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Abstract

Cells of E. coli were grown in LB medium, taken from a stationary phase of 2-4h, and
reinoculated into fresh media at a concentration (10°.mL™ or lower) characteristic of
bacteriuria. Flow cytometry was used to assess how quickly we could detect changes in cell
size, number, membrane energisation (using a carbocyanine dye) and DNA distribution. It
turned out that while the lag phase observable macroscopically via bulk OD measurements
could be as long as 4h, the true lag phase could be less than 15-20 min, and was
accompanied by many observable biochemical changes. Antibiotics to which the cells were
sensitive affected these changes within 20 min of reinoculation, providing the possibility of a
very rapid antibiotic susceptibility test, on a timescale compatible with a visit to a GP clinic.
The strategy was applied successfully to genuine potential Urinary Tract Infection (UTI)
samples taken from a doctor’s surgery. The methods developed could prove of considerable
value in ensuring the correct prescription and thereby lowering the spread of antimicrobial
resistance.
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Introduction

As is well known, there is a crisis of resistance to antimicrobials [1-8], caused in part by mis-
prescribing. This mis-prescribing takes two forms: (i) potentially effective antibiotics are given
when the infection is not bacterial, or (ii) the wrong (i.e. ineffective) antibiotics are given
when it is. What would be desirable would be a very rapid means of knowing, even before a
patient left a doctor's surgery, that a particular antibiotic was indeed capable of killing or
inhibiting the growth of the organism of interest. While genotypic (whole-genome-
sequencing) methods hold out some promise for this [9-19], what is really desired is a
phenotypic assay [20] that assesses the activity of anti-infectives in the sample itself [21-23].
However, since almost all antibiotics, whether bacteriostatic or bactericidal [24], indicate their
efficacy or otherwise only when cells are attempting to replicate [25], it might be thought that
this would be an unattainable goal simply because of the existence of a lag phase (but see
below).

Urinary tract infections ("UTIs") are a worldwide patient problem [22]. Other than in hospital-
acquired infections [26], they are particularly common in females, with 1 in 2 women
experiencing a UTI at some point in their life [27]. Escherichia coli is the most common
causative pathogen of a UTI [27-30]. However, other Enterobacteriaceae such as Proteus
mirabilis, Klebsiella spp. and Pseudomonas aeruginosa, and even Gram-positive cocci such
as staphylococci and enterococci, may also be found [31, 32]. Misapplication and overuse of
antibiotics in primary care is a major source of antimicrobial resistance [26, 32, 33], so it is
important that the correct antibiotic is prescribed [34, 35]. Often prescribing none at all for
asymptomatic UTIs is an adequate strategy [36].

We note, however, that E. coli cells in all conditions are highly heterogeneous [37], even if
only because they are in different phases of the cell cycle [38], and in both ‘exponential’ and
stationary phase contain a variety of chromosome numbers [39-44]. To discriminate them
physiologically, and especially to relate them to culturability (a property of an individual), it is
necessary to study them individually [45, 46], typically using flow cytometry [45, 47-56]. Flow
cytometry has also been used to count microbes (and indeed white blood cells) for the
purposes of assessing UTIs [57-61], but not in these cases for antibiotic susceptibility
testing. Single cell morphological imaging has also been used, where in favourable cases
antibiotic susceptibility can be detected in 15-30 minutes or less [62, 63].

