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Abstract	
	
The	association	of	the	degree	of	aging	based	on	the	whole-brain	anatomical	
characteristics,	or	brain	age,	with	smoking,	alcohol	consumption,	and	individual	
genetic	variants	is	unclear.	Here,	we	investigated	these	associations	through	
analyzing	data	collected	for	UK	Biobank	subjects	with	an	age	range	of	45	to	79	years	
old.	We	first	trained	a	statistical	model	for	obtaining	relative	brain	age	(RBA),	a	
metric	describing	a	subject's	brain	age	relative	to	peers,	based	on	a	randomly	
selected	training	set	subjects	(n=2,679).	We	then	applied	this	model	to	the	
evaluation	set	subjects	(n=6,252)	and	further	tested	the	association	of	RBA	with	
tobacco	smoking,	alcohol	consumption,	and	529,098	genetic	variants.	We	found	that	
daily	or	almost	daily	consumption	of	smoking	or	alcohol	was	significantly	associated	
with	increased	RBA	(P<0.05).	Interestingly,	there	was	no	significant	difference	of	
RBA	among	subjects	who	smoked	occasionally,	only	tried	once	or	twice,	or	
abstained	from	smoking.	Further,	there	was	no	significant	difference	of	RBA	among	
subjects	who	consumed	alcohol	1	to	3	times	a	month,	at	special	occasions	only,	or	
abstained	from	alcohol	consumption.	Among	the	subjects	who	smoked	on	most	or	
all	days	and	did	not	abstain	from	alcohol	drinking,	RBA	increased	by	0.021	years	for	
each	addition	pack-year	of	smoking	(P<0.05)	and	by	0.014	years	for	each	additional	
gram	of	alcohol	consumed	(P<0.05).	We	did	not	identify	individual	genetic	variation	
significantly	associate	with	RBA.	Further	exploration	of	genetic	variation-brain	
aging	association	is	warranted,	where	our	current	genetic	association	statistics	may	
serve	as	prior	knowledge.	
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1.	Introduction	
	
The	number	of	American	aged	65	and	over	is	projected	to	reach	80	million	by	year	
2050	(Ortman	et	al.,	2014).	The	brain	aging	process,	while	associated	with	
structural	changes,	declined	cognitive	function,	and	increased	risk	of	dementia,	
differs	between	individuals	(Andersen	et	al.,	1999;	Jack	et	al.,	2015;	Lindenberger,	
2014).	Therefore,	to	understand	the	factors	associated	with	brain	aging	becomes	
increasingly	important.		
	
It	is	known	that	certain	lifestyle	habits,	such	as	heavy	smoking	and	heavy	alcohol	
drinking	are	associated	with	accelerated	atrophy	in	the	brain.	Compared	with	non-
smokers,	smokers	have	significantly	smaller	grey	matter	volume	and	lower	grey	
matter	density	in	the	frontal	regions,	the	occipital	lobe,	and	the	temporal	lobe.	
Further,	smokers	have	a	significantly	greater	rate	of	atrophy	in	regions	that	show	
morphological	abnormalities	in	the	early	stages	of	Alzheimer’s	disease(Durazzo	et	
al.,	2012;	Duriez	et	al.,	2014;	Gallinat	et	al.,	2006).	It	has	also	been	reported	that	
patients	with	alcohol	use	disorder	show	decreased	regional	grey	and	white	matter	
volumes	in	the	medial-prefrontal	and	orbitofrontal	cortices.	The	loss	of	brain	gray	
and	white	matter	volume	accelerates	with	aging	in	chronic	alcoholics	(Asensio	et	al.,	
2016;	Pfefferbaum	et	al.,	1992).		
	
On	the	other	hand,	studies	have	shown	that	nicotine,	a	compound	contained	in	
tobacco,	may	improve	attention	and	other	cognitive	functions	in	human	subjects	
(Ettinger	et	al.,	2009;	Gold	et	al.,	2012).	It	is	also	known	that	drinking	wine	can	be	
beneficial	to	the	cardiovascular	system,	which	is	related	to	brain	health	(Almeida	et	
al.,	2008;	Gianaros	et	al.,	2006;	Kappus	et	al.,	2016).	Given	both	the	detrimental	and	
potential	beneficial	effects	smoking	and	alcohol	consumption	have	on	the	brain,	the	
association	of	brain	aging	with	smoking	and	alcohol	consumption,	especially	when	
the	morphology	of	all	the	brain	regions	are	considered,	remains	a	subject	of	
investigation.		
	
Besides	lifestyle	habits,	genetic	is	also	associated	with	brain	aging.	A	recent	study	
analyzed	brain	imaging	data	and	chronological	age	(CA)	information	from	twins	and	
suggested	that	the	brain	aging	process	was	heritable(Cole	et	al.,	2017b).	Currently,	
the	extent	to	which	individual	genetic	variants	are	associated	with	brain	aging	
hasn't	been	well	studied,	except	for	some	conflicting	results	regarding	the	
association	between	genetic	variation	in	APOE,	a	gene	associated	with	Alzheimer's	
disease,	and	brain	aging	(Cole	et	al.,	2017a;	Cole	et	al.,	2018;	Lowe	et	al.,	2016).		
	
