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Abstract 20 

Background 21 

Published genetic risk scores for breast cancer (BC) so far have been based on a 22 

relatively small number of markers and are not necessarily using the full potential of large-23 

scale Genome-Wide Association Studies. This study aims to identify an efficient polygenic 24 

predictor for BC based on best available evidence and to assess its potential for personalized 25 

risk prediction and screening strategies.   26 

Methods 27 

Four different genetic risk scores (two already published and two newly developed) 28 

and their combinations (metaGRS) are compared in the subsets of two population-based 29 

biobank cohorts: the UK Biobank (UKBB, 3157 BC cases, 43,827 controls) and Estonian 30 

Biobank (EstBB, 317 prevalent and 308 incident BC cases in 32,557 women). In addition, 31 

correlations between different genetic risk scores and their associations with BC risk factors 32 

are studied in both cohorts.  33 

Results 34 

The metaGRS that combines two genetic risk scores (metaGRS2 - based on 75 and 35 

898 Single Nucleotide Polymorphisms, respectively) has the strongest association with 36 

prevalent BC status in both cohorts. One standard deviation difference in the metaGRS2 37 

corresponds to an Odds Ratio = 1.6 (95% CI 1.54 to 1.66, p = 9.7*10-135) in the UK Biobank 38 

and accounting for family history marginally attenuates the effect (Odds Ratio = 1.58, 95% 39 

CI 1.53 to 1.64, p = 9.1*10-129). In the EstBB cohort, the hazard ratio of incident BC for the 40 

women in the top 5% of the metaGRS2 compared to women in the lowest 50% is 4.2 (95% CI 41 

2.8 to 6.2, p = 8.1*10-13). The different GRSs are only moderately correlated with each other 42 
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and are associated with different known predictors of BC. The classification of genetic risk 43 

for the same individual may vary considerably depending on the chosen GRS. 44 

Conclusions 45 

We have shown that metaGRS2 that combines on the effects of more than 900 SNPs 46 

provides best predictive ability for breast cancer in two different population-based cohorts. 47 

The strength of the effect of metaGRS2 indicates that the GRS could potentially be used to 48 

develop more efficient strategies for breast cancer screening for genotyped women. 49 

Key words: Polygenic risk score, Genetic predisposition to disease, Breast cancer, Risk 50 

stratification, Personalized medicine 51 

Background  52 

Breast cancer (BC) is the most frequent cancer among women in the world, being also 53 

the second leading cause of cancer death in women in more developed regions after lung 54 

cancer1. As early diagnosis for BC could lead to successful treatment and good prognosis for 55 

recovery, it is important to develop efficient risk prediction algorithms that aid to identify 56 

high-risk individuals. Although many countries have implemented mammography screening 57 

programs, they mostly apply to all women in certain age categories without any additional 58 

stratification by other risk factors. However, the benefits of such screening programs are 59 

often debated. Existing tools to assess BC risk2–4 are often not systematically used in 60 

screening due to insufficient up-to-date risk factor’s information. Also, they only capture the 61 

heritable component either in the form of family history or using the information on rare 62 

genetic variants (BRCA1/2). 63 

It has been estimated in twin studies that the heritability of breast cancer ranges from 64 

20 to 30%5. However, only 5%–10% of BC cases have a strong inherited component 65 
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identified in a form of rare genetic variants6, indicating that in addition there should be a 66 

considerable polygenic component in the disease liability. This is also supported by the 67 

results of large genome-wide association studies (GWAS) – more than 100 genomic loci have 68 

been identified as being associated with BC in Europeans7. 69 

Based on the GWAS results, several efficient polygenic risk scores (GRS) have been 70 

developed for common complex diseases that in many cases can be used to improve the 71 

existing risk prediction algorithms8–11. It is natural to expect that a similar GRS for BC may 72 

aid risk prediction in clinical practice.  73 

So far, several studies have combined the SNPs with established genome-wide 74 

significance in a GRS for BC. Sieh et al12 used 86 SNPs and Mavaddat et al13 77 SNPs to 75 

calculate a GRS, both showing a strong effect of the score in predicting future BC cases. Few 76 

studies have also demonstrated the incremental value of adding GRS to proposed BC 77 

prediction algorithms14,15. Although several different GRSs have been proposed for BC risk 78 

prediction, no head-to-head comparison of the scores has been found in the literature. It has 79 

also not been assessed, whether the number of SNPs in the GRS could be increased. The 80 

latter was also problematic due to unavailability of summary statistics from large-scale 81 

