) (Yu and He, 2016). We found 6 pathways that were266
enriched with the up-regulated gene list in males: Neuronal System, Transmission across chemical synapses,267
neurotransmitter receptors and post-synaptic signal transmission, and GABA A receptor activation (Figure268
7 - see also ST9 of online supplemental data).269

Aging and Tissue Differences in AD Gene Expression270

To determine if age or tissue had an effect on the differentially expressed genes by disease status, we271
filtered the 352 DEG in disease results discussed above for age group and tissue comparisons. For age272
effects, we used our TukeyHSD results that compared age groups to <60 (served as the baseline). This273
allowed us to explore if genes associated with AD change with age by using a common reference group.274
We used the 352 DEG genes from disease status TukeyHSD results to find sizable age effects in this gene275
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set by selecting for statistical significance and using the two-tailed 10% quantile filter( ≤ -1.0477827 and276
≥ 0.330869) to find significantly different genes per age-group pair comparison (Supplemental Table 1).277
We found 396 significant comparisons of age differences in 141 genes (see ST10 of online supplemental278
data). The 141 genes were plotted across all age comparisons where < 60 was the baseline to visualize279
expression changes and how the genes clustered(Figure 8), indicative of distinct differences in expression280
profiles due to aging. There is a cluster of genes down-regulated in older age groups, specifically ages281
65-80 compared to those < 60. There also appears to be an overall trend of genes associated with disease282
being up-regulated compared to < 60.283

For tissue effects, we used hippocampus as our baseline due to it being a known target of AD. In addition284
to filtering for significance, we used again a two-tailed 10% quantile filter ≤-0.6359497 and ≥0.7932871285
from the tissue-specific means differences between tissue types (Supplemental Table 1). We found 167286
comparisons with tissue differences (see ST11 of online supplemental data) from 125 genes. Our heatmap287
of these genes show that differences do exist across tissues when compared to hippocampus (Figure 9).288
For example, nucleus accumbens has higher expression of genes compared to the hippocampus, and289
putamen has genes that are down-regulated compared to hippocampus (Figure 9). The majority of the290
expression differences appear to be found in nucleus accumbens and putamen (Figure 9) (see ST11 of291
online supplemental data). We also assessed how gene expression changes in a given tissue compared292
to blood (10 %quantile filter: ≤-0.6359497 and ≥0.7932871) (Supplemental Table 1), identifying 152293
significant tissue comparisons in 115 genes (see ST12 of online supplemental data). These 115 gene294
expression profiles across tissues are visualized using the differences of means in Supplemental Figure 9.295
We again noticed similar trends in the blood comparisons as had in the hippocampus comparisons, with296
nucleus accumbens showing higher gene expression and putamen lowered expression compared to blood297
(Supplemental Figure 9).298

4 DISCUSSION

As debilitating as Alzheimer’s disease (AD) is, there is still no cure available, and diagnosis is not299
confidently confirmed until death. There are ongoing research efforts to find biomarkers and gene targets300
for early detection and intervention in AD. In our study, we investigated changes at the transcript level301
by conducting a meta-analysis to analyze 8 microarray expression datasets for temporal changes in gene302
expression due to disease status. In addition to this, we determined if sex, age or tissue type had an effect303
on gene expression changes in Alzheimer’s associated disease genes. We pre-processed the 8 datasets304
by background correction, data normalization, and probe annotation. Following this, the datasets were305
merged into a single dataset (by common gene name) for the meta-analysis. This is the first meta-analysis306
to explore over 20 different tissues and use a linear model to identify linear and binary effects on gene307
expression. Our linear model also adjusted batch effects by modeling for the study effect and included age308
in the model as a linear time series. Modeling with the study factor to account for batch effects was shown309
to be necessary after exploratory visualization of the expression data before and after combat batch effect310
correction using principal component analysis to remove variation within the data that was introduced due311
to different studies(Figures 2,3).312