Recently,	researchers	have	successfully	used	machine-learning	methods	to	derive	a	
biomarker	that	is	commonly	referred	to	as	predicted	brain	age	(PBA)	or	brain	age	
based	on	brain	imaging	data.	PBA	reflects	the	degree	of	aging	of	the	brain	based	on	
its	anatomical	characteristics,	as	computed	based	on	brain	morphology	
measurements	across	the	entire	brain.	PBA	has	been	derived	and	used	in	several	
studies,	where	the	mean	absolute	error	between	PBA	and	CA	was	less	than	5	years	
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in	adults	(Cole	and	Franke,	2017;	Cole	et	al.,	2017b;	Franke	et	al.,	2010).	Further,	it	
has	been	shown	that	advanced	brain	age	is	associated	with	Alzheimer's	disease,	
objective	cognitive	impairment,	and	schizophrenia,	etc.	(Cole	and	Franke,	2017;	
Franke	et	al.,	2013;	Franke	et	al.,	2010;	Liem	et	al.,	2017;	Nenadic	et	al.,	2017).		
	
In	this	study,	we	aim	to	quantify	how	smoking,	alcohol	consumption,	and	genetic	
variants	are	associated	with	brain	age.	We	analyzed	the	brain	imaging	data,	smoking	
intensity	data,	alcohol	intake	data,	as	well	as	genotype	data	collected	for	almost	
9,000	UK	Biobank	subjects	who	were	cognitively	normal	and	were	of	European	
ancestry.	We	first	trained	a	model	that	produces	relative	brain	age	(RBA),	a	metric	
indicating	if	a	subject's	brain	age	is	older	or	younger	relative	to	peers,	using	data	for	
30%	of	the	subjects.	We	then	applied	the	trained	model	to	the	remaining	70%	of	the	
subjects	(i.e.,	the	evaluation	set)	and	obtained	RBA	for	those	subjects.	We	found	that	
RBA	was	associated	with	various	cognitive	functions,	indicating	that	RBA	captured	
variations	of	individual	brain	aging	while	adjusting	for	CA.	We	further	studied	the	
association	of	RBA	with	smoking	intensity,	alcohol	consumption,	and	genetic	
variants	using	the	evaluation	set	subjects.	
	
	
2.	Materials	and	methods	 	 	
	
2.1	Overview	of	UK	Biobank	project	
	
The	UK	Biobank	recruited	~500,000	subjects	in	the	United	Kingdom(Allen	et	al.,	
2014;	Sudlow	et	al.,	2015).	The	participants	have	provided	blood,	urine	and	saliva	
samples.	All	participants	have	been	genotyped.	The	first	10,000	participants	
scanned	as	of	February	2017	were	included	in	our	study	(including	brain,	heart,	
abdomen,	bones	and	carotid	artery).	All	participants	had	provided	informed	
consent.	The	present	analyses	were	conducted	under	data	application	number	
25641.		
	
2.2	Magnetic	resonance	imaging	(MRI)	data	
	
Details	of	the	structural	brain	MRI	data,	such	as	imaging	hardware	and	acquisition	
protocols,	are	described	elsewhere	(Miller	et	al.,	2016;	Smith	et	al.,	2017).	For	our	
analyses,	quality	controlled	structural	MRI	data	was	obtained	for	9,914	subjects.	We	
excluded	422	(4.3%)	subjects	with	brain	and	nervous	system	related	illness,	
including	cognitive	impairment,	neurological	disorders	or	stroke,	etc.	(see	
Supplementary	Table	1	for	the	list	of	diseases	based	on	which	subjects	were	
excluded	from	our	analyses).	We	further	excluded	561	subjects	with	non-European	
ancestry	(according	to	both	self-reported	ethnicity	and	principal	component	
analyses	on	the	genetic	data).	Brain	imaging	data	of	8,931	subjects	were	used	in	our	
analyses.	The	age	range	of	these	participants	is	between	45.2	years	and	79.4	years.	
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Brain	morphometrics,	including	volume	of	cortical,	subcortical	and	white	matter	
regions,	thickness	and	surface	area	of	cortical	regions,	ventricle	size,	intracranial	
volume,	etc.,	were	obtained	with	FreeSurfer	6.0	(Fischl,	2012)	based	on	the	T1	MRI	
brain	scans,	with	the	Desikan-Killiany	atlas.	FreeSurfer	is	documented	and	freely	
available	for	download	online	(http://surfer.nmr.mgh.harvard.edu/).	
Supplementary	Table	2	lists	the	brain	morphometric	measurements	used	in	our	
analyses.		
	
2.3	Cognitive	function		
	
We	used	the	data	of	cognitive	function	in	its	original	form,	which	was	collected	
during	the	visit	for	MRI	scan.	All	subjects	performed	specific	tasks	as	instructed	by	a	
computer.	To	be	specific,	the	Fluid	intelligence	score	indicates	the	capacity	to	solve	
problems	that	require	logic	and	reasoning	ability.	It	was	based	on	subjects'	
performance	in	identifying	the	largest	number,	calculating	family	relationship,	
interpolating	word,	etc.	For	the	prospective	memory	task,	subjects	were	asked	to	
memorize	a	command	in	the	middle	of	the	cognitive	tests	and	perform	it	at	the	end	
of	the	test.	In	the	reaction	time	test,	subjects	were	asked	to	press	a	snap-button	
when	two	cards	displayed	on	the	computer	screen	matched.	Mean	time	to	correctly	
identify	matches	was	recorded.	In	the	pairs	matching	test,	subjects	were	asked	to	
memorize	the	position	of	matching	pairs	of	cards.	The	number	of	correct	pairs	
identified	was	recorded.	More	details	of	the	tasks	for	assessing	cognitive	function	
can	be	found	on	the	UK	Biobank	website	(http://www.ukbiobank.ac.uk/).	
	