GWASs. 82 

In 2017, the large scale GWAS by Michailidou et al7 released summary statistics for 83 

around 11.8 million genetic variants. Almost at the same time, UK Biobank released their 84 

GWAS results for BC for ~10.8 million SNPs. As evidence from studies on other common 85 

complex diseases indicates that predictive ability of a GRS can improve by adding the effects 86 

of a large number of independent SNPs in addition to the ones with established genome-wide 87 

significance, we intend to explore this approach using both summary files. 88 
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Methods 89 

Study cohorts  90 

In the present analysis, the data of 32,557 female participants of the Estonian Biobank 91 

(EstBB)16 has been used, with 317 prevalent and 308 incident cases of BC. Incident disease 92 

data was obtained from linkages with the Estonian Health Insurance Fund, Estonian Causes 93 

of Death Registry and Estonian Cancer Registry (latest update in December 2015).  94 

We have also analyzed the data of 46,984 women (incl 3,157 BC cases) of European 95 

ancestry from the UK Biobank17 who passed the main quality control and were not included 96 

in the UKBB breast cancer GWAS18.  97 

More details about cohorts can be found in the Additional File 2 and overview of the 98 

characteristics of the cohorts is given in the Additional File 1, Table S1. 99 

Statistical Methods 100 

General concept of Genetic Risk Scores (GRS) 101 

The general definition of a GRS is based on the assumption that the polygenic 102 

component of the trait (e.g. disease risk) can be approximated by a linear combination of � 103 

independent SNPs 104 

���� � � �����

�

���

 

where �� is the weight of each SNP and ��� represents the number of risk alleles for 	 
 �� 105 

SNP �	 � 1, … , �) for the � 
 �� individual, �� � 1, … , �. �. Typically the estimated (logistic) 106 

regression coefficients from a large-scale GWAS meta-analysis are used as weights �� .  107 
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Published versions of GRS can be divided to two main categories. We call a GRS 108 

multigenic, if the number of SNPs (�� is relatively small, containing only the SNPs with 109 

established genome-wide significance from a GWAS. A polygenic GRS may contain a large 110 

number of SNPs (often � � 1000) and is either based on all available independent SNPs 111 

(with pairwise correlation not exceeding a pre-defined threshold) or the ones that satisfy 112 

some p-value threshold (often ≥ 0.05).  113 

In the present paper, we will compute two multigenic and two polygenic GRSs, 114 

whereas the polygenic GRSs are developed using the PRSice software19. 115 

Computation of multigenic and polygenic GRSs and analysis of their association with 116 

prevalent breast cancer  117 

First we calculate two previously published multigenic GRSs for the EstBB data – both 118 

scores contain only those SNPs from the originally published versions that are available with 119 

acceptable imputation accuracy in the EstBB. 120 

1. The score denoted by GRS70, based on Sieh et al12 (70 SNPs out of 86 were 121 

available). 122 

2. The score GRS75, based on the 75 SNPs of the 77-SNP score by Mavaddat et al13.  123 

Next, two polygenic GRSs were developed. For both GRSs, first a set of SNPs was 124 

created so that: a) GWAS summary statistics are available for the entire set; b) the SNPs are 125 

genotyped or imputed with an acceptable quality in the EstBB; c) the SNPs are independent – 126 

the pairwise correlation does not exceed a pre-specified threshold (details on SNP selection 127 

provided in the Additional File 2). For the final selection of the p-value threshold for the 128 