Significant Gene expression Differences Due to Disease Status and Biological Significance. We first313
identified significantly different disease genes from ANOVA (see ST4 of online supplemental data),314
and some of these genes included: APOE,PSEN2,APOD,TREM2,CLU which all have been previously315
associated with AD. APOE and APOD are members of the apolipoprotein family that transport and316
metabolize lipids in the central nervous system and play a role in healthy brain function (Elliott et al.,317
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2010). APOE is a strong, well documented, genetic risk factor for AD and polymorphisms in APOE have318
been shown to affect age of AD onset (Masters et al., 2015). APOD’s mechanism is still not completely319
understood (Elliott et al., 2010), PSEN2 encodes PS2, an enzyme that cleaves amyloid precursor protein,320
regulates production of (Aβ) , inherited and mutations are associated with early onset (Masters et al., 2015).321
mutations in CLU lead to lower white matter and increases AD risk ((Braskie et al., 2011; Masters et al.,322
2015) and TREM2 was identified by GWAS (genome-wide association study) as a disease variant and323
risk factor for AD (Masters et al., 2015). Our enrichment results of these 3,735 genes were interesting324
due to them having already been associated with AD in the literature (Table 3, see ST5 and ST6 in online325
supplemental data). For instance, mitochondrial dysfunction has been previously associated with AD and326
characterized to cause Aβ deposition, higher production of reactive oxygen species and lowered ATP327
production (Swerdlow, 2018; Moreira et al., 2010; Onyango et al., 2016). Researchers have also suggested328
that the immune system plays a role in AD (Heppner et al., 2015; Van Eldik et al., 2016). As for adaptive329
immune cells, their role in AD is still not clear, however, adaptive immune cells have been shown to reduce330
AD pathology (Marsh et al., 2016). The loss of B cell production can exacerbate the disease (Marsh et al.,331
2016). Neurodenegenerative diseases have also been described as having genes that overlap (Moradifard332
et al., 2018; Wang et al., 2017). Neurodegeneration is closely related to synaptic dysfunction and long333
term potentiation becomes impaired with age and synaptic dysfunction (Prieto et al., 2017). These results334
suggest that our meta-analysis is producing disease-related results. Because our KEGG results on the335
3,735 genes resulted in identifying the involvement of AD, Parkinson’s and Huntington’s pathways, we336
investigated if the three neurodegenerative disease signaling pathways had any common genes in our gene337
list. We determined that AD had 49 genes that overlapped with Huntington’s and 47 with Parkinson’s338
pathways respectively. We also found that GNAQ, GRIN1 and PLCB1 are in both Huntington’s and AD339
but not in Parkinson’s pathways, and SNCA is in both Parkinson’s and AD but not Huntington’s pathways.340
In filtering these genes for biological effect size, PSEN2, APOE, TREM, CLU and other apolipoproteins341
did not make the cutoff (based on their difference in means between the compared AD/healthy groups).342
Focusing on the 352 DEG that had a sizable effect size, the down-regulated genes in AD connect with the343
pathology of the disease (Figure 5. Comparing these 352 DEG to a recently published meta-analysis in344
which 1400 differentially expressed disease genes were identified, we determined that 136 DEG from our345
gene list overlapped with theirs, and 216 of our DEG were not in their list (Moradifard et al., 2018). Some346
stand out unique genes in our list include: GMPR,ABCA1, NOTCH1 and 2, GABRG1,HVCN1,CXCR4,347
HIP1,MRPS28, FOS. The top up-regulated gene in AD from our meta-analysis, ITPKB, has previously348
been observed to have over-expression in AD subjects. In a mouse model, the gene was found to be over-349
expressed and connected to apoptosis, increased (Aβ) production and tau phosphorylation (Stygelbout et al.,350
2014). CXCR4 (brain development and neuronal cell survival in the hippocampus) (Stelzer et al., 2016),351
AHNAK (may have a role in development of neuronal cells)(Stelzer et al., 2016), NOTCH1,and NOTCH2352
(signaling pathway may be involved in brain development) (Stelzer et al., 2016) were all up-regulated in353
AD subjects (Table 4. Examples of down-regulared genes: NME1 (neural development) (Stelzer et al.,354
2016), and mitochondrial proteins MRPL3, MRPS18C (associated with mitchondrial dysfunction observed355
in AD) were down-regulated in AD samples 4.356