We	assessed	the	statistical	significance	of	the	association	between	RBA	and	Fluid	
intelligence	score	using	permutation	analyses.	To	be	specific,	we	first	obtained	the	
correlation	between	Fluid	intelligence	score	and	RBA,	which	was	-0.07.	We	further	
carried	out	permutation	analyses.	In	each	round	of	permutation,	we	permuted	the	
Fluid	intelligence	scores,	and	obtained	the	correlation	between	RBA	and	the	
permutated	Fluid	intelligence	scores	(i.e.,	"permuted	correlation").	We	did	100,000	
permutations	and	found	that	none	of	the	"permuted	correlations"	had	an	absolute	
value	greater	than	0.07.	Therefore,	we	claimed	that	the	correlation	between	RBA	
and	Fluid	intelligence	score	was	significant	with	a	p-value	<	0.00001.	Other	
permutation	analyses	in	this	manuscript	were	carried	out	in	a	similar	way.	
	
2.4	Education	
	
We	used	the	information	of	education	qualification	collected	during	the	visit	for	MRI	
scan.	The	qualifications	are	as	follows:	College	or	University	Degree,	A	levels	or	AS	
levels	or	equivalent,	CSEs	or	equivalent,	NVQ	or	HND	or	HNC	or	equivalent,	Other	
professional	qualifications,	None	of	the	above.	We	collapsed	the	data	into	two	
categories	as	used	in	the	paper	by	Cox	et	al.	(Cox	et	al.,	2016),	indicating	whether	or	
not	a	subject	held	a	college	or	university	degree.	
	
There	was	no	significant	association	between	education	and	RBA	(two-tailed	t-test	
p-value=0.3,	Supplementary	Figure	11).	Therefore,	we	did	not	adjust	for	education	
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when	assessing	the	association	of	RBA	with	smoking,	alcohol	consumption	and	
genetic	variants.	
	
2.5	Tobacco	smoking	history	and	alcohol	intake		
	
We	used	the	information	of	smoking	history	and	alcohol	intake	status	that	was	
collected	during	the	visit	for	MRI	scan.	The	smoking	and	alcohol	intake	frequency	
categories	used	in	our	analyses	were	as	reported	in	the	UK	Biobank	questionnaire.	
The	smoking	pack-years	was	defined	as	the	number	of	cigarettes	smoked	per	
day/20	multiplied	by	the	number	of	years	of	smoking.	The	alcohol	intake	amount	
was	calculated	as	described	in	the	paper	by	Piumatti	et	al.	(Piumatti	et	al.,	2018).	
Alcohol	consumption	per	day	for	a	specific	type	of	drink	was	calculated	as	the	
number	of	drinks	consumed	per	day	multiplied	by	the	number	of	grams	of	alcohol	
contained	in	one	drink.	The	total	amount	of	alcohol	consumption	per	day	was	the	
summation	of	the	alcohol	amount	from	all	types	of	drinks.	More	details	can	be	found	
on	the	UK	Biobank	website	(http://www.ukbiobank.ac.uk/).		
	
2.6	Genotype	data	
	
Details	of	the	genotyping	and	genotype	calling	procedures	are	described	elsewhere	
(UKBiobank,	2015).	Quality-controlled	genotype	data	was	obtained	for	529,098	
autosomal	SNPs	genotyped	for	6,195	evaluation	set	subjects.	Our	quality	control	on	
SNPs	ensured	that	all	SNPs	had	missing	rate	less	than	0.02	and	passed	Hardy-
Weinberg	exact	test	(i.e.,	Hardy-Weinberg	equilibrium	p-value	>=	1E-6).	Quality	
control	on	the	samples	ensured	that	all	subjects	had	genotyping	rate	greater	than	
0.98	and	had	heterozygosity	rate	within	±3	standard	deviation,	had	matched	
reported	gender	and	genetic	gender,	and	were	of	European	ancestry	(according	to	
both	self-reported	ethnicity	and	genetic	ethnicity	based	on	principal	component	
analyses).	Related	individuals	(i.e.,	kinship	coefficient	>0.1)	were	further	removed.	
	
2.7	Obtaining	predicted	brain	age	based	on	structural	MRI	data	
	
We	first	randomly	split	the	brain	imaging	data	of	8,931	subjects	into	training	and	
evaluation	sets.	The	random	sampling	ensured	that	there	were	no	statistically	
significant	differences	in	the	age	and	gender	distributions	of	the	two	sets.	Further,	
these	two	sets	had	insignificant	differences	in	the	smoking	and	alcohol	consumption	
distributions	because	of	the	random	sampling	(Supplementary	Figures	1-2).	Our	
rationale	for	picking	30%	(2,679)	of	the	subjects	as	the	training	set	and	the	
remaining	70%	(6,252)	as	the	evaluation	set	was	to	balance	the	need	for	accurately	
training	a	model	to	predict	brain	age	and	the	need	for	a	large	number	of	subjects	in	
the	evaluation	set	for	evaluating	the	association	of	RBA	and	the	factors	of	interest.		
	
We	then	trained	a	model	for	predicting	brain	age	based	on	MRI	data	using	data	of	
the	training	set	subjects.	To	be	specific,	we	built	a	linear	regression	model	with	
Lasso	regularization	for	predicting	brain	age	using	R	package	glmnet	(Friedman	et	
al.,	2010;	R	Core	Team,	2012).	In	the	model,	the	chronological	age	was	the	response	
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variable,	and	403	brain	quantitative	measures	derived	using	Freesurfer	were	used	
as	predictors.	During	model	training,	the	Lasso	parameter,	lambda,	was	selected	
based	on	an	internal	cross	validation	using	glmnet.	We	did	not	do	any	pre-selection	
on	the	predictors,	since	the	training	set	sample	size	was	sufficiently	large	relative	to	
the	number	of	predictors	in	the	model.	The	mean	absolute	error	(MAE)	between	
PBA	and	chronological	age	in	the	training	set	was	3.5	years.		
	
