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Abstract

Refractive error is a complex ocular trait controlled by genetic and environmental factors. 

Genome-wide association studies (GWAS) have identified approximately 150 genetic 

variants associated with refractive error. Among the known environmental factors, 

education, near-work and time spent outdoors have been demonstrated to have the 

strongest associations. Currently, the extent of gene-environment or gene-gene 

interactions in myopia is unknown. Here we show that the majority of genetic variants 

associated with refractive error show evidence of effect size heterogeneity, which is a 

hallmark feature of genetic interactions. Using conditional quantile regression, we 

observed that 88% of genetic variants associated with refractive error have at least 

nominally-significant non-uniform, non-linear profiles across the refractive error 

distribution. SNP effects tend to be strongest at the phenotype extremes and have weaker 

effects in emmetropes. A parsimonious explanation for these findings is that gene-

environment or gene-gene interactions in refractive error are pervasive.

Author summary

The prevalence of myopia (nearsightedness) in the United States and East Asia has 

almost doubled in the past 30 years. Such a rapid rise in prevalence cannot be explained 

by genetics, which implies that environmental (lifestyle) risk factors play a major role. 

Nevertheless, diverse approaches have suggested that genetics is also important, and 

indeed approximately 150 distinct genetic risk loci for myopia have been discovered to 

date. One attractive explanation for the evidence implicating both genes and environment 

in myopia is gene-environment (GxE) interaction (a difference in genetic effect in 

individuals exposed to a high vs. low level of an environmental risk factor). Past studies 

aiming to discover GxE interactions in myopia have met with limited success, perhaps 

because information on lifestyle exposures during childhood has rarely been available. 

Here we used an agnostic approach that does not require information about specific 

lifestyle exposures in order to detect ‘signatures’ of GxE interaction. We found compelling 

evidence for widespread genetic interactions in myopia, with 88% of 150 known myopia 

genetic susceptibility loci showing an interaction signature. These findings suggest that 

GxE interactions in myopia are pervasive.
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Introduction

The prevalence of refractive error has risen steadily in the United States and other parts 

of the world in the past few decades [1, 2]. Nationally representative estimates for 

citizens aged 12-54 years derived from National Health and Nutrition Examination 

Surveys reported the prevalence of myopia as 41.6% in 1999-2004, compared to 25.0% 

in 1971-1972 [3]. By 2050 it is predicted that 49.8% of the world population will be 

myopic (4.8 billion individuals affected) [4]. Myopia is associated with axial elongation of 

the eye, which increases the risk of retinal detachment, myopic maculopathy, glaucoma, 

and other pathological complications, making it an increasingly common cause of visual 

impairment and blindness [5-7].

Susceptibility to myopia is determined both by genetic and environmental factors. 

Pedigrees in which high myopia segregates as a monogenic trait have pinpointed a 

number of genes whose normal function is required during refractive development [8-

14]. The causative mutations responsible for these monogenic forms of high myopia are 

extremely rare in the population, and are characterized by profound, adverse effects on 

gene function. Genome-wide association studies (GWAS) have identified approximately 

150 genetic variants associated with refractive error [15-18], including some overlap 

with monogenic disease gene loci [19]. These susceptibility variants are typically 

common in the population, yet individually have only small effects. Typically, each risk 

allele confers a shift towards a more negative (myopic) refractive error by a fraction of a 

diopter (D). In combination, however, the thousands of genetic risk variants thought to 

exist are estimated to explain at least 30% of the variation of refractive error [20-24]. The 

time children spend outdoors, time performing near-viewing tasks, and the number of 

years in education are also strongly associated with myopia development [25-32]. In 

randomized controlled trials, the incidence of myopia was significantly lower in children 

assigned to receive extra time outdoors during the school day [27-29]. Although 

associations between time spent performing near-viewing tasks and myopia have been 

reported less consistently than those for time outdoors, in the ALSPAC longitudinal birth 

cohort study, the amount of time children spent reading at the baseline age of 7 years-old 

explained approximately as much of the variation in refractive error over the next 8 years 

as the time the children spent outdoors at baseline [23]. In Mendelian randomization 
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studies, each year in education has been estimated to cause a -0.25 to -0.40 D shift in 

refractive error [31, 32]. 

Conventionally, it is assumed that the ‘effect size’, i.e. the shift towards a more negative 

refractive error, of each myopia-predisposing genetic variant is consistent across the 

population. However, recent studies using the conditional quantile regression (CQR) 

technique to assess the consistency of effect sizes in phenotypes as diverse as BMI [33-

35], height [33, 35], growth-rate of pigs [36], plant flowering time [37] and gene 

expression [38] have demonstrated that certain genetic variants exert differing effects 

depending on where an individual lies in the phenotypic distribution. For instance, using 