Flow cytometry and antimicrobial susceptibility

A number of workers have recognised that flow cytometry has the potential to detect very
rapid changes in both cell numbers, morphology (by light scattering) and physiology (via the
addition of particular fluorescent stains that report on some element(s) of biochemistry or
physiology). Boye and colleagues could see effects of penicillin on flow cytograms within an
hour of its addition to sensitive strains [47]. Similarly, Gant and colleagues [64] used forward
and side scattering, and noticed antibiotic-dependent effects on the profiles after 3h, but did
not measure absolute counts. Later studies [65, 66] used the negatively charged dye bis-
(1,3-dibutyl-barbituric acid) trimethine oxonol (DiBAC4(3)), which increases its binding and
hence fluorescence upon loss of membrane energisation (that decreases the activity of
efflux pumps such as acrAB/tolC [67-69]); they could detect susceptibility to penicillin and
gentamicin in 2-5h. Using a similar assay, Senyurek and colleagues [70] could detect it
within 90 min. Other workers have used a variety of probes, but evaluation was after a much
longer period, e.g. 24h [71]. Alvarez-Barrientos and colleagues [72] give an excellent review
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of work up to 2000, with some reports (e.g. [73]) of detection of flow cytometrically
observable changes in morphology (light scattering) at 30 min exposure to antibiotic. Flow
cytometry has also been used to detect bacteriuria, although the numbers found seemed not
to correlate well with CFUs [74]. Most so-called ‘live/dead’ kits rely on the loss of membrane
integrity to detect the permeability of DNA stains, but many effective antibiotics have little
effect on this in the short term, and such kits do not assess proliferation [75]. Because
different probes and different antibiotics have different effects (and with different kinetics) on
membrane integrity, we decided that the best strategy would be to look at the ability of
antibiotics to inhibit proliferation directly, distinguishing bacteria from non-living scattering
material via the use of a positively charged dye that energised living cells accumulate.
Rhodamine 123 is a very popular dye of this type, but without extra chemical treatments that
would inhibit proliferation is effective only in Gram-positive organisms [76, 77]. However, the
positively charged carbocyanine dye 3,3"-dipropylthiadicarbocyanine iodide (di-S-C3(5)) [78,
79] seems to bind to and/or be accumulated by both Gram-positive and -negative bacteria,
and provides a convenient means of detecting them.

The ‘lag’ phase

A classical activity of general and laboratory microbiology involves the inoculation of a liquid
nutrient broth with cells taken from a non-growing state, whether this be from long-term
storage (typically in agar) or using cells that have been grown to stationary phase [80], more
or less recently, in another liquid batch culture. The result of this is that the cells will, in time,
typically increase in number and/or biomass, often exponentially, but that this is preceded by
a ‘lag phase’ (that may be subdivided [81]) before any such increases. The length of the lag
phase depends on various factors, including the nature of the nutrient media before and after
inoculation, the inoculum density, pH, temperature, and the period of the previous stationary
phase for that cell [82-88]. It is usually estimated (and indeed defined) by extrapolating to its
starting ordinate value a line on a plot of the logarithm of cell number, cfu or biomass against
time (e.g. [82, 89-94]). However, because of the different (and generally lower) sensitivity of
bulk optical estimates of biomass [82, 95, 96] (and see later, Figure 1), only the first two of
these are normally considered to estimate the ‘true’ lag phase.

With some important exceptions (e.g. [84, 85, 95, 97-99], the lag phase has been relatively
little studied at a molecular level. From an applied point of view, however, at least two
influences on it are considered desirable. Thus, a food microbiologist might wish to maximise
the lag phase (potentially indefinitely) (e.g. [100]). By contrast, there are circumstances, as
here, and not least in clinical microbiology, where it is desirable to be able to measure
microbial growth/culturability, and its phenotypic sensitivity or otherwise to candidate anti-
infective agents, in as short a time as possible. This necessarily involves minimising the
length of the lag phase, and is the focus of the present studies.

There is evidence that the time before measurable biochemical changes occur during lag
phases can be very small when inoculation is into rich medium [95, 98, 99]. Thus, Rolfe and
colleagues [98] used Lysogeny Broth (LB) (and S. enterica), where lag phase or regrowth —
as measured by changes in the transcriptome — initiated within 4 min (the earliest time point
measured). The timescale in the plots of Madar and colleagues [95] does not admit quite
such precise deconvolution, but responses in M9 with casamino acids (referred to as
‘immediate’) are consistent with a period of less than 10 min. Hong and colleagues recently
detected such changes in under 30 min using stimulated Raman imaging [101], Yu and
colleagues could do so with video microscopy [102], and Schoepp et al. [103] used
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molecular detection of suitable transcripts. In view of the above, and recognising that
bacteria in UTIs may actually be growing (albeit slowly) and not in a ‘stationary’ phase, we
decided to assess the ability of quantitative flow cytometry to determine bacterial cell
numbers, and the effects of antibiotics thereon, on as rapid a timescale as possible. The
present findings show that it is indeed possible to discriminate antibiotic-susceptible and —
resistant strains in under 30 mins at levels (10*°.mL™) characteristic of bacteriuria [104,
105]. This opens up the possibility of ensuring that a correct prescription is given between
the presentation of a sample in a doctor’s surgery and the acquisition in a dispensary of the
correct antibiotic. A preprint has been lodged at bioRxiv.