After	training	the	model	within	training	set,	we	applied	it	to	the	evaluation	set	
subjects	and	obtained	PBA	for	those	subjects.	Since	the	training	and	evaluation	data	
did	not	overlap,	the	evaluation	data	also	served	as	an	independent	validation	data	
for	assessing	the	model’s	performance	in	predicting	brain	age.		
	
2.8	Calculating	relative	brain	age	(RBA)	
	
After	calculating	PBA	for	each	subject,	we	further	calculated	a	metric	that	reflected	a	
subject's	PBA	relative	to	peers	(i.e.,	relative	brain	age	or	RBA).	Due	to	regression	
dilution	(Hutcheon	et	al.,	2010),	the	difference	between	PBA	and	CA	(i.e.,	PBA-CA)	
was	negatively	associated	with	CA.	The	older	subjects	tended	to	have	negative	PBA-
CA,	while	the	younger	subjects	tended	to	have	positive	PBA-CA	(Supplementary	
Figure	3).	Therefore,	when	deriving	the	RBA	metric	we	adjusted	for	that	bias,	so	that	
the	RBA	is	directly	comparable	among	subjects	at	different	chronological	ages.		
	
To	be	specific,	using	the	training	set	data,	we	built	a	linear	regression	model	that	
produced	the	expected	PBA	(EPBA)	of	a	subject	given	the	CA	while	adjusting	for	
gender	of	that	subject	(i.e.,	CA	and	gender	were	the	predictors	and	PBA	was	the	
response	variable).		
	
After	training	the	models	for	predicting	brain	age	and	for	further	calculating	EPBA	
using	the	training	set	data,	we	applied	these	models	to	the	evaluation	set	and	
calculated	the	PBA	and	EPBA	for	each	evaluation	set	subject.	We	defined	RBA	as	the	
difference	between	PBA	and	EPBA	(i.e.,	PBA-	EPBA).	In	that	way,	the	mean	RBA	of	all	
the	subjects	was	zero	across	all	the	age	ranges.	At	each	age	range,	there	were	
roughly	half	of	the	subjects	with	positive	RBA	and	half	of	the	subjects	with	negative	
RBA	(Supplementary	Figure	4).	A	subject	with	positive	RBA	has	a	brain	that	appears	
older	than	those	of	peers,	while	a	subject	with	negative	RBA	has	a	brain	that	appears	
younger.		
	
2.9	Quantifying	the	association	of	RBA	with	previous	tobacco	smoking	amount	
and	alcohol	intake	amount	
	
We	quantified	the	association	between	previous	tobacco	smoking	amount,	alcohol	
intake	amount,	and	RBA	using	a	two-step	regression	modeling.	We	first	built	a	linear	
regression	model	using	data	of	1,316	evaluation	set	subjects	who	previous	smoked	
daily	or	almost	daily	and	did	not	abstain	from	drinking	alcohol.	We	then	identified	
subjects	with	large	Cook's	distance	as	potential	influential	observations	(i.e.,	
subjects	with	Cook's	distance	greater	than	3*	the	mean	Cook's	distance	of	all	the	
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subjects).	We	excluded	these	influential	observations,	fitted	a	second	linear	
regression	model,	and	reported	results	based	on	the	second	regression	model.	In	
total,	data	of	1,231	non-influential	observations	were	used	in	the	second-step	
regression.	
	
2.10	Testing	the	association	between	genetic	variants	and	RBA	
	
We	used	PLINK	(Purcell	et	al.,	2007)	linear	regression	model	for	genotypic	test,	
adjusting	for	gender	and	first	five	genetic	principal	components	of	ancestry,	to	test	
the	association	between	SNPs	and	RBA.		
	
We	further	carried	out	gene-based	and	pathway-based	association	analyses	using	
PASCAL	(Lamparter	et	al.,	2016).	We	included	the	genes	based	on	the	location	of	the	
genotyped	SNPs	(i.e.,	a	SNP	located	within	2,500-bp	region	upstream	or	
downstream	of	a	gene	is	counted	as	belonging	to	that	gene).	The	pathways	under	
analyses	were	collected	in	the	MsigDB	database	(Subramanian	et	al.,	2005),	which	is	
a	pathway	library	combining	the	results	from	multiple	databases.	In	total,	18,928	
genes	and	1,077	pathways	from	msigDB	(Subramanian	et	al.,	2005)	were	analyzed.	
	
	
3.	Results	
	
3.1	Computation	of	predicted	brain	age	(PBA)	and	relative	brain	age	(RBA)		
	
We	trained	a	model	that	produced	the	predicted	brain	age	(PBA)	of	a	subject	based	
on	the	brain	MRI	measurements	using	data	of	30%	of	the	UK	Biobank	subjects.	We	
then	applied	the	trained	model	to	the	remaining	70%	of	the	subjects:	the	evaluation	
set.	The	mean	absolute	error	(MAE)	between	PBA	and	chronological	age	(CA)	in	the	
evaluation	set	was	3.9	years.	We	further	obtained	relative	brain	age	(RBA)	for	each	
subject	in	the	evaluation	set	(see	details	in	the	methods	section).	Table	1	illustrates	
the	demographic	information	for	the	subjects	included	in	the	training	and	
evaluation	sets.	Figure	1	illustrates	the	relationship	between	CA	and	PBA	for	the	
subjects	included	in	the	evaluation	data.	We	carried	out	subsequent	analyses	using	
data	of	the	evaluation	set	subjects.	
	