CQR, the BMI-susceptibility variant rs6235 in the PCSK1 gene was recently shown to 

confer a shift towards a lower BMI in slim individuals and a higher BMI in obese 

individuals [35]. Such a non-constant effect size across quantiles of the phenotype 

distribution is a ‘signature’ of a variant involved in either a gene-gene (GxG) or gene-

environment (GxE) interaction, or both. Crucially, unlike most other methods for 

detecting GxG and GxE interactions, the CQR approach does not require the identity of the 

environmental risk factor underlying a GxE effect to be pre-specified and measured in the 

study sample, nor the identity of the second genetic variant to be known when detecting 

GxG interactions. Instead, the presence of a likely GxG or GxE interaction can be evaluated 

using only genotype information for a genetic marker and phenotype information for the 

trait of interest (see Figure 1). Since GxE effects are implicated in susceptibility to myopia 

[39-42], and yet currently very few such interacting variants have been discovered, we 

aimed to comprehensively assess the known genetic variants associated with refractive 

error for involvement in interactions, using a CQR framework.

Results

Type I error and power of CQR-MR
CQR is known to have a well-controlled type I error rate [43]. However, the non-linear 

meta-regression (MR) approach we used to combine results from across different 

quantiles has not been studied previously in the context of CQR to our knowledge. 

Therefore, we used the gold-standard method of permutation to examine how the type I 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 29, 2018. ; https://doi.org/10.1101/483008doi: bioRxiv preprint 

https://doi.org/10.1101/483008
http://creativecommons.org/licenses/by/4.0/


5

error rate and power of the 3 terms of our CQR-MR model (0, 1 and 2; i.e. the intercept, 

linear and quadratic terms) varied depending on the number of quantiles included in the 

MR model. As illustrated in Figure 2A & B, we evaluated MR models that included 19, 10, 

9 or 5 quantiles from across the trait distribution. The main findings were: [1] there was a 

systematic inflation of the type I error rate for all 3 terms in the CQR-MR model (Figure 

2C), [2] the type I error rate of CQR-MR was independent of MAF (Figure 2D), and [3] the 

model including 5 quantiles was overly conservative (Figure 2E). Fortunately, the 

systematic nature of this source of bias meant that it was straightforward to correct for 

(see Methods section).

For the CQR-MR intercept term (0), inflation of the type I error rate was apparent for all 

models, becoming progressively worse when greater numbers of quantiles were included 

in the MR. For example, the model with 19 quantiles had a type I error rate of 

approximately 0.30, while the model with 10 quantiles had a type I error rate of 0.16. The 

type I error rate for the model with 5 quantiles was 0.06, which was close to – but still 

above – the correct type I error rate ( = 0.05). The type I error rate for the CQR-MR 

linear and quadratic terms (1 and 2 coefficients respectively) was also inflated for most 

of the CQR-MR models tested, with the degree of inflation again worsening when greater 

numbers of quantiles were included in the MR model (Figure 2C & D). However, for CQR-

MR models that included only 5 quantiles, the type I error rate for the linear and 

quadratic terms was slightly conservative (approximately 0.04). 

After correcting for the inflated type I error rate (see Methods), the statistical power was 

similar when either 19, 10 or 9 quantiles were included in the CQR-MR model, however 

power was reduced when only 5 quantiles were included in the MR model (Figure 2E). 

In summary, CQR-MR models that included 19, 10 or 9 quantiles had inflated type I error 

rates for all 3 terms in the model, requiring the use of correction factors to account for 

this bias. An MR model that included only 5 quantiles had a conservative type I error rate, 

and was less powerful than MR models that included 9, 10 or 19 quantiles. Hence, for the 

analysis of CREAM variants, we used a CQR-MR model that included 9 quantiles. To 

correct the type I error rate, the intercept, linear and quadratic components of the model 

were adjusted using  coefficients of 1.66, 1.23 and 1.10, respectively (i.e. observed Chi-
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squared statistics were divided by the relevant  coefficient when calculating confidence 

intervals and p-values).

Ordinary least squares (OLS) analysis of CREAM variants associated with refractive error
In the sample of 72,985 white British unrelated UK Biobank participants whose genotype 

data passed quality control and had phenotype information available, the average 

refractive error (avMSE) was -0.25 ± 2.67 D (mean ± SD) and the average age was 57.8 ± 

7.8 years. Of the 149 genetic variants associated with refractive error that were tested, 

reliable results could be obtained for 146 (for rs74764079, rs73730144 and rs17837871, 

with MAFs of 3%, 1% and 1%, respectively, there were fewer than 50 participants 

homozygous for the minor allele; hence these variants were excluded). After performing 

ordinary least squares (OLS) linear regression analysis to obtain SNP effects under the 

assumption of constant effect size across quantiles, the strongest effect was for the A 

allele of rs12193446 near the LAMA2 gene, which was associated with a -0.43 D more 

negative refractive error (95% CI -0.48 to -0.39, p = 1.1 x 10-77), while the strongest 

association was observed for rs524952 (effect size = -0.26 D; p = 6.18 x 10-79; Table 1). 

The weakest effect was -0.03 D (95% CI -0.06 to +0.00, p = 0.05) for the T allele of 

ZNF366 variant rs11952819. Full results are shown in Table S1. These effect sizes were 

extremely similar to those reported by the CREAM Consortium and 23andMe in a larger, 

but fully overlapping subset of UK Biobank participants that included related and 

unrelated individuals [18].