Materials and methods.

Microbial strains.
E. coli MG1655 and a series of sensitive and resistant strains were taken from the laboratory
collection of Prof R. Goodacre [106, 107].

Culture.

E. coli strains were grown from inocula of appropriate concentrations in conical flasks using
Lysogeny Broth to an optical density (600nm) of 1.5 — 2, representing stationary phase in
this medium. They were held in stationary phase for 2-4h before being inoculated at
concentration of 10° cells.mL™ (or as noted) into Terrific Broth [108]. We did not here study
cells held in a long stationary phase [80, 83] (exceeding 3d).

Assessment of growth by bulk OD measurements

Bulk OD measurements were performed in 96-well plates and read at 600nm as per the
manufacturer’s instructions in an Omega plate reader spectrophotometer (BMG Labtech,
UK) instrument. The ‘background’ due to scattering from the plates, etc., was not subtracted.

Flow cytometry.
Initial studies used a Sony SH-800 instrument, but all studies reported here used an
Intellicyt® iQue screener PLUS. This instrument is based in significant measure on

developments by Sklar and colleagues (e.g. [109-111]), and uses segmented flow [112] to
sample from 96- or 384-well U- or V-bottom plates prior to their analysis. The iQue Plus
contains three excitation sources (405nm, 488nm, 640nm) and 7 fixed filter detectors (with a
midpoint/range in nm of 445/45, 530/30, 572/28, 585/40, 615/24, 675/30, 780/60, giving 13
fluorescence channels) whose outputs are stored as both ‘height’ and area, using the
FCS3.0 data file standard [113]. Forward and side scatter are obtained from the 488nm
excitation source. Detection channels are referred to by the laser used (405nm violet VL,
488 nm blue BL, and 640 nm red RL) and the detector number in order of possible detectors
with a longer wavelength. Thus RL1, as used for detecting di-S-C3(5), implies the red laser
and the 675/30 detector. Data are collected from all channels, using a dynamic range of 7
logs. Many parameters may be used to vary the precise performance of the instrument.
Those we found material to provide the best reproducibility and to minimise carryover, and
their selected values, are as follows: Automatic prime — 60 secs (in Qsol buffer); Pre-plate
shake — 15 s and 1500rpm; Sip time — 2 s (actual sample uptake); Additional sip time — 0.5 s
(the gap between sips); Pump speed — 29 rpm (1.5 pL.s™ sample uptake); Plate model — U-
bottom well plate (for 96 well plates); Mid plate cleanup — After every well (4 washes; 0.5 s
each in Qsol buffer); Inter-well shake — 1500 rpm; after 6 wells, 4 sec in Qsol buffer; Flush
and Clean — 30 sec with Decon and Clean buffers followed by 60 sec with deionised water.
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The Forecyt ™ software supplied with the instrument may be used to gate and display all the
analyses post hoc. It, and the FlowJo software, were used in the preparation of the
cytograms shown. Where used, di-S-C3(5) was present at a final concentration of 3 uM; its
analysis used excitation at 640 nm and detection at 675+15 nm, the fluorescence channel
being referred to as RL1. For DNA analyses, cells were fixed by injection into ice-cold
ethanol (final concentration 70%), washed twice by centrifugation in 0.1 M-Tris/HCI buffer,
pH 7.4, before resuspension in the same buffer containing mithramycin (50 pg mL™) and
ethidium bromide (25 pg mL™), MgCl,, (25 mM) and NaCl (100 mM) [47]. Under these
circumstances, the excitation energy absorbed by mithramycin (excitation 405 or 488nm) is
transferred to the ethidium bromide, providing a large Stokes shift (emission at 572, 585 or
615 nm; we chose 572 nm as it provided the best signal) and high selectivity for DNA (as
mithramycin does not bind to RNA). All the solutions and media used were filtered through
0.2 um filter.

