1	Mortality in trauma patients admitted during, before, and after national academic
2	emergency medicine and trauma surgery meeting dates in Japan
3	
4	Tetsuya Yumoto ^{1*} , Hiromichi Naito ¹ , Hiromi Ihoriya ¹ , Takashi Yorifuji ² , Atsunori Nakao ¹
5	
6	¹ Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate
7	School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
8	² Department of Human Ecology, Okayama University Graduate School of Environmental and Life
9	Science, Okayama, Japan
10	
11	*Corresponding author:
12	E-mail: tyumoto@cc.okayama-u.ac.jp (TYu)
13	
14	
15	
16	

17 Abstract

18	Annually, many physicians attend national academic meetings. While participating in these meetings
19	can have a positive impact on daily medical practice, attendance may result in reduced medical
20	staffing during the meeting dates. We sought to examine whether there were differences in mortality
21	after trauma among patients admitted to the hospital during, before, and after meeting dates. Using
22	the Japan Trauma Data Bank, we analyzed in-hospital mortality in patients with traumatic injury
23	admitted to the hospital from 2004 to 2015 during the dates of two national academic meetings - the
24	Japanese Association for Acute Medicine (JAAM) and the Japanese Association for the Surgery of
25	Trauma (JAST). We compared the data with that of patients admitted with trauma during identical
26	weekdays in the weeks before and after the meetings, respectively. We used multiple logistic
27	regression analysis to compare outcomes among the three groups. A total of 7,491 patients were
28	included in our analyses, with 2,481, 2,492, and 2,518 patients in the during, before, and after
29	meeting dates groups, respectively; their mortality rates were 7.3%, 8.0%, and 8.5%, respectively.
30	After adjusting for covariates, no significant differences in in-hospital mortality were found among
31	the three groups (adjusted odds ratio [95% CI] of the before meeting dates and after meeting dates
32	groups; 1.18 [0.89-1.56] and 1.23 [0.93-1.63], respectively, with the during meeting dates group as

33 the reference category). No significant differences in in-hospital mortality were found among trauma

34 patients admitted during, before, and after the JAAM and JAST meeting dates.

35

36 Introduction

37	Appropriate medical staffing is essential to provide optimal trauma care [1]. Weekend or off-hours
38	admission has been shown to be associated with worse outcomes in patients with acute myocardial
39	infarction (AMI), stroke, pulmonary embolism, or those who required emergency general surgery
40	and were admitted to the intensive care unit [2-6]. This so-called "weekend effect" could possibly be
41	explained by reduced medical staffing and resources [7, 8].
42	
43	This "national meeting effect" has been examined in recent years [9-12]. Each year, many
44	physicians attend national academic meetings and conferences to present their work, gain new
45	knowledge, and network. Although hospitals aim to consistently deliver high quality patient care
46	through efficient allocation of staff physicians, medical staffing during national meetings dates may
47	be lower than that during non-meeting dates. The "national meeting effect" in Japan has been
48	investigated; no significant differences were observed in outcomes among patients hospitalized with

49	AMI or cardiac arrest between meeting dates and non-meeting dates [9, 10]. Interestingly, lower 30-
50	day mortality was found among high-risk patients with AMI, cardiac arrest, and heart failure in
51	teaching hospitals in the United States during national cardiology meeting dates [11, 12].
52	
53	Although a "weekend effect" in terms of mortality has not been detected [13-15], longer emergency
54	department stay and increased risk for missed injuries have been demonstrated for trauma patients
55	admitted during off-hours in a community hospital setting [16]. To our knowledge, the "national
56	meeting effect" among trauma patients has never been well elucidated. We hypothesized that
57	hospital mortality would be higher during the meeting dates of national scientific emergency
58	medicine and trauma surgery professional organizations than non-meeting dates and hospital
59	mortality would be lower after the meeting dates than before the meeting dates because of reduced
60	staffing and the positive impact of the academic meeting on high physician performance. Our
61	study's aim was to compare hospital mortality after trauma among patients admitted during, before,
62	and after national meeting dates.
63	