SNPs to be included in the GRS, age-adjusted logistic regression model comparing 317 129 

prevalent BC cases and 2000 randomly chosen controls in the EstBB cohort was used and the 130 
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score with the smallest p-value for the GRS-phenotype association was selected. The 131 

resulting polygenic scores are: 132 

3. The score GRSONCO, based on the summary statistics of the Breast Cancer 133 

Association Consortium meta-analysis of BC with 122,977 cases and 105,974 134 

controls7.   135 

4. The score GRSUK, based on the summary statistics of the GWAS conducted on the 136 

UK Biobank data (comparing 7,480 BC cases and 329,679 controls including both 137 

men and women18). The reported linear regression coefficients were transformed into 138 

corresponding log odds ratios, following the rules described by Lloyd-Jones et al20, 139 

before using them as weights in the GRS. 140 

5. Thereafter, Pearson coefficients of correlation between different GRSs were 141 

calculated. The GRSs were combined into three different versions of metaGRS, 142 

following the ideas by Inouye et al 21: metaGRS4 as the weighted average of all four 143 

GRSs, metaGRS3 as the weighted average of three GRSs with the strongest 144 

association with incident BC and finally metaGRS2 based on top two predicting 145 

GRSs. As weights to construct metaGRS, log(odds ratios) of GRSs from training set 146 

from logistic regression model were used. 147 

Finally, the UK biobank data was used to address the attenuation of GRS’ effect while 148 

accounting for family history of BC and to study associations between BC risk factors and 149 

GRSs. While modelling in UK biobank, age at recruitment and 15 principal components are 150 

included in the model. 151 

Analysis of the GRS effects on incident BC 152 

All 7 GRSs were evaluated in the analysis of incident BC in 30240 women from the 153 

EstBB cohort who did not have an existing BC diagnosis at recruitment and were not 154 

included in the case-control set used to select the best polygenic GRSs. Cox proportional 155 
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hazard models were used to estimate the crude and adjusted Hazard Ratios (HR) 156 

corresponding to one standard deviation (SD) of the GRS. To properly account for left-157 

truncation in the data, age of the participant was used as timescale in the analyses. To assess 158 

the incremental value of GRSs when added to other known risk factors, the models were 159 

additionally adjusted for the absolute risk estimates from the NCI Breast Cancer assessment 160 

tool2,22, based on age, race, age at menarche and age at first live birth of the participant. Other 161 

possible risk factors such as number of biopsies were set as unknown. Harrell’s c-statistic to 162 

characterize the discriminative ability of each GRS and their incremental value compared to 163 

NCI’s Breast Cancer assessment tool absolute risk estimates alone were computed. Hazard 164 

ratios for GRS top quintile and top 5% percentile compared to average and low GRS 165 

categories were reported. Cumulative incidence estimates were computed with Aalen-166 

Johansen estimator to account for competing risk.  167 

Finally, associations between GRSs and variables related to female’s reproductive 168 

health and BC risk factors are explored using linear, logistic or Cox regression models 169 

depending on the type of dependent variable in both EstBB and UKBB cohorts (more details 170 

in the Additional File 2).  171 

Results 172 

GRSs association with prevalent breast cancer 173 

Both GRS70 and GRS75 were significantly associated with prevalent BC status in the 174 

case-control subset of the EstBB cohort, with corresponding Odds Ratio(OR) estimates per 175 

one SD of the GRS being 1.27 (95% CI 1.13 to 1.45, p = 1.4*10-4) and 1.38 (95% CI 1.22 to 176 

1.57, p = 5.3*10-7), respectively. Of all polygenic GRSs, the strongest association was 177 

observed for GRSONCO with p-value threshold p <5* 10-4 for SNP inclusion (898 SNPs). This 178 
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resulted in OR = 1.44 (95% CI 1.27 to 1.64, p = 1*10-8) per one SD of the GRS. The best 179 

version of GRSUK included 137 SNPs that satisfied inclusion threshold p<5*10-5 and resulted 180 

in OR = 1.34 (95% CI 1.18 to 1.52, p = 5.5*10-6). Similar effect sizes for all four GRSs were 181 

observed in the UKBB cohort (Table S2). Detailed results on GRS-outcome associations in 182 

EstBB with different p-value thresholds for SNP inclusion can be seen in Additional File 2, 183 