UTI samples

Following ethics approval from the University of Manchester and the obtaining of signed
consent forms, patients attending the Firsway clinic with suspected UTI were offered the
opportunity to have their urine samples analysed by our method as well as the reference
method used in a centralised pathology laboratory. Samples were taken at various times
during the day, kept at 4°C, delivered to the Manchester laboratory by taxi, plated out (LB
agar containing as appropriate the stated antibiotics at 3 times normal MIC) to assess
microbial numbers and antibiotic sensitivity, the remaining sample kept again at 4°C, and
analysed flow cytometrically within 18h. For flow cytometric assessment, cells were diluted
into 37°C Terrific Broth containing 3 uM diS-C3(5) plus any appropriate antibiotic, and
assayed as above. For other experiments (not shown) cells were filtered (0.45 um) and
diluted as appropriate into warmed Terrific Broth. No significant differences were discernible
between the two methods.

Reagents
All reagents were of analytical grade where available. Flow cytometric dyes were obtained
from Sigma-Aldrich.

Results

Initial assessment of regrowth by bulk light scattering measurements in 96-well plates

Figure 1 shows a typical lag phase from an inoculum of 10° cells.mL™ that had spent 4h in
stationary phase when inoculated into Terrific Broth [108] as observed by bulk OD
measurements. For strain MG1655 the lag phase amounted to some 230 min, while as
expected it is lower (2.5-3h) for the more virulent clinical isolates (not shown). A rule of
thumb states that an OD of 1 is approximately equal to 0.5 mg.mL™ dry weight bacteria or
~10°.cells.mL™ for E. coli. Thus, the change in OD if 10° cells.mL™ increase their number by
50% is ~0.00015, which is immeasurably small in this instrument. Given the noise in the
system (probably mainly due to fluctuations in the incident light intensity), it is reasonable
that we might, in this system, detect changes in OD of 0.01 (~107 cells.mL™), which requires
a 100-fold increase in cell number over the inoculum (~7 doublings). With a true lag phase of
10-15 min, and a doubling time of 20 min, this is indeed roughly what can be observed
(Figure 1)(see also [114-116]). When samples were taken from the same strain and plated
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out to estimate proliferation by CFU, the results were indeed equally consistent with those at
the longer times (Figure 1).

Flow cytometric assessment of cells and cell proliferation

Figure 2A shows a typical set of traces of multiple wells from the Intellicyt iQue, each
containing an inoculum of 10° cells.mL™. Each analysis is of 3 uL (taking 2s), and the good
reproducibility is evident, especially in the inset stacked plot. Figure 2B rear trace shows the
cytograms of a bead cocktail displaying that the distribution in cell properties is significantly
greater than that of beads, and its significant width thus is not due to any inadequacies in the
detector. The quality of a ‘high-throughput’ (or indeed any other) assay is nowadays widely
assessed using the Z' statistic [117]. This is given, for an assay in which the sample’s
readout exceeds that of the control, as

Z' =1 - 3(SD Sample + SD control)/(mean of sample — mean of control) Eqg. 1.

It is normally considered [117] that a Z' factor exceeding 0.5 provides for a satisfactory
assay.

Figures 2C and 2D show the full cytograms for forward scatter and side scatter, respectively
vs RL1, illustrating the amount of small particulates remaining in Terrific Broth, despite
extensive filtering. Consequently, we used a series of gates to assess solely the bacteria in
our samples. These are shown in Figure 2E.

Figure 3 shows cytograms at various times after inoculation of the stationary phase (LB-
grown) cells into Terrific Broth, along with labels of cell humbers within the regions of
interest. These allow the assessment of the Z’' values as per equation 1. From Fig 3B it may
be observed that Z’' > 0.5 from as early as 20 min, this then representing the earliest that we
can robustly detect proliferation. Changes in cell constitution as judged by light scatter can,
however, be detected from the earliest time point (5 min, Fig 3A top left). It is noteworthy that
the proliferation (as measured by the increase in cell numbers on the ordinate) is parallelled,
at least initially, by an increase in uptake of the carbocyanine dye (on the abscissa); as the
cells ‘wake up’ they become increasingly energised, until they settle down (also observed via
side scatter). For a lower concentration of starting inoculum (5x10* cells.mL™), the Z’ > 0.5
from 25 min as shown in figure 3C.