Sex, Age and Tissue Effect on Disease Status Biologically Significant Genes. For the sex factor, we357
determined that 46 of our DEG (23 up- and down- regulated in males compared to females) had a sex effect.358
Figure 7 highlights the enriched pathways from up-regulated genes in males. This indicates that pathways359
important for neuronal system and chemical synapses were down-regulated in females (Figure 7). This is360
also supported by the current literature, which indicates that women are at higher risk for AD (Vina and361
Lloret, 2010; Podcasy and Epperson, 2016; Seshadri et al., 1997). This increased risk by sex is due to the362
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loss of estrogen protection (due to menopause) against (Aβ)’s toxicity on the mitochondria (Vina and Lloret,363
2010; Podcasy and Epperson, 2016). Older women produce more reactive oxygen species with the decline364
in estrogen levels (Vina and Lloret, 2010; Podcasy and Epperson, 2016). Estrogen replacement therapy is a365
treatment for AD, and it is being determined that estrogen works by increasing the expression of antioxidant366
genes (Vina and Lloret, 2010; Podcasy and Epperson, 2016). A recently published meta-analysis also367
explored sex effects on AD gene expression (Moradifard et al., 2018). Moradifard et al., found male and368
female specific AD associated genes and genes that overlapped in both sexes (Moradifard et al., 2018). Of369
the 46 disease associated genes we found to be affected by sex, 22 were found in both males and females, 9370
only in males, and 5 only in females in Moradifard et al gene list. 10 of our sex impacted disease genes371
(CYBRD1,DIRAS2,FAM107B,FOS,GMPR,HVCN1,ITIH5,MAPK,RNF135,SLC40A1) did not overlap372
with their findings, and these genes have been previously associated with oxidative stress, cell signaling and373
transport, apoptosis and AD. For instance, GMPR was found to gradually increase as AD progressed (Liu374
et al., 2018). It produces GMPR1 which is associated with the phosphorylation of tau (Liu et al., 2018).375

Aging trends on the diseased genes were visualized in Figure 8. Subjects <60 were used as a baseline376
because on average, AD symptoms start at ages 65 and older. We observed clear age-related patterns377
when looking at the difference of means between age cohorts for the disease gene list, Figure 8 (see ST10378
of online supplemental data). Highlighting a few of the changes: SNAP9 which is involved in synaptic379
transmission and associated with late onset (Zhang et al., 2013), STMN2 which is necessary for microtubule380
dynamics and neuronal growth (Antonsson et al., 1998; Chiellini et al., 2008), and SST, a neuropeptide that381
interacts with (Aβ) and can influence how it aggregates (Solarski et al., 2018; Hama and Saido, 2005) were382
all up-regulated in <60 age group(see ST8 of online supplemental data). Also, STMN2 and SST have both383
previously been associated with expression reduction due to age(Solarski et al., 2018; Stelzer et al., 2016).384

ABCA1,GMPR, HVCN1, ITPKB, NOTCH1 all had higher expression in older age groups compared to385
the baseline. Our findings highlight genes previously associated with AD and their temporal trends and also386
some additional genes that experience age-effects (see Figure 8, and ST10 of online supplemental data)387

For investigating tissue effects, we used hippocampus (232 samples) as a baseline due to its having being388
identified as one of the first regions to be affected by AD (Masters et al., 2015). We also used blood (519389
samples) as a baseline to explore an underdeveloped non-invasive approach to monitoring AD. In both390
analyses, we see similar trends with nucleus accumbens (51 samples) and putamen (52 samples) showing391
greater differences in expression (Figure 9 and Supplemental Figure 9). The distribution of samples per392
tissue type was inconsistent with hippocampus and blood having larger number of samples compared to393
an average of around 55 samples per tissue in other categories. These results show the potential of blood394
and other tissues for monitoring gene expression changes in AD, but also the need for further focused395
mechanistic studies in different tissues.396

Limitations of the Study. Using publicly available data introduced limitations to our research design.397
Lack of uniform annotation and missing information across datasets can make conducting a meta-analysis398
on multiple datasets challenging. The number of datasets used in our meta-analysis was limited by poor399
annotations that could not meet our selection criteria, and this in turn placed bounds to our sample size and400
power of the study. Our analysis was also unbalanced: 2,088 samples made up of 771 healthy controls,401
868 AD subjects, 449 subjects reported as possibly having AD, 1308 females and 780 males, and the402
breakdown of age groups is also somewhat uneven. The available public data used for our meta-analysis also403
lacked diversity in samples, because in most datasets race and ethnicity are not reported. This information404
would be helpful particularly since AD has been reported by the CDC to be more prevalent in African405
Americans (Centers for Disease Control and Prevention, 2018; Steenland et al., 2016). In addition, the use406
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of micro-array expression data for meta-analysis is a limitation in terms of not being able to query the407
entire transcriptome or query novel genes. Also, in our merged dataset, large variability was introduced408
in data due to the large number of tissues (26) and methods used for extractions (study effect), which we409
attempted to correct for by utilizing both as factors in our model, and including binary interaction terms as410
well.411