CQR-MR analysis of CREAM variants associated with refractive error
Conditional quantile regression was used to determine if effect sizes for the CREAM 

variants differed across quantiles of the refractive error distribution. A total of 146 variants 

were examined (the same set of variants examined above by OLS regression). As shown for 

a set of representative variants in Figure 3, we observed that most variants exhibited an 

inverse-U shaped effect size profile, with the strongest effect size at the extremes of the 

refractive error distribution and a minimum effect size near the 0.5 quantile 

(corresponding to emmetropic participants). Results for all variants are presented in 

Figure S1. A few variants, such as rs1649068 (BICC1) and rs9388766 (L3MBTL3) showed 

non-constant, yet more linear changes in effect size across quantiles of the refractive error 

distribution, thus yielding non-zero effects only for the extremes of the refractive error 
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distribution. Finally, a small number of SNPs, such as rs9680365 (GRIK1) and rs7449443 

(FLJ16171-DRD1), showed essentially flat effect size profiles that were similar to those 

obtained under the OLS assumption of a constant effect size across quantiles. Including 

principal components in the models did not change parameter estimates substantially, 

such that the same non-constant SNP effect distribution across the quantiles was observed. 

Variant rs12193446 near the LAMA2 gene had the strongest effect across all the quantiles 

(Figure 2A & 3), reaching a maximum for moderate-to-highly myopic individuals at the 

0.05 quantile: effect size = -0.9 D (95% CI -1.1 to -0.7).

MR was used to quantitatively model the genetic effect size profile generated by quantile 

regression analysis. After correcting for the inflated type I error rate and accounting for 

multiple-testing by applying a Bonferroni adjusted p-value threshold of 0.05/(3 x 146) = 

1.1 x 10-4, a total of 66 of the 146 (45%) CREAM variants had significant 1 (linear) or 2 

(quadratic) meta-regression coefficients (Table 2 and Table S3). Thus, 45% of the genetic 

variants had differing effect sizes depending where in the refractive error distribution an 

individual lay, suggestive of the variant’s involvement in either a gene-gene or gene-

environment interaction. The most extreme example was rs12193446 (LAMA2; Figure 2B 

& 3), which exhibited very strong evidence for a non-uniform effect size across quantiles 

(1 component, padj = 2.12 x 10-36; 2 component, padj = 1.19 x 10-30). Of these 66 variants, 

53 had significant 2 coefficients, indicating a non-linear effect size profile. Notably, only 

18 of the 146 CREAM variants (12%) failed to show at least nominal evidence of an 

interaction effect (i.e. 1 component and 2 component, p < 0.05). A summary comparing 

these results for refractive error to those obtained by using height as a phenotype (and 

SNPs associated with height) is described in Supplementary Text S1, Tables S3 & S4, and 

Figure S2.

OLS and CQR-MR analysis of refractive error stratified by educational attainment
We derived a polygenic risk score (PRS) for refractive error derived from the 146 CREAM 

SNPs examined above. The effect size of the PRS was examined in participants 

categorized into 4 educational categories (the number of years spent in full-time 

education; EduYears). We estimated the effect of the PRS x EduYears interaction for 

EduYears groups 2, 3 and 4 with respect to the group with the least time spent in 

education (group 1; EduYears = 13-15 years). An OLS analysis yielded increasing 
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evidence for a GxE interaction as EduYears increased: GxE = -0.05 D (95% CI -0.10 to 

0.009; p = 0.1) for individuals in group 2 (EduYears = 16 years); GxE = -0.09 D (95% CI -

0.15 to -0.03; p = 0.004) in group 3 (17-20 years); GxE = -0.17 D (95% CI -0.22 to -0.11; 

p = 7.53 x 10-11) in group 4 (21-26 years). 

Quantile regression analysis revealed a highly non-uniform, non-linear relationship 

between the PRS effect size and refractive error quantile, which mirrored the inverted-U 

pattern observed for the majority of individual SNPs (Figure 4). Notably, the PRS effect 

size differed across educational attainment strata. For participants from the myopic tail of 

the refractive error distribution (i.e. quantiles <0.2), more time spent in education was 

associated with a larger PRS effect size (Figure 4). For example for those in the 0.1st 

quantile, a 1 SD increase in PRS was associated with a -0.82 D (95% CI -0.90 to -0.73; p = 

8.9 x 10-83) more negative refractive error in the lowest educational stratum, yet a -1.11 D 

(95% CI -1.18 to -1.02; p = 1.17 x 10-155) more negative refractive error for those in the 

highest education stratum. The largest change in PRS effect size due to such an 

interaction with education was 0.57 D at the 0.2nd quantile. The PRS effect size difference 

associated with EduYears group was smallest in emmetropes: For instance, the PRS effect 

size was within a narrow range of -0.25 to -0.37 D for participants in the 0.6 quantile, 

irrespective of their level of education. For participants in the hyperopic tail of the 

refractive error distribution (quantiles >0.8), the PRS effect size was smaller in those 

with greater educational attainment, opposite to the relationship seen in the myopic tail. 