Figure S1.  184 

Association of incident breast cancer and GRSs 185 

Out of four studied GRSs, GRSUK has the weakest and GRS75 the strongest 186 

association with incident BC (Table 1) in the EstBB, both in terms of the p-value as well as 187 

the Harrell’s c-statistic. All metaGRSs have stronger association with incident BC than 188 

original scores alone. However, when GRSONCO and GRS75 are already combined into 189 

metaGRS2, no additional gain is seen from adding GRSUK and/or GRS70 to the score. 190 

Therefore, we chose metaGRS2 for further assessment of its properties. While a predictive 191 

model capturing the effect of the NCI risk estimates resulted in the Harrell’s c-statistic of 192 

0.677, it was increased to 0.715 (by 3.8%) when also metaGRS2 was added to the model.  193 

Table 1. Analysis results for incident breast cancer in EstBB using different GRSs and 194 

metaGRSs.  195 

Score NCI GRS70 GRS75 GRSUK GRSONCO metaGRS4 metaGRS3 metaGRS2 

HR* per 1 SD 

with 95% CI 

1.7 

1.52-1.9 

1.44 

1.29-1.61 

1.59 

1.42-1.78 

1.23 

1.1-1.38 

1.52 

1.35-1.7 

1.61 

1.43-1.80 

1.65 

1.47-1.85 

1.65 

1.48-1.86 

p-value 1.4*10-20 3.2*10-10 1.1*10-15 4*10-4 1.7*10-12 4.4*10-16 1.43*10-17 7.6*10-18 
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Harrell’ s c –

statistic  
0.677 0.603 0.627 0.561 0.615 0.634 0.637 0.636 

Harrell’ s c –

statistic 

NCI+GRS  

NA 
0.701 

(∆=0.024) 

0.708 

(∆=0.031) 

0.684 

(∆=0.007) 

0.705 

(∆=0.028) 

0.715 

(∆=0.038) 

0.716 

(∆=0.039) 

0.715 

(∆=0.038) 

Legend: Harrell’s c-statistics for all versions of genetic risk scores and National Cancer 196 

Institute Breast Cancer Assessment Tool risk estimates (based on age, race, age at menarche 197 

and age at first live birth) were calculated. ∆-GRS added improvement in c-statistics 198 

compared to NCI alone. *Hazard ratio for developing breast cancer is given per 1 SD 199 

increase. CI = confidence intervals; GRS = genetic risk score; HR = Hazard ratio; NCI – 200 

National Cancer Institute Breast Cancer assessment tool estimates calculated with R package 201 

BCRA. 202 
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The score metaGRS2 and its potential for personalized breast cancer risk 203 

prediction 204 

 205 

Figure 1. Cumulative incidence of BC in metaGRS2 categories among women within age 30-206 

75 years.  207 

Legend: Cumulative incidence accounting for competing risks. Hazard ratios (HR) 208 

correspond to the comparison of several categories with the lowest quartile of metaGRS2. 209 

 210 

Women in the highest quartile of metaGRS2 distribution have 3.40 (95% CI 2.36 to 211 

4.89) times higher hazard of developing BC than women in the lowest quartile. When the top 212 
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quartile is further split into smaller percentiles (as seen on Figure 1), a strong risk gradient is 213 

seen also within this quartile. Namely, women in the top 5% of the metaGRS2 distribution 214 

have a Hazard Ratio (HR) of 4.79 (95% CI 3.02 to 7.58) for incident BC compared to women 215 

in the lowest quartile, whereas HR = 4.20 (95% CI 2.84 to 6.23) for women in the top 5% 216 

compared to all women with metaGRS2 below the median. When the highest 5% percentile is 217 

compared with the rest of the cohort (women below the 95th percentile of metaGRS2), about 218 

three times higher hazard (HR = 2.73, 95% CI 1.92 to 3.90) is found.  219 

As seen from Figure 1, the cumulative BC incidence by the age of 70 is estimated to 220 

be 12% (95% CI 7.7% to 16.3%) for women in the top 5% percentile of metaGRS2, 8.3% 221 