Future Directions and Recommendations. Our study provides gene lists by factor (disease status, sex,412
age and tissue) of differentially expressed genes. To expand on this research, the use of RNA-sequencing413
data can reveal novel differentially expressed genes, biomarkers and gene targets for AD. In addition to414
RNA-sequencing, implementing other omics technologies such as proteomics and metabolomics can help415
to fully describe the pathology of AD, and identify additional biomarkers for early detection. Including416
data with racial diversity is also necessary. AD has higher prevalence in African Americans (Steenland417
et al., 2016). Due to reports of racial differences in AD, with an AD prevalence breakdown of: 14% of418
African American population compared to 12% in Hispanics and 10% in whites (Centers for Disease419
Control and Prevention, 2018), including racial diversity in future studies would help identify this potential420
variability in susceptibility and identify if certain treatments might be better suited in some races than others.421
Improving the representation of races in clinical trials and molecular reports of AD can help with health422
disparities within the field. Exploring the use of easily accessible tissues, such as blood, to monitor changes423
in target genes/biomarkers might also prove helpful for early detection and provide a more systems-level424
understanding of AD. Determining the best or novel biomarkers to track for AD requires exploring also425
mechanistic aspects of the disease. For example, monitoring exosomes and autoantibodies which can be426
connected to the dysfunction of the immune system is one mode of action that is being associated with427
AD (O’Bryant, 2016). Lastly, as omics technologies advance, implementing personalized omics for early428
detection and treatment may prove useful in improving individual AD outcomes with the increase in the429
aging population.430
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TABLES

Database Accession Number Controls AD Possible AD Platform Citation
GEO GSE84422 242 362 449 Affymetrix Human Genome U133A, B and Plus 2.0 (Wang et al., 2016)
GEO GSE28146 8 22 - Affymetrix Human Genome Plus 2.0 (Blalock et al., 2011)
GEO GSE48350 173 80 - Affymetrix Human Genome Plus 2.0 (Berchtold et al., 2008)
GEO GSE5281 74 85 - Affymetrix Human Genome Plus 2.0 (Liang et al., 2007)
GEO GSE63060 104 142 - Illumina HumanHT-12 V3.0 expression beadchip (Sood et al., 2015)
GEO GSE63061 134 139 - Illumina HumanHT-12 V4.0 expression beadchip (Sood et al., 2015)
GEO GSE29378 32 31 - Illumina HumanHT-12 V3.0 expression beadchip (Miller et al., 2013)

Array Express E-MEXP-2280 5 7 - Affymetrix Human Genome Plus 2.0 (Bronner et al., 2009)

Table 1. Curated microarray datasets and the study description.

Accession Number Sex (M/F) Age Range
GSE84422 302M/166F 60-103
GSE28146 12M/18F 65-101
GSE48350 124M/129F 20-99
GSE5281 102M/56F 63-102

GSE63060 88M/158F 52-88
GSE63061 107M/166F 59-95
GSE29378 38M/25F 61-90

E-MEXP-2280 7M/5F 68-82

Table 2. Patient characteristics for curated datasets.
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ID Description pvalue p-adjusted value # of hits
hsa03050 Proteasome 1.55E-11 4.78E-09 31
hsa04723 Retrograde endocannabinoid signaling 3.46E-10 4.78E-08 66
hsa05010 Alzheimer’s disease 4.64E-10 4.78E-08 73
hsa00190 Oxidative phosphorylation 3.85E-09 2.98E-07 59
hsa05016 Huntington’s disease 1.60E-08 9.90E-07 76
hsa04714 Thermogenesis 2.54E-08 1.31E-06 86
hsa04932 Non-alcoholic fatty liver disease (NAFLD) 2.98E-06 1.32E-04 57
hsa04721 Synaptic vesicle cycle 4.57E-06 1.77E-04 30
hsa05012 Parkinson’s disease 1.51E-05 5.18E-04 53
hsa04728 Dopaminergic synapse 6.48E-05 0.002003299 48
hsa04724 Glutamatergic synapse 1.58E-04 0.004085366 42
hsa05169 Epstein-Barr virus infection 1.59E-04 0.004085366 66
hsa04720 Long-term potentiation 1.73E-04 0.004119762 28
hsa04727 GABAergic synapse 2.31E-04 0.00506623 34
hsa01200 Carbon metabolism 2.46E-04 0.00506623 42
hsa01521 EGFR tyrosine kinase inhibitor resistance 3.12E-04 0.006031187 31
hsa04725 Cholinergic synapse 4.73E-04 0.008596289 40
hsa00270 Cysteine and methionine metabolism 5.56E-04 0.009547497 20
hsa04911 Insulin secretion 5.99E-04 0.009738112 32
hsa04713 Circadian entrainment 6.78E-04 0.01048273 35
hsa05033 Nicotine addiction 8.70E-04 0.012730978 18
hsa00650 Butanoate metabolism 9.06E-04 0.012730978 14
hsa03010 Ribosome 0.0010736 0.014423588 50
hsa04510 Focal adhesion 0.001159439 0.014927779 62
hsa04390 Hippo signaling pathway 0.001260878 0.015584456 50