65 Materials and methods

66 Study design and data sources

- 67 This study was designed as a nationwide retrospective cohort study. We used data from the Japan
- 68 Trauma Data Bank (JTDB), which was established in 2003 with the Committee for Clinical Care
- 69 Evaluation of the Japanese Association for Acute Medicine and the Trauma Surgery Committee of
- 70 the Japanese Association for the Surgery of Trauma (JAST). Patients with Abbreviated Injury Scale
- 71 (AIS) scores of 3 or above are recorded in the database from 264 Japanese hospitals participating in
- 72 trauma research and care [17]. The registry database contains patient demographics, mechanism of
- 73 injury, vital signs at the scene and on arrival, admission date, AIS scores, Injury Severity Score
- 74 (ISS), treatments, and survival status at discharge from hospitals. The Okayama University Hospital
- r5 ethical committee approved the study (ID 1805–020). Since patient data was extracted anonymously,
- 76 the requirement for informed consent was waived.
- 77

78 Study sample

79 We obtained annual national meeting dates of two academic organizations - the Japanese Association

80 for Acute Medicine (JAAM) and JAST - from 2004 to 2015. The during meeting dates group included

81	patients admitted after traumatic injury during the dates of these meetings. The before and after
82	meeting dates groups were defined as patients admitted with trauma during the same weekdays in the
83	weeks before and after the meetings, respectively [9, 10]. The JAAM and JAST meetings are each
84	usually held for two or three consecutive days. For example, the 2015 JAAM meeting was held from
85	Wednesday, October 21 through Friday, October 23; the before and after meeting dates groups
86	included patients admitted Wednesday through Friday in the weeks before and after the meeting,
87	respectively. In this study, patients who were 16 years of age or older admitted with traumatic injury
88	from 2004 to 2015 were enrolled. Patients in cardiac arrest at the scene or on arrival and those without
89	age, hospital arrival date, and in-hospital mortality data were excluded.

90

91 Outcome measures

92 Our primary outcome was post-trauma in-hospital mortality from all causes among patients

93 hospitalized during, before, and after national meeting dates.

94

95 Statistical analysis

96	Comparisons among the three groups were made using the chi-square test for categorical variables
97	and analysis of variance for continuous variables. We used multiple logistic regression analysis to
98	compare outcomes between the three groups, with the during meeting dates group as the reference
99	category. Adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) were obtained after
100	adjusting for age (16-39 vs. 40-64 vs. 65≤); gender; mechanism of injury (blunt or others); transfer
101	from outside hospitals; ISS (≤8 vs. 9-15 vs. 90mmHg≤ on arrival); Glasgow Coma Scale score (≤8
102	vs. 9-15); presence or absence of emergency surgical or hemostatic intervention (craniotomy,
103	thoracotomy, laparotomy, or angioembolization); and type of institution (high vs. low volume
104	centers). Because outcomes would be better at the high-volume centers, an additional analysis was
105	conducted by dividing the patients into two groups; high volume centers (\geq 1,200 cases with ISS \geq 9
106	registered for 12 years) and low volume centers (<1,200 cases with ISS>9 registered for 12 years)
107	[18]. A subgroup analysis was also conducted, stratifying patients with or without shock and the type
108	of national meeting. Sensitivity analysis was conducted using alternative definitions of the before
109	and after meeting dates groups; two, three, and four weeks before and two, three, and four weeks
110	after meeting dates, respectively, instead of one week. A two-tailed P value of <0.05 was considered

111 statistically significant. All analyses were performed using IBM SPSS Statistics 25 (IBM SPSS,

112 Chicago, IL, U.S.A.).

113

114 **Results**

115 **Patient characteristics**

- 116 A total of 236,698 trauma patients were registered in the JTDB during the study period. Of those,
- 117 182,877 adult trauma patients were assessed for eligibility. After 175,386 patients were excluded
- 118 due to not being admitted on eligible days, 7,491 subjects were included in our analyses, with 2,481
- 119 patients in the during meeting dates group, 2,492 patients in the before meeting dates group, and
- 120 2,518 patients in the after meeting dates group (Fig. 1). Among the three groups of patients, basic
- 121 characteristics including severity of trauma and life-saving surgical procedures were similar except
- 122 for the age category (Table 1).

123

- 124 Fig 1. Flow diagram of the study population.
- 125 JTDB, Japan Trauma Data Bank.

127 Table 1. Characteristics of trauma injury patients admitted during, before, and after national meeting

128 dates.