(95% CI 5.6% to 11.0%) for those between 85%-95% percentiles and 7.4% (95% CI 4.85% 222 

to 10.0%) for the women in 75%-85% percentiles. Cumulative BC incidence in the third, 223 

second and first quartile of the metaGRS2 distribution is estimated to be 5.8% (95% CI 4.4% 224 

to 7.3%), 3.6% (95% CI 2.4% to 4.8%) and 2.4% (95% CI 1.4% to 3.3%), respectively. No 225 

significant difference in BC hazard is seen between the two lowest quartiles (p = 0.26), with 226 

both of them having considerably lower incidence level than the cohort average (overall 227 

cumulative BC incidence estimated as 5.1% by the age of 70, 95% CI 4.5% to 5.8%).  228 
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Correlation of GRSs 229 

 230 

Figure 2. Division of Estonian Biobank women according to their genetic risk category. 231 

Legend: Women, who belong to top 5% at least with one out of the three genetic risk scores 232 

(GRSs: GRSONCO, GRSUK, or GRS75), are represented on this graph. Number of women, who 233 

belong to top 5% only with one score, two scores or all three scores are given. Percentages 234 

are given per entire cohort. 235 

The correlations between seven scores varied between 0.3 to 1 (see Figure S2). While 236 

dividing individuals into 2 categories (“non-high” – GRS < 95th percent and “high” – GRS in 237 
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top 5%) based on three GRSs (GRSUK, GRSONCO or GRS75), 87.7% (28547) of women were 238 

assigned to non-high category with all three scores. However, 12.4% (4010) of women 239 

belong to high category with at least one GRS. 0.33% (109) of women belonged to top 5% 240 

with all three scores compared to ~10% (3240) of the women, who belonged into high 241 

category only with one score (Figure 2).  242 

Associations of GRSs and other genetic and non-genetic predictors of 243 

breast cancer 244 

Both family history as well as GRSs were strongly associated with BC status in 245 

UKBB, while the effects of GRSs were attenuated by less than 1% while adjusting for family 246 

history (Additional File 1, Table S2). Known BC risk factors were only weakly associated 247 

with in both UKBB and EstBB cohorts (Additional File 1, Table S3-S4). BMI and waist 248 

circumference were negatively associated with GRSUK in both EstBB and UKBB, the 249 

association in EstBB was stronger for women under 50 years of age. Smoking status was 250 

positively associated with all GRSs except GRSUK only in EstBB data. Age at menopause 251 

was associated with some GRSs in both cohorts but the effects were in opposite direction. No 252 

GRS showed association with any other type of cancer or overall mortality.  253 

Discussion 254 

We demonstrate that a metaGRS that combines a multigenic and a polygenic GRS for 255 

breast cancer, metaGRS2, performs better than using either one of the previously published 256 

multigenic GRSs and also better than the best polygenic GRS alone. While in average about 257 

5% of women in the EstBB cohort (as well as in the Estonian population) have been 258 

diagnosed with BC by the age of 70, women in the highest five percentiles of the 259 

metaGRS2 distribution have reached the same cumulative risk level (5%, 95% CI 2.1% to 260 

7.8%) by the age of 49, thus more than 20 years earlier. It is also notable that women with 261 
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metaGRS2 level below median reach such risk level (4.6%, 95% CI 3.6% to 5.6%) only by 262 

age of 79, thus almost 10 years later. This finding suggests that the polygenic risk estimate 263 

based on metaGRS2 could be an efficient tool for risk stratification in clinical practice, for 264 

targeted screening and prevention purposes. 265 

Given that the potential benefits of non-selective BC screening within certain age 266 

categories (compared to potential harm from over diagnosis) are under serious discussion in 267 

medical community23, personalized approaches based on individual risk levels deserve 268 

further assessment. Ideally, those should integrate available information from clinical risk 269 

factors and also genetic information. The latter could include both moderate- and high-270 

penetrance germline mutation testing, as well as polygenic risk scores. That approach is also 271 

supported by our findings, where considerable increase in c-statistics were observed while 272 

combining polygenic risk scores and NCI estimates together.  273 

However, while incorporating a GRS in clinical BC prediction, one should keep in 274 

mind that a GRS represents a mixture of different pathways, but is still not likely to capture 275 

the heritable component completely. As our findings indicate that a GRS and family history 276 

have independent predictive effects on BC risk, accounting for individual’s genetic 277 

information and family history simultaneously in risk estimation could be recommended. 278 