Thus, for example, for hyperopic participants in the 0.9 quantile, a 1 SD reduction in PRS 

was associated with a +0.62 D (95% CI +0.69 to +0.55; p = 6.55 x 10-68) effect on 

refractive error in those in the lowest education stratum (EduYears group 1), yet only a 

+0.41 D (95% CI +0.44 to +0.38; p = 9.53 x 10-193) effect in those from the highest 

education stratum (EduYears group 4). 

Discussion

The detection of non-uniform genetic effect sizes across quantiles of the trait distribution 

by CQR-MR has previously been proposed as a method for identifying SNPs involved in 

GxE or GxG interactions, without any prior knowledge of the identity of the interacting 

variant or environmental exposure [35]. Here, we studied changes in genetic effect size 

across the refractive error trait distribution in SNPs previously shown to be associated 
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with this trait, and found evidence for non-uniform effects in 88% of the 146 variants 

tested. This suggests that the majority of genetic variants associated with refractive error 

interact with environmental risk factors or other genetic variants to exert their effects. As 

an exemplar environmental exposure, years spent in education was shown to have a 

profound influence on the risk of myopia conferred by a PRS for refractive error. The 

interaction effect for education was greatest in individuals with moderate-to-high 

myopia, in whom the PRS was associated with a more than 0.50 D difference in refractive 

error between those in the lowest vs. highest education group. 

Under the assumption that no gene-environment or gene-gene interaction modifies the 

effect of genetic variant, we would expect the distribution of SNP effects to be constant 

across all quantiles. Using quantile regression, we found that 45% of SNPs known to be 

associated with refractive error showed compelling evidence of a non-uniform effect size. 

Variants typically had inverse-U shaped effect size profiles, with the strongest effects 

observed at the phenotype extremes, and effects closer to zero in emmetropes. Very few 

SNPs had constant effects across all quantiles of the sample distribution that matched 

those assumed to occur when fitting conventional OLS models. An appealing explanation 

for these findings is the process of “emmetropization”, in which the rate of axial eye 

elongation during infancy is fine-tuned by a visual feedback loop in order to maintain a 

sharp retinal image [44]. Emmetropization may therefore act as a buffer against the 

myopia- or hyperopia-predisposing effects of risk variants.

Because refractive error is known to be influenced by multiple environmental factors [23, 

25-32] and there is prior evidence of GxE interaction effects impacting refractive 

development – yet, to date, no evidence of GxG interaction – we suggest that the most 

parsimonious explanation for our quantile regression results is that GxE interactions are 

commonplace during myopia development. Prior to this work, only a handful of specific 

GxE interactions have been revealed for refractive error [39-42], predominantly in 

samples from south-east Asia in which the prevalence of myopia is extremely high. These 

included SNP x education interactions involving rs2969180 (SHISA6-DNAH9) (-0.28 D, p 

= 4.78 × 10–4), rs524952 (GJD2) (-0.23 D, p = 3.8 × 10−3), rs2137277 (ZMAT4-SFRP) (-

0.42 D, p = 2.1 × 10−3), rs12511037 (AREG) (-0.89 D, p = 6.87 × 10−11), rs13215566 

(GABRR1) (-0.56 D, p = 8.48 × 10−5), and rs12206610 (PDE10A) (-0.72 D, p = 2.32 x 
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10−8); all with effect sizes estimated using OLS models [41, 42]. One gene-environment 

interaction involving rs188663068 (APLP2) and time spent reading in childhood (-0.6 D, 

p = 7.1 × 10−4) was identified in a British population and was also identified to be 

responsible for environmentally induced myopia in a transgenic mouse model [40].

Repeating our CQR-MR analyses for the variants most strongly associated with height 

identified by the GIANT consortium [45] revealed scant evidence for variants with non-

uniform effect sizes across quantiles. This finding is consistent with previously-observed 

results for this trait [35, 46]. Since height is known to have a very high narrow-sense 

heritability [45], our findings point to a lack of GxE or GxG interactions for height SNPs 

that have strong marginal associations. 

This study has several limitations. First, as with methods that test for a difference in 

variance between different genotype groups (“variance heterogeneity” analysis) [47-50], 

the CQR-MR framework aims to detect heteroscedasticity in SNP effects, i.e. when SNP 

effects are not constant across the phenotype distribution, this is an indication for 

potential involvement of interacting factors. However, mechanisms other than GxE or GxG 

interactions can also result in variance heterogeneity. These include, a) parent-of-origin 

effects [48], where genotypic variance in heterozygous individuals depends on which 

parent an allele was transmitted from and b) allelic heterogeneity [45, 51, 52], where 

multiple genotypes in linkage disequilibrium influence the same phenotype. Second, our 