Flow cytometric assessment of antibiotic sensitivity

Figure 4 shows similar data for a resistant (Fig 4A,B) and a sensitive strain (Fig 4C,D) in the
absence ((4A,C) and presence (Fig 4B,D) of the antibiotic ampicillin, applied at three times
the known MIC (MIC = 32 mg.L™)
(http://www.eucast.org/fileadmin/src/media/PDFS/EUCAST files/Breakpoint tables/v_8.1 Br
eakpoint_Tables.pdf). It is clear that the susceptible strain differs (and thereby can be
discriminated) from the resistant strain in at least three ways: (i) the kinetics of changes in
cell numbers as judged by RL1 counts, (ii) the same as judged by forward (not shown) or
side scatter, (iii) kinetic changes in the magnitude of the fluorescence.

Since we had seen rapid changes in side scatter within 5 min (Figure 3) it was also of
interest to study this as a means of detecting antibiotic sensitivity. Figure 5 shows that the
changes in side scatter also differs noticeably between sensitive and resistant strains in 5-10
minutes, albeit that limited proliferation was taking place.
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Of course different antibiotics have different modes of action [118, 119], and the optimal
readout needs to reflect this. Thus, nitrofurantoin is widely prescribed for UTIs and its effects
on our standard laboratory system are shown in Fig 6A,B (cytograms of side scatter and
RL1, respectively). The effects on cell proliferation of nitrofurantoin and several other
antibiotics are given in Fig 6C. Note that the initial and later cell numbers for nitrofurantoin
appear lower because this antibiotic absorbs light at the excitation wavelength (its peak is at
620 nm). Both the bacteriostatic (trimethoprim) and bactericidal (ampicillin, ciprofloxacin,
nitrofurantoin) antibiotics can be seen to work effectively on this sensitive strain.

Flow cytometric assessment of DNA distributions

Another important strategy for detecting bacteria uses their DNA (e.g. [120-122]). Thus,
another high-level guide to the physiology of E. coli cells and cultures is the flow
cytometrically observable distribution of DNA therein, as this can vary widely as a function of
growth substrate, temperature, and during the cell cycle [39-43]. Specifically, the solution to
the problem that DNA replication rates are fixed while growth rates can both vary and
exceed them is to allow multiple replication forks in a given cell [123]. To this end, we
compared the DNA distributions of our cultures under various conditions. Fig 7A shows both
stationary phase and exponentially growing cells stained with a mithramycin-ethidium
bromide cocktail as per the protocol of Skarstad and colleagues given in Materials and
Methods. As they have previously observed [40, 47], (very slowly growing or) stationary
phase cells display either one or two chromosome complements, while those growing
exponentially in lysogeny broth (LB medium) can have as many as eight or more
chromosomes. This is entirely consistent with the basic and classical Cooper-Helmstetter
model [123] and more modern refinements [124-127]. To this end, Fig 7B shows changes in
the DNA distribution of cells taken from a similar regrowth experiment to that in Fig 2. It is
evident that both the one- and two-chromosome-containing cells from the stationary phase
initiate increases in their DNA content on the same kinds of timescale as may be observed
from both direct cell counting (proliferation) and carbocyanine fluorescence, with the initially
bimodal DNA distribution morphing into a more monomodal one. This implies that the initial
increase in cell numbers over 15 min or so involves cells that were about to divide actually
dividing, and provides another useful metric of cellular (cell cycling) activity, albeit one that
requires sampling as the cells must be permeabilised, at least for this protocol.

Flow cytometric analysis of UTI samples

Finally, we wished to determine whether this method, as developed in laboratory cultures,
could be applied to candidate UTI specimens ‘as received’ in a doctor’s surgery. To this end,
we analysed 23 samples of (initially) unknown properties, of which six were in fact positive.
Each of these was found to be positive using our methods, and with the antibiotic
sensitivities given in Table 1. Typical cytograms for sensitive and resistant strains are given
in Fig 8. The positive cultures were speciated centrally, and in each case the organism was
found to be E. coli.