As depending on a GWAS that is used as a basis, different (and not necessarily highly 279 

correlated) GRSs can be produced, it is expected that those GRSs might emphasize the 280 

effects of different biological pathways. This hypothesis seems plausible in the light of 281 

several associations found between different GRSs and BC risk factors.  282 

The fact that a metaGRS performs better than alternatives, suggests that the SNPs that 283 

are included in the multigenic GRS75 are potentially representing genetic pathways with 284 

stronger effect on the disease risk and the combined score will give them a stronger weight 285 
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than the polygenic GRS alone. However, it also indicates that the SNPs included in the 286 

polygenic GRSONCO - but not in the GRS75 - have some predictive power and therefore one 287 

should not completely ignore them in an optimal GRS. 288 

It remains an open question whether it is always the best practice to use metaGRS 289 

instead of several different genetic risk scores – if one can pinpoint biological mechanisms 290 

behind different scores, more optimal preventive strategies could be chosen. Still, until we are 291 

unable to convincingly link different GRSs with specific preventive measures, targeted 292 

prevention should be based on a GRS with the best possible overall predictive ability, such as 293 

the metaGRS2 proposed here. 294 

One should also keep in mind that besides GRS there are genetic mutations such as 295 

BRCA1/2 known to be associated with very high familiar BC risk. Therefore, in practice, any 296 

genomic risk stratification should include search for high-risk genetic variants, or moderate 297 

risk variants, as well, if possible. In the high-risk mutation carriers, the clinical management 298 

could be based on the specific genetic (mendelian) variants, or if deemed useful in the future, 299 

a combination of mendelian variants and GRS levels, but it definitely needs further studies. 300 

Conclusions 301 

In summary, our results show that an efficient polygenic risk estimate enables to 302 

identify strata with more than four-fold differences in BC incidence. This definitely calls for 303 

the development of personalized screening and prevention strategies that incorporate the GRS 304 

information, having the potential to considerably increase the benefits of nation-wide 305 

screening programs and reduce the existing controversies on their efficacy. However, one 306 

should be aware of the fact that a GRS is not uniquely defined – as more research 307 

accumulates, more efficient polygenic predictors could be developed that may re-categorize 308 

some previously stratified individuals into high or low risk groups. In addition, a GRS should 309 
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ideally be combined with information on other genetic and non-genetic risk factors for best 310 

possible accuracy in risk assessment.  311 
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BC – Breast Cancer, GWAS – Genome-Wide Association Study, GRS – Genetic Risk Score, 313 

EstBB – Estonian Biobank, UKBB – UK Biobank, SNP – Single Nucleotide Polymorphism, 314 

metaGRS – combination of several genetic risk scores, number in subscript indicates the 315 

number of original GRSs included , SD – Standard Deviation, HR - Hazard Ratio, OR - 316 

Odds Ratio, NCI – National Cancer Institute Breast Cancer, CI - Confidence Intervals 317 

Declarations 318 

Ethics approval and consent to participate 319 

EstBB: All human research was approved by the Research Ethics Committee of the 320 

University of Tartu (approval 234/T-12), and conducted according to the Declaration of 321 

Helsinki. All participants provided written informed consent to participate in the Estonian 322 

Biobank. 323 

UKBB: The UK Biobank study was approved by the North West Multi-Centre Research 324 

Ethics Committee (reference for UK Biobank is 16/NW/0274). All participants provided 325 

written informed consent to participate in the UK Biobank study. 326 

Consent for publication 327 

Not applicable. 328 

Availability of data and material 329 

We do not have ethical approval to share individual level genotype and phenotype data for 330 