CQR study of PRS-education interaction effects was restricted to testing a PRS rather than 

individual SNPs, because of the limited sample size. Therefore, our results were unable to 

highlight which specific SNPs interact with education. Third, our permutation analyses 

showed that CQR-MR models can have inflated type I error rates, and yield high numbers 

of false positives. This necessitated the use of a correction factor to adjust standard errors 

and p-values, making CQR-MR analyses more complex than standard OLS methods. The 

inflated type I error rate of CQR-MR is likely due to two reasons: the non-normal 

distribution of refractive error (we found the type I error rate was lower for CQR-MR 

analysis of height; Figure S3) and the fact that meta-regression assumes that SNP effects 

across quantiles are estimated independently, whereas they were in fact estimated for 

the same sample.
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In summary, our study provides evidence that most genetic variants currently-known to 

be associated with susceptibility to refractive error have non-uniform effects across 

refractive error quantiles. The most parsimonious explanation is that these variants are 

subject to interaction effects, involving either additional gene variants or environmental 

risk factors. These effects typically have major impacts, such that effect sizes are often 2-

to-3-fold greater for individuals in the phenotype extremes compared to those in the 

centre. This variation in effects remains hidden when conventional OLS regression 

methods are used to detect main and interaction effects. Thus, the complex interplay 

between genetic and environmental factors uncovered in this work explains some of the 

missing heritability for refractive error.

Methods

Study Participants and Quality Control

UK Biobank. The UK Biobank project is an ongoing cohort study of approximately 

500,000 UK adults aged 40 to 70 years-old when recruited (2006-2010) [53]. Ethical 

approval for the study was obtained from the National Health Service National Research 

Ethics Service (Ref 11/NW/0382) and all participants provided written informed 

consent. Participants provided a blood sample, from which DNA was extracted and 

genotyped using either the UK BiLEVE Axiom array or the UK Biobank Axiom Array [54]. 

We analysed data from the July 2016 data release for genetic variants in 488,377 

individuals imputed to the HRC [55] reference panel.

Participants self-reported whether they had a university or college degree. An ophthalmic 

assessment was introduced towards the latter stages of UK Biobank recruitment, hence 

only about 25% of participants were examined. Refractive error was measured using 

non-cycloplegic autorefraction (Tomey RC5000; Tomey GmbH Europe, Erlangen-

Tennenlohe, Germany). The mean spherical equivalent (MSE) refractive error was 

calculated as the sphere power plus half the cylinder power, and averaged between the 

two eyes (avMSE). Individuals who self-reported any of the following eye disorders were 

excluded from the analyses: cataracts, “serious eye problems”, “eye trauma”, a history of 

cataract surgery, corneal graft surgery, laser eye surgery, or other eye surgery in the past 

4 weeks. Individuals whose hospital records (ICD10 codes) indicated a history of the 

following were also excluded: cataract surgery, eye surgery, retinal surgery, or retinal 
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detachment surgery. Of 488,377 individuals with genetic information, samples were 

excluded due to: Ocular history (n=48,145, see above), withdrawal of consent (n=8), 

self-report of non white-British ethnicity or genetic principal components indicative of 

non-European ancestry (n=69,938), outlying level of genetic heterozygosity (n=648), or 

refractive error not measured (n=283,352). The remaining 86,286 individuals were 

tested for relatedness using the --rel-cutoff command in PLINK v2 [56]. A genetic 

relationship matrix was created using a linkage disequilibrium (LD)-pruned set of well-

imputed variants (with IMPUTE2 r2 > 0.9, minor allele frequency (MAF) > 0.005, missing 

rate ≤ 0.01, and ‘rs’ variant ID prefix). LD-pruning was accomplished by using the --

indep-pairwise 50 5 0.1 command in PLINK v2 [56]. One member of each pair with 

genomic relatedness greater than 0.025 was excluded. This resulted in a final sample size 

of 72,985 unrelated individuals of European ancestry.

Selection of Genetic Variants

Variants associated with refractive error. We assessed 149 genetic variants that showed 
genome-wide (marginal) association (p < 5 x 10-8) with refractive error in a recent meta-

analysis carried out by the CREAM Consortium and 23andMe and that showed evidence 

of independent replication in the UK Biobank sample [18]. We coded the risk allele as the 

allele associated with a more negative refractive error.

Variants associated with height. For comparison, we also examined genetic variants 
associated with height. GWAS summary statistics were obtained from Wood et al. [45]. 

We restricted our analyses to the 149 genetic variants with the strongest association (i.e. 

those with the lowest p-values).

Statistical Analysis

The ‘conventional’ effect size of each of the 149 refractive error genetic variants (i.e. 

under the assumption of a constant effect size across the full sample) was estimated using 

a linear regression model, with refractive error averaged between the 2 eyes (avMSE) as 

the dependent variable and genotype, age, age-squared, sex and a binary variable 

indicating genotyping array fitted as covariates. Conditional quantile regression [43] was 

carried out using the quantreg package in R, using the same set of covariates as above. We 

used 10,000 Markov-chain-marginal-bootstrap replicates to calculate standard errors. As 
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a sensitivity analysis, we also tested linear regression and quantile regression models 

with the first 10 principal components included as covariates, to determine if 

confounding with residual ancestry influenced the results.