Discussion and conclusions

It is often considered that the ‘lag’ phase of bacterial growth is one in which very little is
happening, and that what is happening is happening quite slowly. This notion probably
stems from the fact that changes in OD observable by the naked eye in laboratory cultures
[77] are indeed quite sluggish. However, the very few papers that have studied this in any
detail [63, 84, 85, 95, 97, 98, 102, 103] have found that changes in expression profiles
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(albeit mainly measured at a bulk level) actually occur on a very rapid timescale indeed,
possibly in 4 minutes or less following reinoculation into a rich growth medium. For
antibiotics to have an observable, and in terms of sensitivity to them a differentially
observable, effect on cells, the cells need to be in a replicative state. This might be thought
to preclude any such observations in the lag phase, but what is clear from the present
observations is that cells can re-initiate or continue their cell cycles very rapidly, such that
observable proliferation can occur in as little as 15-20 min after reinoculation of starved,
stationary phase cells into rich medium. Consequently it is not necessary to wait for a full
period of ‘lag-plus-first-division time’ [63], which can be well over one hour [115, 116]. The
rapid proliferation that we describe could be observed by light scattering, by cell counting, by
carbocyanine fluorescence (membrane energisation), and by changes in the magnitude and
distribution of DNA in the population. This has allowed us to determine, using any or all of
these phenotypic assays, antibiotic susceptibility at a phenotypic level in what would appear
to be a record time. Pin and Baranyi [115, 116] observed a more stochastic and somewhat
slower process than that which we observed here, but in their case they were measuring
CFU only, and the inoculation was into the less rich LB, while we used Terrific Broth. Indeed,
the exit from lag phase can be very heterogeneous when organisms are measured
individually [63, 128-130].

While we did not study this at the level of the transcriptome here, the dynamics of the
physiological changes observed during the early lag and regrowth phases as observed by
the uptake of the carbocyanine dye are of interest. Classically, its uptake has been
considered to reflect a transmembrane potential difference (negative inside) (e.g. [78, 79,
131-134], but cf. [135]) based on bilayer-mediated equilibration according to the Nernst
equation [136]. However, we recognise that such cyanine dyes, much as ethidium bromide
[120] and other xenobiotics [137, 138], are likely to be both influx and efflux substrates for
various transporters [139], so such an interpretation should be treated with some caution.

As to future work, the same strategy may usefully be applied to other cells (including
pathogens in both urine and more difficult matrices), other antibiotics and other stains.
However, the present work provides a very useful springboard for these by showing that one
may indeed expect to be able to determine antibiotic susceptibility in a phenotypic assay in
under 20 minutes. This could be a very useful attribute in the fight against anti-microbial
resistance.
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Table 1. Antibiotic sensitivity profile for the six positive samples (taken to be >10°.mL™)
obtained from the Firsway clinic. Two separate samples were from 25/05/18.

Antibiotic sensitivity (R- resistant; S- sensitive)
Sample Date | Ampicillin | Trimethoprim | Ciprofloxacin | Nitrofurantoin
25/05/2018 R R S S
25/05/2018 S S S S
06/06/2018 R S S S
16/07/2018 R S S S
18/07/2018 R S R R
20/07/2018 S R S S

Legends to figures

Figure 1. True and apparent lag phases during microbial regrowth. The strains indicated
were grown in Lysogeny Broth and inoculated into Terrific Broth after 4 h in stationary phase
to ca 10° cells.mL™. OD was measured quasi-continuously in An Omega plate reader
spectrophotometer (BMG Labtech, UK), while CFU were measured conventionally on agar
plates containing nutrient agar medium solidified with 1.5% agar. The lag phase observed
via counting CFUs is about 30 min while bulk OD measurements show a lag phase of some
230 minutes (~4 hours).