Estonian Biobank. The data from UK Biobank were used under licence for the current study, 331 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/448597doi: bioRxiv preprint 

https://doi.org/10.1101/448597
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

and so are not publicly available. Researchers interested in Estonian Biobank can request the 332 

access here: https://www.geenivaramu.ee/en/access-biobank and access to UK Biobank can 333 

be requested here http://www.ukbiobank.ac.uk/resources/.   334 

Competing interests 335 

The authors declare that they have no competing interests. 336 

Funding 337 

EGCUT was supported by Estonian Research Council [IUT20-60, IUT24-6, 338 

PUT1660 to T.E and PUT1665 to K.F.; European Union Horizon 2020 [692145]; European 339 

Union through the European Regional Development Fund [2014-2020.4.01.15-0012 340 

GENTRANSMED] and National Programme for Addressing Socio-Economic Challenges 341 

through R&D (RITA). 342 

Acknowledgements 343 

This research has been conducted using the UK Biobank Resource under Application 344 

Number 17085. 345 

References 346 

1.  International Agency for Research on Cancer. GLOBOCAN 2012:Estimated Cancer 347 

Incidence, Mortality and Prevalence Worldwide in 2012. 348 

http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed May 9, 2018. 349 

2.  National Cancer Institute. Breast Cancer Risk Assessment Tool. 350 

https://www.cancer.gov/bcrisktool/Default.aspx. Published 2011. Accessed May 2, 351 

2018. 352 

3.  Hippisley-Cox J, Coupland C. Development and validation of risk prediction 353 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/448597doi: bioRxiv preprint 

https://doi.org/10.1101/448597
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

algorithms to estimate future risk of common cancers in men and women: prospective 354 

cohort study. BMJ Open. 2015;5(3):e007825. doi:10.1136/bmjopen-2015-007825 355 

4.  Lee AJ, Cunningham AP, Kuchenbaecker KB, Mavaddat N, Easton DF, Antoniou AC. 356 

BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour 357 

pathology and web interface. Br J Cancer. 2014;110(2):535-545. 358 

doi:10.1038/bjc.2013.730 359 

5.  Moller S, Mucci LA, Harris JR, et al. The Heritability of Breast Cancer among Women 360 

in the Nordic Twin Study of Cancer. Cancer Epidemiol Biomarkers Prev. 361 

2016;25(1):145-150. doi:10.1158/1055-9965.EPI-15-0913 362 

6.  Apostolou P, Fostira F. Hereditary breast cancer: the era of new susceptibility genes. 363 

Biomed Res Int. 2013;2013:747318. doi:10.1155/2013/747318 364 

7.  Michailidou K, Lindström S, Dennis J, et al. Association analysis identifies 65 new 365 

breast cancer risk loci. Nature. 2017;551(7678):92-94. doi:10.1038/nature24284 366 

8.  Läll K, Mägi R, Morris A, Metspalu A, Fischer K. Personalized risk prediction for 367 

type 2 diabetes: the potential of genetic risk scores. Genet Med. 2017;19(3):322-329. 368 

doi:10.1038/gim.2016.103 369 

9.  Abraham G, Havulinna AS, Bhalala OG, et al. Genomic prediction of coronary heart 370 

disease. Eur Heart J. 2016;37(43):3267-3278. doi:10.1093/eurheartj/ehw450 371 

10.  Power RA, Steinberg S, Bjornsdottir G, et al. Polygenic risk scores for schizophrenia 372 

and bipolar disorder predict creativity. Nat Neurosci. 2015;18(7):953-955. 373 

doi:10.1038/nn.4040 374 

11.  Krapohl E, Patel H, Newhouse S, et al. Multi-polygenic score approach to trait 375 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/448597doi: bioRxiv preprint 

https://doi.org/10.1101/448597
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

prediction. Mol Psychiatry. August 2017. doi:10.1038/mp.2017.163 376 

12.  Sieh W, Rothstein JH, McGuire V, Whittemore AS. The Role of Genome Sequencing 377 

in Personalized Breast Cancer Prevention. Cancer Epidemiol Biomarkers Prev. 378 

2014;23(11):2322-2327. doi:10.1158/1055-9965.EPI-14-0559 379 

13.  Mavaddat N, Pharoah PDP, Michailidou K, et al. Prediction of breast cancer risk based 380 

on profiling with common genetic variants. J Natl Cancer Inst. 2015;107(5). 381 

doi:10.1093/jnci/djv036 382 

14.  Maas P, Barrdahl M, Joshi AD, et al. Breast Cancer Risk From Modifiable and 383 

Nonmodifiable Risk Factors Among White Women in the United States. JAMA Oncol. 384 