	Before meeting	During meeting	After meeting	
	dates group	dates group	dates group	P-Value
	n=2,492	n=2,481	n=2,518	
Age (years)	63 (41, 77)	63 (41, 77)	65 (43, 78)	0.131
16-39, n (%)	541 (21.7)	604 (24.3)	566 (22.5)	
40-64, n (%)	750 (30.1)	708 (28.5)	675 (26.8)	0.015
65≤, n (%)	1,201 (48.2)	1,169 (47.1)	1,277 (50.7)	
Male, n (%)	1,557 (62.5)	1,513 (61.1)	1,607 (63.9)	0.126
Blunt mechanism, n (%)	2,347 (94.2)	2,348 (94.6)	2,398 (95.2)	0.249
Transfers from an outside hospital, n (%)	345 (13.8)	367 (14.8)	345 (13.7)	0.485
Systolic blood pressure (mmHg)	136 (116, 158)	136 (116, 156)	137 (117, 158)	0.624
<90mmHg, n (%)	180 (7.2)	180 (7.3)	170 (6.8)	0.731
Glasgow Coma Scale	15 (14, 15)	15 (14, 15)	15 (14, 15)	0.532
≤8, n (%)	245 (9.8)	242 (9.8)	256 (10.1)	0.874
Surgical or hemostatic intervention, n (%)	266 (10.7)	237 (9.6)	237 (9.4)	0.261
Craniotomy, n (%)	101 (4.0)	83 (3.4)	82 (3.3)	0.249
Thoracotomy, n (%)	32 (1.3)	31 (1.3)	20 (0.8)	0.181
Laparotomy, n (%)	76 (3.1)	72 (2.9)	66 (2.6)	0.652
Angioembolization, n (%)	73 (2.9)	65 (2.6)	78 (3.1)	0.592
Injury Severity Score	10 (9, 20)	10 (9, 20)	10 (9, 21)	0.590
≤8, n (%)	407 (16.3)	399 (16.1)	398 (15.8)	
9-15, n (%)	993 (39.8)	980 (39.5)	1,016 (40.3)	0.904
16≤, n (%)	1,009 (40.5)	1,042 (42.0)	1,034 (41.1)	
High volume center, n (%)	1,437 (57.7)	1,486 (59.9)	1450 (57.6)	0 172
Low volume center, n (%)	1,055 (42.3)	995 (40.1)	1,068 (42.4)	0.172
In-hospital mortality, n (%)	200 (8.0)	181 (7.3)	213 (8.5)	0.306

130 Comparison of mortality between the three groups

- 131 No significant differences in in-hospital mortality were observed during, before, and after meeting
- dates (7.3% vs. 8.0% vs. 8.5%, respectively; P=0.306; unadjusted OR [95% CI] of the before and
- 133 after meeting dates groups; 1.11 [0.90-1.37], 1.17 [0.96-1.44], respectively, with the during meeting
- 134 dates group as the reference category; Table 2). Even after adjusting for covariates, no significant
- differences in in-hospital mortality were found among the three groups (adjusted OR [95% CI] of the
- before and after meeting dates groups; 1.18 [0.89-1.56], 1.23 [0.93-1.63], respectively, with the
- 137 during meeting dates group as the reference category; Table 2).
- 138
- 139 Table 2. In-hospital mortality after trauma among patients hospitalized during, before, and after
- 140 national meeting dates.

	Before meeting	During meeting	After meeting	D h
	dates group	dates group	dates group	P-value
Overall				
In-hospital mortality, % (n/N)	8.0 (200/2,492)	7.3 (181/2,481)	8.5 (213/2,518)	0.306
Crude OR (95% CIs)	1.11 (0.90-1.37)	Reference	1.17 (0.96-1.44)	
Adjusted OR (95% CIs)	1.18 (0.89-1.56)	Reference	1.23 (0.93-1.63)	

141 Adjusted OR and their 95% CIs were obtained after adjusting for age (16-39 vs. 40-64 vs. 65≤),

142 gender, mechanism of injury (blunt or others), transfer from an outside hospital, ISS (≤ 8 vs. 9-15 vs.