SNP effect estimates and their standard errors from quantile regression at 9 different 

quantiles (0.1, 0.2, 0.3, …, 0.9) were meta-regressed using a mixed-effects model (metafor 

package in R [57]) with the estimated SNP effect at each quantile modelled as the 

dependent variable and the quantile at which these estimates were obtained as the 

independent variable. A term for quantile-squared was also included in the meta-

regression model to test for non-linear genetic effects across quantiles, resulting in the 

model: y = 0 + 1q + 2q2 + e (where, 0 is an intercept term, 1 and 2 are coefficients 

describing the linear and quadratic change in SNP effect across quantiles of the trait 

distribution, respectively, q are the quantiles, and e is the error term). Figure 1 illustrates 

the conditional quantile regression and meta-regression model fitting strategy.

Permutation-based assessment of type I error rate and power

To assess the performance of our CQR-MR analysis model, its type I error and power 

were evaluated using the gold-standard method of permutation. The type 1 error rate 

was assessed in two ways. Firstly, we simulated genotypes for ‘null’ SNPs and tested for 

an association between the true phenotype and the null SNP genotype. Secondly, we 

permuted phenotype values amongst individuals in the sample, and tested for an 

association between the null phenotype and the observed (true) SNP genotypes. 

Null phenotype. The avMSE phenotype of the 72,985 individuals in the analysis sample 

was permuted 100 times. For each permutation, the association between the null 

phenotype and the genotype of each of the 149 CREAM SNPs was assessed using CQR-MR. 

The type 1 error rate was calculated as the proportion of SNPs with P<0.05 for each of 

the three meta-regression coefficients (0, 1 and 2) from the total of (100 x 149) 14,900 

permutations. Null SNPs. The 72,985 individuals in our analysis sample were 

independently assigned genotypes for a biallelic SNP with MAF ranging from 0.05 to 0.45, 

simulated from a binomial distribution. Association between avMSE and the genotype of 

the null SNP was assessed using CQR-MR. The type 1 error rate was calculated as the 
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proportion of SNPs with P<0.05 for each of the three meta-regression coefficients (0, 1 

and 2) after simulating 10,000 null SNPs.

To obtain a relative indication of statistical power, the 149 CREAM SNPs were tested for 

association with the observed avMSE refractive error phenotype in samples of varying 

size. Specifically, from the full sample of 72,985 individuals, we selected a random sample 

of 10,000 to 70,000 individuals, in steps of 10,000, and tested each of the 149 CREAM 

SNPs for association. This procedure was repeated 20 times. Power was computed as the 

proportion of replicates in which the null hypothesis was rejected at a nominal 

significance level of α = 0.05 (i.e. under the assumption that all 149 SNPs truly had non-

linear effect sizes across quantiles). The total number of tests used for these power 

evaluations was 149 x 7 x 20 = 20,860. The same set of covariates as in original analysis 

was included in the CQR step when assessing power and type 1 error.

As described above, our ‘standard’ CQR-MR analysis model consisted of carrying out 

quantile regression at 9 different quantiles (q = 0.1 to 0.9 in steps of 0.1) followed by 

meta-regression of the resulting genetic effect size estimates. To explore the effect of 

selecting more or fewer than 9 quantiles, we also assessed the type 1 error rate and 

power when meta-regression was carried out with: a) 19 quantiles, q = 0.05 to 0.95 in 

steps of 0.05; b) 10 quantiles, q = 0.05 to 0.95 in steps of 0.1; c) 5 quantiles, q = 0.1 to 0.9 

in steps of 0.2. For simplicity, we refer to these CQR-MR models by the number of 

quantiles included in the meta-regression, i.e. 19, 10, 9, or 5; with 9 quantiles being our 

‘standard’ approach (Figure 2A & B). 

Adjustment for the inflated type 1 error rate

Meta-regression was found to produce a systematically inflated type 1 error rate (see 

Results). To adjust for this source of bias, we calculated ‘inflation factors’ (λ0, λ1 and λ2) 

analogous to the use of λGC for genomic control [58], using the results from the ‘null 

phenotype’ permutation analyses described above. P-values and confidence intervals for 

each term (0, 1 and 2) in the meta-regression were adjusted by their respective 

inflation factor with the equation: = /λ, where λ was calculated as the χ 2
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 χ 2

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

observed median chi-squared statistic from the ‘null phenotype’ permutations divided by 

the expected median chi-squared statistic with 1 df. Noting that  = /  and  = , 𝑍 𝑠𝑒 χ2 𝑍2
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meta-regression confidence intervals were calculated by adjusting standard errors: 

= |  / |.𝑠𝑒𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 χ 2
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

Gene-Environment interaction with education

To test for the presence of gene-environment interaction, we constructed a polygenic risk 

score (PRS) by counting the number of risk alleles (0, 1 or 2) carried by each individual. 