Table 3. Top 25 KEGG Pathways using differentially expressed genes.
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Up-Regulated Down-Regulated
Gene Difference of Means Gene Difference of Means

ITPKB 0.1709575 RPA3 -0.1781622
ARHGEF40 0.1574220 NME1 -0.1755078

CXCR4 0.1907433 LSM3 -0.1527917
PRELP 0.1319160 MRPL3 -0.1577078

SLC7A2 0.1568425 PTRH2 -0.1205413
AHNAK 0.1304494 RGS7 -0.1778522
NOTCH1 0.1014441 GLRX -0.1622333

GFAP 0.1198343 RPH3A -0.2168597
HVCN1 0.1151989 BEX4 -0.1416335

LDLRAD3 0.1627433 COX7B -0.1726039
KANK1 0.0992824 NRN1 -0.1634702
HIPK2 0.1255059 PPEF1 -0.1430548

SLC6A12 0.1485253 PCSK1 -0.3127961
KLF4 0.1870071 ENY2 -0.1496523

ABCA1 0.1386346 CD200 -0.1537059
DDR2 0.1069751 NRXN3 -0.1203814
KLF2 0.1070143 GTF2B -0.1508171

GNG12 0.1318200 MRPS18C -0.1535766
POU3F2 0.1022426 NCALD -0.1858802
AEBP1 0.1498719 C11orf1 -0.1448555
IQCA1 0.1134073 DCTN6 -0.1222108
ERBIN 0.1309312 SEM1 -0.1765024

LOC202181 0.1184466 APOO -0.1384320
LPP 0.1072798 CCNH -0.1394853

NOTCH2 0.1213843 RAD51C -0.1280948

Table 4. Top 25 up- and down- regulated genes in Alzheimer’s disease compared to healthy controls.
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Figure 1. Alzheimer’s disease meta-analysis framework. (A) Simplified workflow used for the meta-
analysis, (B) Pipeline for curating microarray data, (C) Pipeline for pre-processing the microarray data,
(D) Methods used for meta-analysis of raw expression microarray data.
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Figure 2. Principal component analysis of the study factor before and after batch correction with ComBat.
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Figure 3. Principal component analysis of the tissue factor before and after batch correction with ComBat.
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Figure 4. Enriched genes from the ANOVA significant disease gene list in KEGG Alzheimer’s disease
pathway (hsa05010) [Kanehisa and Goto (2000); Kanehisa et al. (2016, 2017)]. The yellow shading
represents up-regulated and the blue shading represents down-regulated in AD samples.

This is a provisional file, not the final typeset article 22

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/498527doi: bioRxiv preprint 

https://doi.org/10.1101/498527
http://creativecommons.org/licenses/by-nc/4.0/


Brooks et al. Gene Expression Variability in Alzheimer’s

Mitochondrial translation initiation

Mitochondrial translation elongation

Mitochondrial translation termination

Mitochondrial translation

Translation

Neuronal System

Interleukin−1 signaling

Transmission across Chemical Synapses

M/G1 Transition

DNA Replication Pre−Initiation

MRPL1MRPL13
MRPL19

MRPL15

MRPL22

MRPL40

MRPL3

MRPL14

MRPL32

MRPL50

MRPS17

MRPS18C

MRPS28

MRPS35

EEF1A2

EEF1E1

RPL26L1

CACNA2D3

CACNG3

DLGAP2

GABRA1

GABRG2
GAD1

GLRB

GLS2

GNG2

KCNQ5

KCNV1NCALD

NEFL

NRXN3
SHANK2

RIPK2

MAP2K4

NKIRAS1

PSMA3

PSMC6

PSMD12

SEM1

ORC3

RPA3

Size

6

10

13

17

−0.18

−0.16

−0.14

Difference in Means (AD-control)

Figure 5. Pathway-gene network of top 10 enriched Reactome pathways from down-regulated genes in
Alzheimer’s disease patients.
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Figure 6. Pathway-gene network of top 10 enriched Reactome pathways from up-regulated genes in
Alzheimer’s disease patients.
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Figure 7. Pathway-gene network of enriched Reactome pathways from disease genes list that are up-
regulated in males
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Figure 8. Heatmap with gene clustering to visualize age group effect (difference in means) on the
differentially expressed disease (control-AD) gene list.
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Figure 9. Heatmap with gene clustering to visualize tissue effect (difference in means) on the differentially
expressed disease (control-AD) gene list.
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