Figure 2. Cytograms of E. coli at a concentration of 10° cells.mL™ when incubated in 0.2 pm-
filtered Terrific Broth containing 3uM Di-S-C3(5). The sample measured has a volume of 3uL
and measurement takes place over 2 seconds. A. 1D histograms of RL1 fluorescence
showing the reproducibility of the results. B. 1D histograms of RL1 fluorescence together
with calibrating beads, showing that the breadth of the bacterial peaks is ‘real’ and not simply
due to detector variability. C and D. Raw dot plots of the height of the forward scatter and of
side scatter signals respectively vs RL1. Note that the E. coli cells appear above 10° in RL1,
the rest of the signals being due to very tiny unfiltered debris. E. Gating strategy (I-V) to
show only the E. coli singlet cells.

Figure 3. Changes in cell number during first 30 min following inoculation of cells from
stationary phase into Terrific Broth. A. Typical cytograms. B. Reproducibility and Z’ statistics
for E. coli growth at initial concentration of 10° cells.mL™. C. Reproducibility and Z’ statistics
for E. coli inoculated at 5x10° cells.mL™.

Figure 4. Effect of ampicillin (100 mg.L™ concentration, 3 x MIC for sensitive strains) on the
cytograms of E. coli inoculated from stationary phase into Terrific Broth. Ampillicin was either
absent (A,C) or present (B,D) from resistant strain 16 (A,B) or sensitive strain 7 (C,D). E.
Table showing the changes in the number of bacteria (with replicates) from sensitive (strain
7) and resistant strains (strain 16) when grown in the presence and absence of Ampicillin.
Similar data were obtained using eight other macroscopically sensitive and resistant strains.

Figure 5. Side scatter histograms of the experiment mentioned in Figure 4. Ampillicin was
either absent (A,C) or present (B,D) from resistant strain 16 (A,B) or sensitive strain 7 (C,D).
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Figure 6. Effect of nitrofurantoin at 3x nominal MIC on the growth and flow cytometric
behaviour of a sensitive strain of E. coli. A,B for nitrofurantoin, cytograms of (A) side scatter,
(B) RL1 fluorescence. Experiments were performed precisely as shown in the legend to Fig
3. (C) Ability of flow cytometric particle counting (gated as in Fig 2) to determine the
sensitivity of E. coli MG1655 to four different antibiotics in 20 mins.

Figure 7. DNA distributions in different populations. (A). DNA distributions in stationary
phase (red) and exponentially growing cells (blue). The overlay histogram shows data from
E. coli samples that were fixed with 70% ice cold ethanol and then stained using
Mithramycin and Ethidium Bromide as described in Materials and Methods. The relative
intensity of the BL2 channel fluorescence (488nm excitation, 572+14 nm emission) shows
the amount of chromosomes in the cells. The points I, II and Il represent one, two and eight
chromosome equivalents, respectively. The peak values of BL2 fluorescence for the points
are | (2.03.10%, Il (3.90.10% and Il (1.53.10°). The cells in stationary phase (2-4h) were
taken and fixed immediately while the exponentially growing cells were incubated for 90
minutes at 37°C before fixing the cells. (B). Changes in DNA distribution in E. coli cells
following inoculation from a stationary phase into Terrific Broth every 5 min until 30 min.
Experiments were otherwise performed exactly as described in the legend to in Figure
2.except that (to avoid spectral interference) carbocyanine was not present.

Figure 8. Cytograms of a sensitive UTI strain treated with nitrofurantoin. UTI samples (in this
case containing ~ 10° cells.mL™) were taken directly from storage, diluted tenfold into 37°C
Terrific Broth including 3 uM diS-C3(5) and nitrofurantoin at a nominal 3x MIC, and
measured flow cytometrically as described in the legend to Fig 2. (A) side scatter, (B) red
fluorescence.
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10° cells.mL?

Incubation Time Negatl.ve c?ntrol 0 min 5 mins 10 mins | 15 mins | 20 mins | 25 mins | 30 mins
(TB with DiSC3) | (control)
Replicate 1 17 301 299 290 359 450 477 636
Replicate 2 29 279 291 324 354 423 498 630
Replicate 3 14 284 317 320 336 443 495 657
Replicate 4 16 293 305 326 351 435 502 646
Replicate 5 17 308 287 325 360 427 510 661

Average 19 293 300 317 352 436 496 646
Standard deviation 5.31 10.54 10.63 13.80 8.65 9.93 10.93 11.91

Z' statistics (w.r.t. control) -2.07 0.02 0.57 0.90 0.81
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