3.2	Cognitive	function	is	negatively	associated	with	RBA		
	
Subjects	who	performed	better	in	the	cognitive	tasks	had	a	lower	RBA	than	that	of	
those	who	performed	worse.	For	example,	Fluid	intelligence	score	was	negatively	
associated	with	RBA	(Spearman's	correlation	=	-0.07,	permutation	p-value	<	1E-5,	
see	Figure	2).	Further,	a	lower	RBA	was	associated	with	a	better	performance	in	
memorizing	a	specific	command	and	in	memorizing	the	position	of	matching	card	
pairs,	and	a	lower	response	time	in	identifying	matching	cards.	Detailed	results	on	
the	association	between	RBA	and	those	cognitive	functions	are	shown	in	
Supplementary	Figures	5-9.		
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3.3	Previous	tobacco	smoking	and	alcohol	consumption	are	significantly	
associated	with	RBA	
	
Information	of	previous	tobacco	smoking	frequency	was	collected	for	6,560	of	the	
evaluation	set	subjects	during	the	visit	for	MRI	scan.	RBA	was	significantly	different	
among	the	subjects	with	different	previous	tobacco	smoking	frequency	
(permutation	p-value	<	1E-5,	Figure	3).	Subjects	who	had	smoked	on	most	or	all	
days	had	the	highest	average	RBA	(mean	RBA	=	0.46	years)	compared	with	those	
who	smoked	less	frequently.	There	was	no	significant	difference	of	RBA	among	the	
subjects	who	smoked	occasionally,	only	tried	once	or	twice,	or	abstained	from	
smoking.		
	
Information	of	current	alcohol	drinking	frequency	was	collected	for	6,018	of	the	
evaluation	set	subjects	during	the	visit	for	MRI	scan.	RBA	was	significantly	different	
among	the	subjects	with	different	alcohol	consumption	frequency	(permutation	p-
value	=	0.01,	Figure	4).	Subjects	who	drank	daily	or	almost	daily	had	the	highest	
average	RBA	(mean	RBA	=	0.33	years)	compared	to	those	who	drank	less	
frequently.	The	group	of	subjects	who	drank	at	special	occasions	only	had	the	
lowest	RBA	(mean	RBA	=	-0.33	years),	although	the	RBA	difference	between	those	
subjects	and	the	subjects	who	abstained	from	drinking	or	the	subjects	who	drank	
1~3	times	a	month	was	not	significant.		
	
Smoking	and	alcohol	consumption	amount	were	positively	correlated.	Among	the	
1,316	subjects	who	smoked	on	most	or	all	days	and	did	not	abstain	from	alcohol,	the	
correlation	between	the	two	variables	was	0.09	(permutation	p-value	=	0.001).	To	
quantify	the	association	of	RBA	with	smoking	and	alcohol	consumption,	we	further	
built	a	linear	regression	model	where	both	smoking	and	alcohol	drinking	amount	
were	used	as	predictors,	RBA	was	the	response	variable.	According	to	the	model,	
each	additional	pack-year	of	smoking	was	associated	with	0.021	years	of	increased	
RBA	(permutation	p-value	=	0.013);	each	additional	gram	of	alcohol	consumption	
per	day	was	associated	with	0.014	years	of	increased	RBA	(permutation	p-value	=	
0.005).	R-squared	of	the	regression	model	was	0.015.	Therefore,	high	levels	of	
smoking	and	alcohol	consumption	were	associated	with	advanced	brain	age.	We	
also	built	a	regression	model	with	an	interaction	term	between	alcohol	drinking	and	
smoking.	The	interaction	term	was	insignificant,	indicating	that	there	was	
insufficient	evidence	to	support	the	presence	of	an	interaction	between	alcohol	
drinking	and	smoking	in	affecting	RBA.	
	
3.4	No	significant	association	identified	between	single	nucleotide	
polymorphisms	and	RBA	
	
We	looked	for	single	nucleotide	polymorphisms	(SNPs)	that	were	associated	with	
RBA	within	the	evaluation	set	subjects.	The	most	significant	association	observed	
was	between	SNP	rs475675	and	RBA	(p-value	=	2.6E-7).	However,	the	association	
p-value	did	not	pass	the	conventional	genome	wide	significance	threshold	of	5E-8;	it	
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was	not	significant	after	Bonferroni	correction	for	multiple	testing	either.	The	SNP-
level	RBA	association	p-values	of	all	the	SNPs	under	analyses	are	listed	in	
Supplementary	Table	3.		
	
We	also	investigated	the	association	between	the	dosage	of	APOE	ɛ4	risk	allele,	a	
major	Alzhiemer's	disease	risk	factor,	and	RBA.	We	found	that	subjects	with	two	
copies	of	APOE	ɛ4	risk	alleles	had	slightly	higher	RBA	than	subjects	with	zero	or	one	
copy	of	risk	allele	(Supplementary	Figure	10).	However,	the	association	between	
APOE	risk	allele	dosage	and	RBA	was	insignificant	(ANOVA	p-value	was	greater	than	
0.05).	
	
We	further	carried	out	gene-based	and	pathway-based	association	analyses	to	test	if	
certain	genetic	variants	affect	brain	age	in	an	aggregated	way	(see	details	in	the	
Methods	section).	In	total,	18,928	genes	and	1,077	pathways	from	msigDB	database	
(Subramanian	et	al.,	2005)	were	analyzed.	No	gene	or	pathway	showed	to	be	
significantly	associated	with	RBA	after	the	association	p-values	were	corrected	for	
multiple	testing.	The	gene-level	and	pathway-level	association	p-values	are	listed	in	
Supplementary	Table	4	and	Supplementary	Table	5,	respectively.	
		