- 143 $16\leq$), presence or absence of shock, Glasgow Coma Scale score (≤ 8 vs. 9-15), presence or absence
- 144 emergency surgical or hemostatic intervention, and type of institution (high vs. low volume centers).
- 145 OR: odds ratio; CI: confidence interval; ISS: Injury Severity Score
- 146

Subgroup analysis 147

- 148 Although high volume centers were associated with better outcomes (6.8% overall in-hospital
- 149 mortality of high volume centers vs. 9.5 % for the low volume centers; P<0.001), in-hospital
- 150 mortality did not differ among the three groups according to center volume (Table 3). Additional
- 151 analyses were conducted by stratifying presence or absence of shock; no differences in in-hospital
- 152 mortality were found among the three groups (Table 3). Also, no significant differences according to
- 153 type of national meeting were found (Table 3). The same results were obtained when considering
- 154 alternative definitions of the before and after meeting dates groups (Table 4).
- 155
- 156
- 157
- 158

Table 3. In-hospital mortality among the three groups with stratification for high vs. low volume

160 centers, presence or absence of shock, and type of national meeting.

	Before meeting	During meeting	After meeting	P-value
	dates group	dates group	dates group	P-value
High volume centers				
In-hospital mortality, % (n/N)	7.2 (103/1,437)	6.0 (89/1,486)	7.3 (106/1,450)	0.129
Crude OR (95% CI)	1.21 (0.90-1.62)	Reference	1.24 (0.93-1.66)	
Adjusted OR (95% CI) ^a	1.12 (0.77-1.64)	Reference	1.30 (0.89-1.89)	
Low volume centers				
In-hospital mortality, % (n/N)	9.2 (97/1,055)	9.2 (92/995)	10.0 (107/1,068)	0.968
Crude OR (95% CI)	0.99 (0.74-1.34)	Reference	1.09 (0.82-1.47)	
Adjusted OR (95% CI) ^a	1.25 (0.82-1.90)	Reference	1.17 (0.77-1.78)	
Systolic blood pressure \leq 90mmHg				
In-hospital mortality, % (n/N)	29.4 (53/180)	35.6 (64/180)	34.7 (59/170)	0.413
Crude OR (95% CI)	0.76 (0.49-1.18)	Reference	0.96 (0.62-1.50)	
Adjusted OR (95% CI) ^b	1.09 (0.62-1.90)	Reference	1.14 (0.66-1.97)	
Systolic blood pressure > 90mmHg				
In-hospital mortality, % (n/N)	6.0 (134/2,252)	4.5 (101/2,247)	6.0 (138/2,293)	0.040
Crude OR (95% CI)	1.34 (1.03-1.75)	Reference	1.36 (1.05-1.77)	
Adjusted OR (95% CI) ^b	1.28 (0.93-1.74)	Reference	1.29 (0.95-1.77)	
JAAM				
In-hospital mortality, % (n/N)	8.3 (130/1,560)	7.4 (112/1,513)	9.1 (147/1,612)	0.221
Crude OR (95% CI)	1.14 (0.87-1.48)	Reference	1.26 (0.97-1.62)	
Adjusted OR (95% CI) ^c	1.28 (0.90-1.80)	Reference	1.28 (0.91-1.80)	
JAST				
In-hospital mortality, % (n/N)	7.5 (70/932)	7.1 (69/968)	7.3 (66/906)	0.950
Crude OR (95% CI)	1.06 (0.75-1.49)	Reference	1.02 (0.72-1.45)	
Adjusted OR (95% CI) ^c	1.21 (0.78-1.88)	Reference	1.18 (0.75-1.87)	

- ^aAdjusted OR and their 95% CIs were obtained after adjusting for age (16-39 vs. 40-64 vs. 65≤),
- **163** gender, mechanism of injury (blunt or others), transfer from an outside hospital, ISS (≤ 8 vs. 9-15 vs.
- 164 $16 \le$), presence or absence of shock, Glasgow Coma Scale score (≤ 8 vs. 9-15), and presence or
- absence of emergency surgical or hemostatic intervention.
- ^bAdjusted OR and their 95% CIs were obtained after adjusting for age (16-39 vs. 40-64 vs. 65≤),
- 167 gender, mechanism of injury (blunt or others), transfer from an outside hospital, ISS (≤ 8 vs. 9-15 vs.
- 168 16≤), Glasgow Coma Scale score (≤8 vs. 9-15), presence or absence of emergency surgical or
- 169 hemostatic intervention, and type of institution (high vs. low volume centers).
- 170 °Adjusted OR and their 95% CIs were obtained after adjusting for age (16-39 vs. 40-64 vs. 65≤),
- 171 gender, mechanism of injury (blunt or others), transfer from an outside hospital, ISS (≤8 vs. 9-15 vs.
- 172 16≤), presence or absence of shock, Glasgow Coma Scale score (≤8 vs. 9-15), presence or absence
- 173 of emergency surgical or hemostatic intervention, and type of institution (high vs. low volume
- 174 centers).
- 175 OR: odds ratio; CIs: confidence intervals; ISS: Injury Severity Score; JAAM, Japanese Association
- 176 for Acute Medicine; JAST, Japanese Association for the Surgery of Trauma.
- 177

178 Table 4. In-hospital mortality among the three groups with alternative definitions of the before and

179 after meeting dates groups.