We did not weight these by SNP effect sizes in order to avoid introducing bias by using 

weights obtained from, and applied in, the same sample (UK Biobank). ‘Age completed 

full-time education’ (EduYears) was selected as an exemplar environmental variable. UK 

Biobank participants with a university degree were not asked the age they completed 

full-time education, hence these individuals were assumed to have completed their 

education at the age of 21 years. Age completed education categories with low counts 

were merged with adjacent categories, resulting in 4 final EduYears categories: 13-15, 16, 

17-20 and 21-26 years. Firstly, we fitted the following model using linear regression, 

avMSE = PRS + EduYears + PRSEduYears + age + age^2 + sex + genotyping array. 

This was used to estimate the regression coefficients for the PRSEduYears (GxE) term 

under the assumption of constant effect size across quantiles. As an alternative, we 

carried out a CQR-MR analysis stratified by EduYears category. Table 3 provides a 

summary of refractive error distribution for each EduYears category, prior to merging 

groups with low numbers of participants. 

Description of Supplemental Data

Supplemental Data include an additional 3 figures, 4 tables, and 1 text file.

Text S1. CQR-MR analysis of GIANT consortium variants associated with height

Table S1. Summary statistics for ‘conventional’ Ordinary Least Squares (OLS) regression size 
estimates for association with refractive error (avMSE).

Table S2. Summary statistics for CQR-MR effect estimates for SNPs associated with refractive 
error (avMSE).

Table S3. Summary statistics for ‘conventional’ Ordinary Least Squares (OLS) regression size 
estimates for association with height.

Table S4. Summary statistics for CQR-MR effect estimates for SNPs associated with height.  
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Figure S1. Changes in genetic effect size across the refractive error distribution for genetic 
variants associated with refractive error.

Figure S2. Changes in genetic effect size across the height distribution for a selected subset of 
genetic variants associated with height.

Figure S3. Sample distributions for refractive error and height.
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Figure legends

Figure 1. Conditional quantile regression (CQR) and meta-regression (MR) can identify if genetic 

effect size varies in individuals depending on their position in the trait distribution. In OLS, a SNP 

effect size is estimated under the assumption that it is the same for every person in the sample. In 

CQR, the SNP effect size is estimated at a specific quantile of the outcome distribution. The effect 

size may differ at different quantiles. After using CQR to estimate the SNP effect size at a range of 

quantiles, the uniformity of the SNP effect sizes is quantitatively assessed using MR.

Figure 2. Type I error rate and power for MR models with different number of quantiles. (A) 

Illustration of genetic effect size estimates for CREAM variant rs12193446 from CQR carried out 

at 19, 10, 9 or 5 quantiles across the trait distribution. (B) MR was used to fit a quadratic function 

to the CQR results, in order to quantify the degree of non-uniformity and non-linearity of the CQR 

genetic effect size estimates. This yielded three coefficients describing the fit: intercept term 0, 

linear term 1, and quadratic term 2. (C) CQR-MR models were fit for 14,900 ‘null phenotype’ 

permutations. QQ-plots for observed versus expected p-values demonstrate systematic inflated 

test statistics (an excessive of low p-values) for MR models that included 19, 10 or 9 quantiles. 

The dashed black line is the line of unity. (D) The type I error rate for the models fit in (C). The 

dashed black line shows the correct type I error rate. Note the observed type I error rate is 

inflated for MR models including 19, 10 or 9 quantiles, and conservative for the 5 quantile MR 

model. (E) Relative statistical power of MR models including 19, 10, 9 or 5 quantiles, after 

adjusting for the inflated type I error rate. Note that power is lower for the 5 quantile MR model.

Figure 3. Changes in genetic effect size across the refractive error distribution for a representative 

subset of genetic variants associated with refractive error. Genetic effect size estimates from 

conditional quantile regression (CQR) are represented by the solid black line and their 95% 

confidence intervals are shown by the shaded grey region. Confidence intervals were calculated 

by using 10,000 Markov-chain-marginal-bootstrap replicates. The solid red line is the effect size 

estimate from conventional linear regression analysis with its 95% confidence intervals shown by 

the red dashed lines. Effect size estimates from meta-regression are shown with the solid blue 

line with corresponding 95% confidence intervals given by the dashed blue lines.

Figure 4. The effect of educational attainment (EduYears) on refractive error varies across 

quantiles of the refractive error distribution. Each line represents the PRS effect size across 

quantiles for individuals with different times spent in education. Error bars show 95% confidence 

intervals. 
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Table 1. Summary statistics for 10 strongest associations with refractive error (avMSE) based on 
‘conventional’ Ordinary Least Squares (OLS) regression.