	
4.	Discussion	 	
	
Here	we	investigated	the	association	of	relative	brain	age	with	smoking,	alcohol	
intake	and	genetic	variants	through	analyzing	the	data	collected	for	almost	9,000	UK	
Biobank	subjects.		
	
In	our	analyses,	we	first	calculated	PBA	of	a	subject	based	on	structural	MRI	data	
and	then	derived	RBA,	a	metric	that	describes	a	subject's	PBA	relative	to	peers.	RBA	
was	calculated	as	the	difference	between	PBA	and	EPBA	(i.e.,	RBA=PBA-EPBA;	see	
the	methods	section	for	details)	of	a	person.	As	a	comparison,	in	other	studies	where	
PBA	was	derived	based	on	regression	model,	the	difference	between	PBA	and	CA	
(PBA-CA)	was	used	to	indicate	the	brain	aging	status(Franke	et	al.,	2013;	Franke	et	
al.,	2010;	Nenadic	et	al.,	2017).	We	used	RBA	since	due	to	regression	dilution,	older	
subjects	tend	to	have	negative	values	of	PBA-CA,	while	younger	subjects	tend	to	
have	positive	values	of	PBA-CA	(Supplementary	Figure	1).	When	using	RBA,	such	
bias	was	taken	into	account.	That	is,	at	all	age	ranges,	roughly	half	of	the	subjects	
had	positive	RBA	and	half	of	the	subjects	had	negative	RBA.	
	
Our	analyses	showed	that	subjects	with	higher	RBA	performed	worse	in	various	
cognitive	functions	while	subjects	with	lower	RBA	performed	better.	A	relevant	
study	reported	that	the	biological	brain	aging	accelerated	in	patients	with	cognitive	
impairment	than	in	normal	subjects	(Liem	et	al.,	2017).	Our	findings	further	
demonstrated	that	even	among	cognitively	normal	subjects,	there	was	association	
between	advanced	brain	age	and	declined	cognitive	function.	We	noticed	that	while	
the	correlation	between	Fluid	intelligence	score	and	RBA	was	statistically	
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significant,	it	was	not	strong.	That	was	due	to	three	main	reasons.	First,	RBA	was	
independent	of	the	chronological	age.	Therefore,	subjects	with	the	same	RBA	may	
have	a	wide	range	of	chronological	age,	causing	large	variation	of	Fluid	intelligence	
score.	Second,	Fluid	intelligence	score	assesses	a	subject's	ability	to	solve	new	
problems,	which	is	one	of	many	cognitive	functions	the	brain	carries	out.	Therefore,	
the	brain	function	may	not	be	well	represented	by	only	Fluid	intelligence	score.	
Third,	subjects	included	in	our	analyses	are	cognitively	healthy.	The	association	
between	RBA	and	cognitive	function	might	be	relatively	weaker	within	the	healthy	
subjects	as	compared	to	a	study	in	which	subjects	range	from	cognitively	normal,	
mildly	cognitive	impaired,	and	severely	cognitively	impaired.	Nevertheless,	the	large	
sample	size	of	our	study	gave	it	the	statistical	power	to	detect	this	weak	correlation	
between	RBA	and	Fluid	intelligence	score.	
	
Our	analyses	of	smoking	and	RBA	indicated	that	subjects	who	had	smoked	on	most	
or	all	days	had	a	significantly	higher	RBA	compared	to	subjects	who	smoked	less	
often.	That	was	consistent	with	previous	studies,	which	showed	significantly	greater	
rate	of	atrophy	in	certain	regions	of	the	brains	of	smokers(Durazzo	et	al.,	2012;	
Duriez	et	al.,	2014;	Gallinat	et	al.,	2006).	Our	data	also	showed	that	there	was	no	
significant	difference	of	RBA	among	the	subjects	who	smoked	occasionally,	only	
tried	once	or	twice,	or	abstained	from	smoking.	Previous	studies	have	found	that	
nicotine	can	help	to	improve	attention	and	other	cognitive	functions	in	human	
subjects	(Ettinger	et	al.,	2009;	Gold	et	al.,	2012).	It	is	possible	that	at	a	very	low	
amount,	the	benefit	tobacco	smoking	brings	to	the	brain	via	nicotine	may	counteract	
the	detrimental	effect	it	has	on	the	brain.	At	the	same	time,	we	acknowledge	that	
this	observation	would	need	to	be	further	validated	using	an	independent	data	set.	
	
Our	analyses	of	alcohol	intake	frequency	and	RBA	indicated	that	subjects	who	drank	
daily	or	almost	daily	had	a	significantly	higher	RBA	compared	to	those	who	drank	
less	frequently.	Our	finding	was	consistent	with	previous	studies,	which	showed	
that	heavy	alcohol	consumption	was	detrimental	to	the	brain(Asensio	et	al.,	2016;	
Pfefferbaum	et	al.,	1992;	Shokri-Kojori	et	al.,	2017).	On	the	other	hand,	subjects	who	
drank	at	special	occasions	only	had	on	average	the	lowest	RBA	of	all	groups	of	
alcohol	consumption	frequencies.	It	is	known	that	a	small	dose	of	alcohol	is	
associated	with	a	reduced	risk	of	cardiovascular	disease,	coronary	heart	disease	and	
stroke(Cleophas,	1999;	Corrao	et	al.,	2000;	Piumatti	et	al.,	2018;	Ronksley	et	al.,	
2011).	Moreover,	cardiovascular	health	and	brain	health	are	related.	Researchers	
have	found	that	cardiovascular	risk	factors	like	hypertension	and	heart	disease	are	
associated	with	increased	brain	white	matter	abnormalities	and	brain	
atrophy(Almeida	et	al.,	2008;	Gianaros	et	al.,	2006;	Kappus	et	al.,	2016).	Therefore,	a	
small	amount	of	alcohol	may	be	beneficial	to	brain	health	through	contributing	to	
the	cardiovascular	health.	Our	results	corroborated	the	results	reported	by	Gu	et	al.,	
who	showed	that	light-to-moderate	total	alcohol	intake	was	associated	with	larger	
total	brain	volume	in	elderly	subjects(Gu	et	al.,	2014).		
	