	Before meeting	During meeting	After meeting	P-value
	dates group	dates group	dates group	P-value
$\pm 2^{a}$				
In-hospital mortality, % (n/N)	7.1 (169/2,397)	7.3 (181/2,481)	7.5 (190/2,544)	0.851
Adjusted OR (95% CIs)	1.07 (0.80-1.42)	Reference	1.27 (0.96-1.68)	
±3 ^b				
In-hospital mortality, % (n/N)	7.6 (193/2,546)	7.3 (181/2,481)	8.2 (207/2,517)	0.450
Adjusted OR (95% CIs)	1.22 (0.92-1.61)	Reference	1.21 (0.92-1.61)	
±4°				
In-hospital mortality, % (n/N)	7.7 (196/2,538)	7.3 (181/2,481)	6.6 (176/2,650	0.316
Adjusted OR (95% CIs)	1.23 (0.92-1.62)	Reference	0.94 (0.71-1.26)	

180 ^aTwo weeks before and after meeting dates as the before meeting dates group and after meeting

181 dates group.

^bThree weeks before and after meeting dates as the before meeting dates group and after meeting

183 dates group.

184 ^cFour weeks before and after meeting dates as the before meeting dates group and after meeting

185 dates group.

186 Adjusted OR and their 95% CIs were obtained after adjusting for age (16-39 vs. 40-64 vs. 65≤),

187 gender, mechanism of injury (blunt or others), transfer from an outside hospital, ISS (≤8 vs. 9-15 vs.

188 $16 \le$), presence or absence of shock, Glasgow Coma Scale score (≤ 8 vs. 9-15), presence or absence

189 of emergency surgical or hemostatic intervention, and type of institution (high vs. low volume

190 centers).

191 OR: odds ratio; CIs: confidence intervals; ISS: Injury Severity Score.

192

193 **Discussion**

194 In this study, we investigated whether there was a difference in mortality among patients admitted

195 due to traumatic injuries during, before, and after dates of national academic acute medicine and

- trauma meetings. Contrary to our hypothesis, we found no significant differences in in-hospital
- 197 mortality among the three groups, even after adjusting for measurable confounders.

199	To our knowledge, "national meeting effects" were first investigated in the United States, focusing
200	on national cardiology meetings; lower staffing and differences in composition of physicians during
201	the meeting dates were found to possibly affect treatment utilization and outcomes [11]. In this
202	study, no significant differences in mortality of AMI patients were found between those in the
203	hospital during meeting and non-meeting dates; however, high-risk patients with AMI, cardiac
204	arrest, and heart failure admitted to teaching hospitals during meeting dates were found to have

205	lower mortality than those admitted during non-meeting dates [11]. The present study is the first to
206	examine the "national meeting effect" regarding mortality in trauma patients.
207	
208	Previous studies have not detected the "weekend effect"; admission on nights or weekends for
209	trauma patients was not associated with increased mortality [13-16, 19, 20] or even better outcomes
210	[21]. Generally, a plausible explanation for the "weekend effect" includes several factors such as
211	reduced medical staffing, decreased access to some tests and procedures, and the influence of
212	variations in case mix [19, 20, 22]. For trauma patients, hospitals are explicitly required to be
213	appropriately staffed and to provide optimal care, regardless of when injured patients are admitted
214	[21, 23]. However, trauma patients presenting off-hours were more likely to have missed injuries,
215	[16, 24], in particular thoracic spine or abdominal injuries [24]. Specifically, Schwartz DA, et al.
216	showed that off-hour presentation of pelvic fracture patients with hemorrhagic shock caused a delay
217	in door-to-angioembolization time, resulting in increased mortality [23].
218	
219	In theory, variations of patient characteristics would not be influenced by admission dates occurring

during, before, and after national meetings. While relatively less experienced emergency physicians