SNP Gene(s) CHR BP EA MAF OLS [95% CI] POLS

rs524952 GOLGA8B_GJD2 15 35005886 A 0.49 -0.258 [-0.285; -0.231] 6.18 x 10-79

rs12193446 BC035400_LAMA2 6 129820038 A 0.10 -0.434 [-0.480; -0.389] 1.06 x 10-77

rs7744813 KCNQ5 6 73643289 A 0.41 -0.218 [-0.246; -0.190] 1.84 x 10-53

rs1550094 PRSS56 2 233385396 G 0.31 -0.204 [-0.234; -0.175] 5.69 x 10-43

rs11602008 LRRC4C 11 40149305 T 0.17 -0.238 [-0.274; -0.202] 5.14 x 10-38

rs72621438 SNORA51_CA8 8 60178580 C 0.35 -0.175 [-0.203; -0.147] 2.99 x 10-34

rs6495367 RASGRF1 15 79375347 A 0.42 -0.158 [-0.185; -0.131] 7.87 x 10-30

rs10500355 RBFOX1 16 7459347 A 0.36 -0.164 [-0.193; -0.135] 2.39 x 10-29

rs2573210 PRSS56 2 233385025 G 0.19 -0.192 [-0.226; -0.157] 4.51 x 10-28

rs2326823 BC035400 6 129842188 C 0.08 -0.252 [-0.301; -0.204] 2.21 x 10-24

Abbreviations: SNP: single nucleotide polymorphism, CHR: chromosome, BP: base pair, EA: effect allele, MAF:
minor allele frequency, OLS: the effect size in dioptres per copy of the risk allele, CI: confidence interval, POLS: P-
value of OLS analysis.
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Table 2. Summary statistics for the 10 strongest associations with refractive error (avMSE) based on conditional quantile regression – meta-regression 
(CQR-MR). The intercept component () CI and p-values have been adjusted using the ‘lambda GC approach’ by a factor of =1.66. The linear 
component () CI and p-values have been adjusted by =1.22. The quadratic component (2) CI and p-values have been adjusted by =1.10 to account 
for inflation of false positives in meta-regression.

Abbreviations: SNP: single nucleotide polymorphism, CHR: chromosome, BP: base pair, EA: effect allele, 0: meta-regression intercept effect size in dioptres
per copy of the risk allele, 1 and 2: meta-regression coefficients for the linear and quadratic terms, respectively, CI: confidence interval.

SNP Gene(s) 0 [95% CI] PMR - 0 1 [95% CI] PMR - 1 2 [95% CI] PMR - 2
rs12193446 BC035400_LAMA2 -1.130 [-1.272; -0.988] 8.07 x 10-55 2.995 [2.529; 3.461] 2.12 x 10-36 -2.363 [-2.765; -1.961] 1.19 x 10-30

rs524952 GOLGA8B_GJD2 -0.673 [-0.758; -0.588] 4.83 x 10-54 1.797 [1.534; 2.06] 7.47 x 10-41 -1.417 [-1.634; -1.200] 1.68 x 10-37

rs7744813 KCNQ5 -0.543 [-0.631; -0.455] 7.24 x 10-34 1.402 [1.132; 1.672] 2.15 x 10-24 -1.092 [-1.314; -0.870] 5.75 x 10-22

rs11602008 LRRC4C -0.669 [-0.79; -0.548] 2.60 x 10-27 1.612 [1.250; 1.974] 2.71 x 10-18 -1.131 [-1.421; -0.841] 2.25 x 10-14

rs1550094 PRSS56 -0.521 [-0.624; -0.418] 4.77 x 10-23 1.441 [1.118; 1.764] 2.08 x 10-18 -1.142 [-1.409; -0.875] 4.90 x 10-17

rs72621438 SNORA51_CA8 -0.441 [-0.530; -0.352] 2.06 x 10-22 1.089 [0.817; 1.361] 4.46 x 10-15 -0.821 [-1.044; -0.598] 5.85 x 10-13

rs2326823 BC035400 -0.680 [-0.830; -0.530] 6.17 x 10-19 1.815 [1.341; 2.289] 6.45 x 10-14 -1.429 [-1.831; -1.027] 3.09 x 10-12

rs10500355 RBFOX1 -0.400 [-0.490; -0.310] 3.63 x 10-18 1.011 [0.734; 1.288] 8.39 x 10-13 -0.775 [-1.003; -0.547] 2.76 x 10-11

rs6495367 RASGRF1 -0.374 [-0.459; -0.289] 7.17 x 10-18 1.009 [0.747; 1.271] 4.38 x 10-14 -0.833 [-1.049; -0.617] 3.89 x 10-14

rs2573210 PRSS56 -0.501 [-0.621; -0.381] 2.91 x 10-16 1.414 [1.037; 1.791] 1.94 x 10-13 -1.121 [-1.434; -0.808] 2.26 x 10-12
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Table 3. Distribution of refractive error per education attainment category.

Age at the 
end of 

education
13 14 15 16 17 18 19 20 21 22 23 24 25 26

Refractive 
error in 
diopters 

mean (SD)

0.35 
(2.71)

0.71 
(2.34)

0.72 
(2.28)

-0.004 
(2.43)

-0.16 
(2.53)

-0.53 
(2.66)

-0.52 
(2.62)

-0.59 
(2.58)

-0.78 
(2.85)

-0.51 
(2.71)

-0.27 
(2.57)

-0.21 
(2.85)

-0.004 
(2.04)

0.08 
(2.43)

N 419 411 12,274 15,789 5623 6193 1453 897 27,897 680 317 138 152 293
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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