As	for	genetic	variants,	the	strongest	association	between	SNP	and	RBA	was	2.6E-7,	
which	was	not	significant	after	adjusting	for	multiple	testing.	In	previous	studies,	
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researchers	have	identified	SNPs	that	showed	genome-wide	significant	association	
with	specific	brain	morphometrics.	For	example,	SNP	rs7294919	(candidate	gene	
TESC)	was	associated	with	hippocampal	volume;	SNP	rs945270	(candidate	gene	
KTN1)	was	associated	with	putamen	volume;	SNP	rs10784502	(candidate	gene	
HMGA2)	was	associated	with	intracranial	volume(Hibar	et	al.,	2015;	Medland	et	al.,	
2014;	Stein	et	al.,	2012).	It	is	possible	that	since	brain	age	was	a	summary	statistic	of	
the	morphometrics	of	multiple	brain	regions,	the	associations	between	SNPs	and	
specific	brain	regions	did	not	get	reflected.	Although	we	did	not	find	any	SNP	
showing	genome	wide	significant	association	with	RBA,	the	SNP-level	RBA	
association	p-values	can	be	used	for	future	meta-analyses,	where	results	from	
multiple	genetic	association	studies	are	combined	for	identifying	potentially	more	
significant	SNP-phenotype	associations.		
	
Several	studies	had	been	done	to	inspect	the	association	between	APOE	ɛ4	risk	
allele,	a	major	genetic	risk	factor	for	Alzhimer's	disease	(AD)	(Lambert	et	al.,	2013;	
Saunders	et	al.,	1993),	and	brain	age.	Cole	et	al.	(Cole	et	al.,	2018)	looked	at	the	
association	between	APOE	ɛ4	status	and	brain-predicted	age	difference	(PAD)	in	
669	elderly	subjects	and	reported	no	association	between	these	two	variables.	
Another	study	of	30	individuals	with	Down	syndrome	reported	that	APOE	genotype	
did	not	significantly	influence	brain-PAD	(Cole	et	al.,	2017a).	Lowe	et	al.	(Lowe	et	al.,	
2016)	reported	that	APOE	ε4	status	did	not	have	significant	association	with	Brain	
Age	Gap	Estimation	(BrainAGE)	in	healthy	subjects,	patients	with	AD	or	mild	
cognitive	impairment.	However,	they	did	observe	association	between	BrainAGE	
changing	rates	and	APOE	ε4	carrier	status.	In	our	analyses,	we	found	that	subjects	
with	two	copies	of	APOE	risk	alleles	had	slightly	higher	RBA	than	subjects	with	no	
risk	allele	or	only	one	copy	of	risk	allele,	although	the	effect	was	not	statistically	
significant.	Therefore,	the	effect	of	APOE	risk	allele	on	brain	aging	is	probably	not	
strong	within	cognitively	normal	subjects.	
	
Our	study	has	some	limitations.	First,	we	used	a	linear	regression	model	with	LASSO	
to	produce	PBA	based	on	structural	MRI	data.	More	sophisticated	statistical	models	
may	be	built	to	improve	the	accuracy	of	PBA.	Also,	the	combination	of	structural	
MRI	and	other	types	of	brain	imaging	data	(e.g.,	functional	MRI,	diffusion-weighted	
MRI)	may	help	to	improve	the	accuracy	of	PBA.	A	more	accurate	PBA	would	allow	
better	estimation	of	RBA.	Second,	in	our	study,	we	investigated	the	association	of	
brain	age	with	smoking	and	alcohol	intake.	Besides	smoking	and	alcohol	
consumption,	various	environmental	factors	may	be	associated	with	brain	age.	For	
example,	physical	exercise	and	meditation	had	been	reported	to	be	associated	with	
lower	brain	aging	level(Luders	et	al.,	2016;	Steffener	et	al.,	2016).	Therefore,	the	
variation	of	RBA	that	can	be	explained	by	smoking	and	alcohol	drinking	amount	was	
small	(as	reflected	by	the	small	R-squared	in	the	regression	model	for	quantifying	
the	association	of	RBA	with	smoking	and	alcohol	drinking	amount).	More	studies	
can	be	done	to	help	fully	understand	the	factors	associated	with	brain	age.	Third,	we	
chose	to	use	pack-years	and	grams	of	alcohol	intake	per	day	for	assessing	the	
smoking	and	drinking	amount.	There	are	alternative	measurements	for	assessing	
smoking	and	drinking	amount,	which	may	yield	slightly	different	findings(Neuner	et	
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al.,	2007;	Wood	et	al.,	2018).	Fourth,	it	is	possible	that	certain	genetic	variants	that	
have	strong	effect	on	brain	age	do	exist.	However,	these	genetic	variants	may	be	
missing	from	the	current	genotyping	platform	or	they	may	exist	in	the	form	of	
haplotypes	or	specific	biological	pathways	and	are	not	detected	through	current	
analyses.	Fifth,	genetic	predispositions	are	known	to	affect	smoking	and	alcohol	
drinking	behavior.	For	example,	SNPs	located	in	the	region	of	alcohol-metabolizing	
enzyme	genes	are	significantly	associated	with	alcohol	dependence	(Hart	and	
Kranzler,	2015).	A	SNP	located	in	the	nicotinic	receptor	gene	is	significantly	
associated	with	number	of	cigarettes	smoked	per	day	
(The_Tobacco_and_Genetics_Consortium,	2010).	Therefore,	it	is	possible	that	
genetic	variants	affect	alcohol	and	nicotine	consumption	and	indirectly	affect	the	
RBA.	Sixth,	a	larger	sample	size	would	increase	the	power	for	identifying	SNPs	
significantly	associated	with	a	specific	trait.	With	increased	number	of	UK	Biobank	
subjects	for	whom	both	brain	imaging	and	genetic	data	are	available,	a	future	study	
may	reveal	SNPs	that	are	significantly	associated	with	brain	age.		
	