221	or trauma surgeons providing leadership would be expected during academic national meeting dates,
222	strong leadership, teamwork, and technical skills are essential components for team performance and
223	patient care in initial trauma management [25, 26]. Our results showed no significant differences in
224	mortality among those admitted during, before, and after national meeting dates; these findings may
225	be explained by the possibility that every hospital strives to consistently deliver high quality care.
226	Although no clear evidence exists that national academic meetings directly improve medical staff
227	performance and positively impact patient outcomes, hospital participation in a trauma quality
228	improvement program has been demonstrated to be associated with better patient outcomes [27].
229	Hence, we compared hospital mortality among patients admitted during, before, and after national
230	meeting dates to investigate the "post-national meeting effect," assuming that participation in
231	national academic meetings has a positive effect on clinical performance and patient outcomes.
232	Despite our hypothesis, our results detected no "post-national meeting effect."
233	
234	Our study has several limitations. First, we could not identify differences in medical staffing among
235	the three groups, such as composition of emergency physicians vs. trauma surgeons who treated the
236	patients; therefore, we are unable to explain why no significant differences in mortality were found.

237	Second, the influence of national meeting geographical regions and locations was not accounted for,
238	which may have affected our results. Third, as Jena AB, et al. showed that high-risk AMI patients
239	admitted to teaching hospitals during national meeting dates received less percutaneous coronary
240	intervention, hospital type should have been taken into consideration [11]. We performed additional
241	analyses according to hospital volume, in which the same results were obtained. Fourth, possible
242	confounders, including comorbidities, were unavailable in this study. Fifth, although major tertiary
243	hospitals providing high-quality trauma care participate in the JTDB, a degree of random error and
244	selection bias may have occurred, as this was not a comprehensive study [17]. Finally, since we
245	focused on national academic meetings only in Japan, our results could not be applied to other
246	countries, considering differences in the settings and geography of Japanese healthcare systems.
247	
248	Conclusions

249 We observed no significant differences in in-hospital mortality after trauma among patients admitted

- 250 during, before, and after national acute medicine and trauma meeting dates. As hospitals are
- assumed to be struggling to consistently provide optimal care for trauma patients, participating in

252 these meetings is acceptable for sharing and generating new knowledge. Further population-based

253	studies are required to validate our results.
254	
255	
256	
257	
258	
259	
260	
261	
262	
263	
264	
265	
266	
267	