2016;2(10):1295. doi:10.1001/jamaoncol.2016.1025 385 

15.  Li H, Feng B, Miron A, et al. Breast cancer risk prediction using a polygenic risk score 386 

in the familial setting: a prospective study from the Breast Cancer Family Registry and 387 

kConFab. Genet Med. 2017;19(1):30-35. doi:10.1038/gim.2016.43 388 

16.  Leitsalu L, Haller T, Esko T, et al. Cohort Profile: Estonian Biobank of the Estonian 389 

Genome Center, University of Tartu. Int J Epidemiol. February 2014:dyt268-. 390 

doi:10.1093/ije/dyt268 391 

17.  Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for 392 

identifying the causes of a wide range of complex diseases of middle and old age. 393 

PLoS Med. 2015;12(3):e1001779. doi:10.1371/journal.pmed.1001779 394 

18.  Ben Neale Lab. Rapid GWAS of thousands of phenotypes for 337,000 samples in the 395 

UK Biobank — Neale lab. http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-396 

thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank. Published 2017. 397 

Accessed May 2, 2018. 398 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/448597doi: bioRxiv preprint 

https://doi.org/10.1101/448597
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

19.  Euesden J, Lewis CM, O’Reilly PF. PRSice: Polygenic Risk Score software. 399 

Bioinformatics. 2015;31(9):1466-1468. doi:10.1093/bioinformatics/btu848 400 

20.  Lloyd-Jones LR, Robinson MR, Yang J, Visscher PM. Transformation of Summary 401 

Statistics from Linear Mixed Model Association on All-or-None Traits to Odds Ratio. 402 

Genetics. 2018;208(4):1397-1408. doi:10.1534/genetics.117.300360 403 

21.  Inouye M, Abraham G, Nelson CP, et al. Genomic risk prediction of coronary artery 404 

disease in nearly 500,000 adults: implications for early screening and primary 405 

prevention. bioRxiv. January 2018:250712. doi:10.1101/250712 406 

22.  Zhang F. BCRA: Breast Cancer Risk Assessment. 2018. https://cran.r-407 

project.org/package=BCRA. 408 

23.  Autier P, Boniol M, Koechlin A, Pizot C, Boniol M. Effectiveness of and 409 

overdiagnosis from mammography screening in the Netherlands: population based 410 

study. BMJ. 2017;359:j5224. doi:10.1136/BMJ.J5224 411 

Additional files 412 

In the file “Additional file 1” are four Supplementary Tables in *.xlsx format. Tables are 413 

labeled “S. Table 1-4”. The information included is following: 414 

S. Table 1. Cohort characteristics of UK Biobank and Estonian Biobank.  415 

S. Table 2. Associations of breast cancer and standardized GRSs in the UK Biobank (with 416 

and without adjustment of family history) and in Estonian Biobank without family history. 417 

S. Table 3. Associations between GRSs and risk factors of breast cancer in Estonian Biobank. 418 

S. Table 4. Associations between GRSs and risk factors of breast cancer in UK Biobank. 419 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/448597doi: bioRxiv preprint 

https://doi.org/10.1101/448597
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

In the “Additional file 2” are Supplementary Figures and Methods in *.doc format. There are 420 

two supplementary Files and detailed information about genotyping, quality control, GWAS 421 

data management and statistical modelling for breast cancer risk factors and GRSs. The 422 

Supplementary figures are following: 423 

Figure S1. Associations of GRSs with prevalent breast cancer in EstBB data.  424 

Figure S2. Correlations between different genetic risk scores (GRSs).  425 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/448597doi: bioRxiv preprint 

https://doi.org/10.1101/448597
http://creativecommons.org/licenses/by-nc-nd/4.0/