In	sum,	we	studied	the	association	of	brain	age	with	smoking,	alcohol	consumption,	
and	genetic	variants	using	the	data	collected	for	9,000	cognitively	normal	UK	
Biobank	subjects.	These	results	provided	useful	insights	into	how	brain	aging	is	
associated	with	smoking	and	alcohol	consumption.	It	is	still	unclear	which	genetic	
variants	are	associated	with	brain	aging.	Further	studies	potentially	with	even	
larger	sample	sizes	will	be	needed	to	provide	a	clearer	picture	of	factors	associated	
with	brain	aging.	
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Table	1.	Demographic	information	for	subjects	included	in	the	training	and	the	
evaluation	data	sets.	
	
		 Number	of	subjects	 Male	(%)	|	Female	(%)	 Age	(mean	[SD],	min-max)	

Training	data	
(for	model	training)	 2,679	 1,274	(48%)	|	1,405	(52%)	 62.6	[7.5],	46.7-79.4	

Evaluation	data		
(for	association	analyses)	 6,252	 2,972	(48%)	|	3,280	(52%)	 62.6	[7.4],	45.2-78.4	

		
	
 
Figures 
 

 
Figure	1.	Relationship	between	chronological	age	and	the	predicted	brain	age.	
Subjects	with	higher	relative	brain	age	(RBA)	are	labeled	with	blue	X's;	subjects	
with	lower	RBA	are	labeled	with	red	dots.		
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Figure	2.	Relationship	between	Fluid	intelligence	score	and	relative	brain	age	
(RBA).	Subjects	with	higher	Fluid	intelligence	score	have	lower	RBA.		
	
	
	

	
Figure	3.	Relationship	between	previous	tobacco	smoking	frequency	and	relative	
brain	age.	
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Figure	4.	Relationship	between	alcohol	intake	frequency	and	relative	brain	age.	
 
 
 
Supplementary Figures 
 
Supplementary Figure 1. Smoking frequency and amount in the evaluation and the 
training sets. 
 
Supplementary Figure 2. Alcohol intake frequency and amount in the evaluation and 
the training sets. 
 
Supplementary Figure 3. Relationship between chronological age and the difference 
between predicted brain age and chronological age in the evaluation set. 
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Supplementary Figure 4. Relationship between chronological age and relative brain age 
in the evaluation set. 
 
Supplementary Figure 5. Relationship between prospective memory and relative brain 
age (permutation p-value = 0.01).  
 
Supplementary Figure 6. Relationship between the time to correctly identify matches 
and relative brain age. Red line indicates the regression curve between the two variables 
(permutation p-value = 0.001). 
 
Supplementary Figure 7. Relationship between the number of matches correctly 
identified and relative brain age  (round 1; permutation p-value = 0.005). 202 subjects 
identified 0 matches, 7 subjects identified 1 match, 1 subject identified 2 matches. Those 
subjects were grouped together.  
 
Supplementary Figure 8. Relationship between the number of matches correctly 
identified and relative brain age (round 2; permutation p-value = 0.02). 207 subjects 
identified 0 match, 12 subjects identified 1 match, 1 subject identified 2 matches, 4 
subjects identified 3 matches. Those subjects were grouped together. 
 
Supplementary Figure 9. Relationship between the number of matches correctly 
identified and relative brain age (round 3; permutation p-value > 0.05). 3,021 subjects 
identified 0 match, 7 subjects identified 1 match, 3 subjects identified 3 matches, 1 
subject identified 4 matches. Those subjects were grouped together. 
 
Supplementary Figure 10. Relationship between education	and	relative	brain	age	(two	
tailed	t-test	p-value	>	0.05). 
 
Supplementary Figure 11. Relationship between APOE ɛ4	risk	allele	dosage	and	
relative	brain	age	(ANOVA	p-value	>	0.05). 
 
 
Supplementary Tables 
 
Supplementary	table	1	
List	of	brain	and	nervous	system	related	diseases	based	on	which	subjects	are	
excluded	from	the	analyses.	
	
Supplementary	table	2	
List	of	brain	measurements	used	as	predictors	in	the	linear	regression	model.	
	
Supplementary	Table	3	
P-values	from	the	tests	for	association	between	each	SNP	and	relative	brain	age.	
	
Supplementary Table 4 
P-values	from	the	tests	for	association	between	each	gene	and	relative	brain	age.	
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Supplementary	Table	5	
P-values	from	the	tests	for	association	between	each	pathway	and	relative	brain	age.	
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