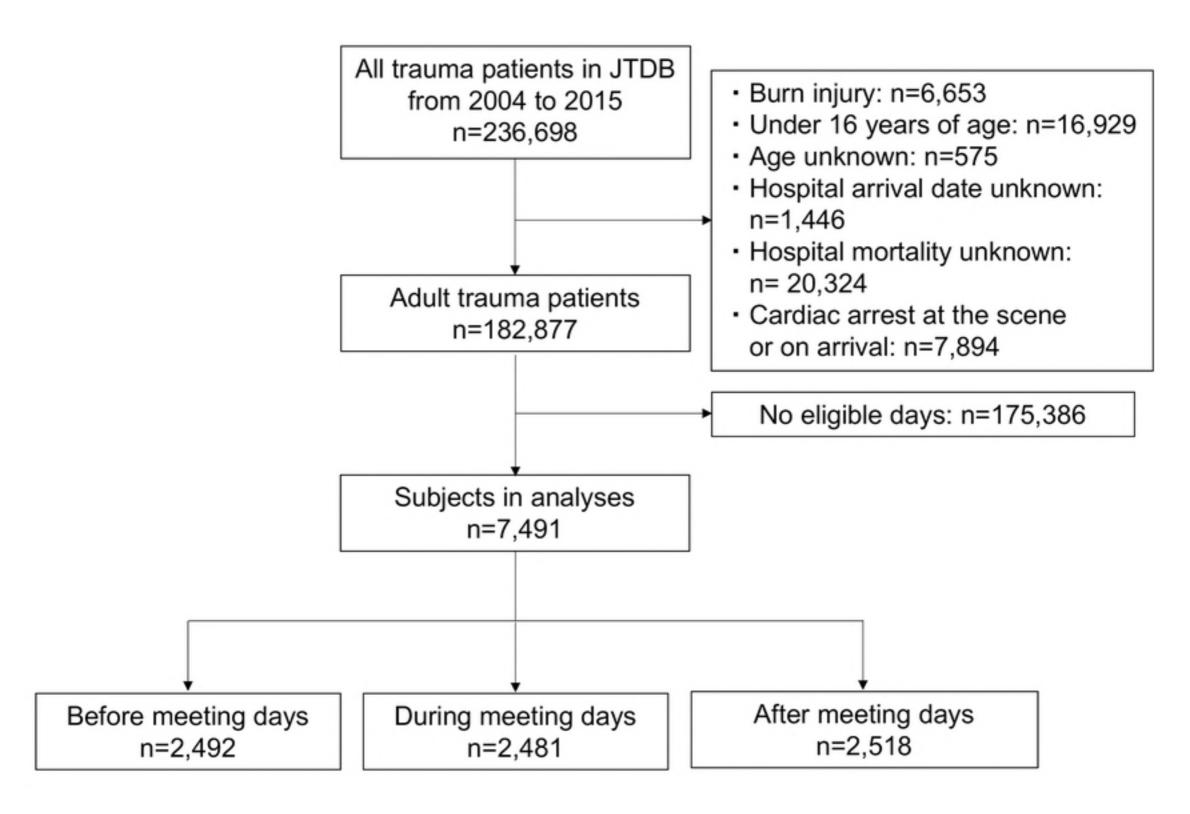
268 Acknowledgements

- **269** We express our gratitude to all the participants in the JTDB registry, members of the Trauma
- 270 Registry Committee (Japanese Association for Trauma Surgery), and the Committee for Clinical
- 271 Care Evaluation (Japanese Association for Acute Medicine).
- 272

273 **References**

- 274 1. Mains C, Scarborough K, Bar-Or R, Hawkes A, Huber J, Bourg P, et al. Staff commitment to
- trauma care improves mortality and length of stay at a level I trauma center. J Trauma. 2009;66:
- **276** 1315-1320.
- 277 2. Khoshchehreh M, Groves EM, Tehrani D, Amin A, Patel PM, Malik S. Changes in mortality on
- 278 weekend versus weekday admissions for Acute Coronary Syndrome in the United States over the
- **279** past decade. Int J Cardiol. 2016;210: 164-172.
- 280 3. Roberts SE, Thorne K, Akbari A, Samuel DG, Williams JG. Mortality following Stroke, the
- 281 Weekend Effect and Related Factors: Record Linkage Study. PLoS One. 2015;10: e0131836.

- 4. Nanchal R, Kumar G, Taneja A, Patel J, Deshmukh A, Tarima S, et al; from the Milwaukee
- 283 Initiative in Critical Care Outcomes Research (MICCOR) Group of Investigators. Pulmonary
- embolism: the weekend effect. Chest. 2012;142: 690-696.
- 5. Metcalfe D, Castillo-Angeles M, Rios-Diaz AJ, Havens JM, Haider A, Salim A. Is there a
- **286** "weekend effect" in emergency general surgery? J Surg Res. 2018;222: 219-224.
- 287 6. Uusaro A, Kari A, Ruokonen E. The effects of ICU admission and discharge times on mortality in
- **288** Finland. Intensive Care Med. 2003;29: 2144-2148.
- 289 7. Neuraz A, Guérin C, Payet C, Polazzi S, Aubrun F, Dailler F, et al. Patient Mortality Is
- 290 Associated with Staff Resources and Workload in the ICU: A Multicenter Observational Study. Crit
- **291** Care Med. 2015;43: 1587-1594.
- 8. Sorita A, Ahmed A, Starr SR, Thompson KM, Reed DA, Prokop L, et al. Off-hour presentation
- and outcomes in patients with acute myocardial infarction: systematic review and meta-analysis.
- **294** BMJ. 2014;348: f7393.
- 9. Mizuno S, Kunisawa S, Sasaki N, Fushimi K, Imanaka Y. In-hospital mortality and treatment
- 296 patterns in acute myocardial infarction patients admitted during national cardiology meeting dates.
- **297** Int J Cardiol. 2016;220: 929-936.


- 298 10. Kitamura T, Kiyohara K, Matsuyama T, Hatakeyama T, Shimamoto T, Izawa J, et al. Is Survival
- 299 After Out-of-Hospital Cardiac Arrests Worse During Days of National Academic Meetings in
- **300** Japan? A Population-Based Study. J Epidemiol. 2016;26: 155-162.
- 301 11. Jena AB, Prasad V, Goldman DP, Romley J. Mortality and treatment patterns among patients
- 302 hospitalized with acute cardiovascular conditions during dates of national cardiology meetings.
- **303** JAMA Intern Med. 2015;175: 237-244.
- 304 12. Jena AB, Olenski A, Blumenthal DM, Yeh RW, Goldman DP, Romley J. Acute Myocardial
- 305 Infarction Mortality During Dates of National Interventional Cardiology Meetings. J Am Heart
- **306** Assoc. 2018;7: e008230.
- 307 13. Carr BG, Jenkins P, Branas CC, Wiebe DJ, Kim P, Schwab CW, et al. Does the trauma system
- **308** protect against the weekend effect? J Trauma. 2010;69: 1042-1047.
- 309 14. Giannoudis V, Panteli M, Giannoudis PV. Management of polytrauma patients in the UK: Is
- **310** there a 'weekend effect'? Injury. 2016;47: 2385-2390.
- 311 15. Metcalfe D, Perry DC, Bouamra O, Salim A, Lecky FE, Woodford M, et al. Is there a 'weekend
- **312** effect' in major trauma? Emerg Med J. 2016;33: 836-842.

- 313 16. Ono Y, Ishida T, Iwasaki Y, Kawakami Y, Inokuchi R, Tase C, et al. The off-hour effect on
- 314 trauma patients requiring subspecialty intervention at a community hospital in Japan: a retrospective
- 315 cohort study. Scand J Trauma Resusc Emerg Med. 2015;23: 20.
- **316** 17. Japan Trauma Care and Research. Japan Trauma Data Bank Annual Report 2017 (2012-2016)
- 317 [Internet]. Available from: https://www.jtcr-jatec.org/traumabank/dataroom/data/JTDB2017e.pdf.
- 318 18. Sewalt CA, Wiegers EJA, Venema E, Lecky FE, Schuit SCE, Den Hartog D, et al. The volume-
- 319 outcome relationship in severely injured patients: a systematic review and meta-analysis. J Trauma
- **320** Acute Care Surg. 2018;85: 810-819.
- 321 19. Guly HR, Leighton G, Woodford M, Bouamra O, Lecky F; Trauma Audit and Research
- 322 Network. The effect of working hours on outcome from major trauma. Emerg Med J. 2006;23: 276-
- **323** 280.
- 324 20. Laupland KB, Ball CG, Kirkpatrick AW. Hospital mortality among major trauma victims
- admitted on weekends and evenings: a cohort study. J Trauma Manag Outcomes. 2009;3: 8.
- 326 21. Carr BG, Reilly PM, Schwab CW, Branas CC, Geiger J, Wiebe DJ. Weekend and night
- 327 outcomes in a statewide trauma system. Arch Surg. 2011;146: 810-817.

- 328 22. Aldridge C, Bion J, Boyal A, Chen YF, Clancy M, Evans T, et al; HiSLAC Collaborative.
- 329 Weekend specialist intensity and admission mortality in acute hospital trusts in England: a cross-
- **330** sectional study. Lancet. 2016;388: 178-186.
- 331 23. Schwartz DA, Medina M, Cotton BA, Rahbar E, Wade CE, Cohen AM, et al. Are we delivering
- two standards of care for pelvic trauma? Availability of angioembolization after hours and on
- 333 weekends increases time to therapeutic intervention. J Trauma Acute Care Surg. 2014;76: 134-139.
- 334 24. Mazahir S, Pardhan A, Rao S. Office hours vs after-hours. Do presentation times affect the rate
- of missed injuries in trauma patients? Injury. 2015;46: 610-615.
- 336 25. Hjortdahl M, Ringen AH, Naess AC, Wisborg T. Leadership is the essential non-technical skill
- in the trauma team--results of a qualitative study. Scand J Trauma Resusc Emerg Med. 2009;17: 48.
- 338 26. Ford K, Menchine M, Burner E, Arora S, Inaba K, Demetriades D, et al. Leadership and
- **339** Teamwork in Trauma and Resuscitation. West J Emerg Med. 2016;17: 549-556.
- 340 27. Hemmila MR, Cain-Nielsen AH, Jakubus JL, Mikhail JN, Dimick JB. Association of Hospital
- 341 Participation in a Regional Trauma Quality Improvement Collaborative with Patient Outcomes.
- **342** JAMA Surg. 2018;153: 747-756.

344 Supporting information captions

345 Not applicable.

Fig 1