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Abstract 

Background: It has long been hypothesized that birth weight has a profound 

long-term impact on individual predisposition to various diseases at adulthood: a 

hypothesis commonly referred to as the fetal origins of adult diseases. However, it is 

not fully clear to what extent the fetal origins of adult diseases hypothesis holds and it 

is also not completely known what types of adult diseases are causally affected by 

birth weight. Determining the causal impact of birth weight on various adult diseases 

through traditional randomised intervention studies is a challenging task. 

Methods: Mendelian randomisation was employed and multiple genetic variants 

associated with birth weight were used as instruments to explore the relationship 

between 21 adult diseases and 38 other complex traits from 37 large-scale 

genome-wide association studies up to 340,000 individuals of European ancestry. 

Causal effects of birth weight were estimated using inverse-variance weighted 

methods. The identified causal relationships between birth weight and adult diseases 

were further validated through extensive sensitivity analyses and simulations. 

Results: Among the 21 adult diseases, three were identified to be inversely causally 

affected by birth weight with a statistical significance level passing the Bonferroni 

corrected significance threshold. The measurement unit of birth weight was defined as 

its standard deviation (i.e. 488 grams), and one unit lower birth weight was causally 

related to an increased risk of coronary artery disease (CAD), myocardial infarction 

(MI), type 2 diabetes (T2D) and BMI-adjusted T2D, with the estimated odds ratios of 

1.34 [95% confidence interval (CI) 1.17 - 1.53, p = 1.54E-5], 1.30 (95% CI 1.13 - 

1.51, p = 3.31E-4), 1.41 (95% CI 1.15 - 1.73, p = 1.11E-3) and 1.54 (95% CI 1.25 - 

1.89, p = 6.07E-5), respectively. All these identified causal associations were robust 

across various sensitivity analyses that guard against various confounding due to 

pleiotropy or maternal effects as well as inverse causation. In addition, analysis on 38 

additional complex traits found that the inverse causal association between birth 

weight and CAD/MI/T2D was not likely to be mediated by other risk factors such as 

blood-pressure related traits and adult weight.  

Conclusions: The results suggest that lower birth weight is causally associated with 

an increased risk of CAD, MI and T2D in later life, supporting the fetal origins of 
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Background 

Birth weight is a widely used surrogate measurement of intrauterine exposure and 

early life development, which has long been hypothesized to have a profound 

long-term impact on individual’s predisposition to various diseases at adulthood — a 

hypothesis commonly referred to as the fetal origins of adult diseases [1-4]. Indeed, 

early registry and other observational studies have provided strong empirical evidence 

supporting an inverse association between birth weight and the risks of several adult 

diseases [2-5]. Exemplary birth weight associated adult diseases include lung disease 

[6], coronary artery disease (CAD) and stroke [7-10], blood pressure [11, 12], type 2 

diabetes (T2D) [13, 14] and asthma [15, 16]. However, it is unclear whether the 

identified associations between birth weight and the aforementioned adult diseases 

represent truly causal relationship, or are merely spurious associations caused by 

common confounding factors that occur during prenatal or postnatal life [3, 17-20] or 

confounding due to pleiotropy and shared genetic components [21]. Common 

confounding factors such as early life environment, lifestyle, current body mass index 

(BMI), or adult weight can be associated with both birth weight and adult diseases to 

cause spurious association between the later two [22]; and these confounding factors 

are often difficult to fully control for in observational studies [2]. As a consequence, 

some identified associations between birth weight and adult diseases in early studies 

have not been validated in recent studies. For example, the inverse association 

between birth weight and adult blood pressure identified in early studies are later 

found to be a consequence of failure to adjust for adult weight or other confounders [2, 

20, 23]. As another example, potentially due to different confounding effects, different 

studies show conflicting results with regard to the association between birth weight 

and T2D: T2D risk is positively associated with birth weight in some studies but 

negatively associated with birth weight in others [24, 25]. Therefore, it is not fully 

clear to what extent the fetal origins of adult diseases hypothesis holds and it is also 

not completely clear what types of adult diseases are causally affected by birth weight 

[17, 18]. 

Understanding the long-term causal impact of birth weight on individual’s 
predisposition to various disease risks is important from a public health perspective; 
as a better understanding can pave ways for using early nutritional intervention that 
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can potentially increase birth weight to reduce disease burden in later life [26]. 
However, determining the causal impact of birth weight on various adult diseases 
through traditional randomised intervention studies is challenging, as such studies 
necessarily require long-term follow-ups, are time-consuming, expensive, and often 
times, unethical [21, 27, 28]. Therefore, it is desirable to determine the causal 
relationship between birth weight and various adult diseases through observational 
studies [29]. A powerful statistical tool to determine causal relationship and estimate 
causal effects in observational studies is Mendelian randomisation (MR). MR adapts 
the commonly used instrumental variable analysis method developed in the field of 
causal inference to settings where genetic variants are served as instrumental variables 
[30, 31]. In particular, MR employs genetic variants as proxy indicators (i.e. 
instrumental variables) for the exposure of interest (i.e. birth weight) and uses these 
genetic variants to assess the causal effect of the exposure on the outcome variable of 
interest (i.e. adult diseases) (Fig. 1) [29]. Because genetic variants are measured with 
high accuracy and capture long-term effect of the exposure, MR analysis results are 
often not susceptible to bias caused by measurement errors that are commonly 
encountered in randomised intervention studies [32]. In addition, because the two 
alleles of a genetic variant are randomly segregated during gamete formation and 
conception under the Mendel’s law and because such segregation is independent of 
many known or unknown confounders, MR analysis results are also less susceptible to 
reverse causation and confounding factors compared with other study designs [33]. As 
a result, MR has become a popular and cost-effective analysis tool for causal 
inference in observational studies, avoiding the need to record and control for all 
possible confounding factors present in the study. 

Indeed, MR studies have been recently carried out to investigate the causal effect of 
birth weight on either CAD or T2D (e.g. [34, 35]), each with a relatively small sample 
size and subsequently a small set of valid instrumental variables. Unfortunately, for 
CAD, the causality result of birth weight does not hold in follow-up sensitivity 
analyses and is not robust with respect to the choice of statistical methods [34, 35]. 
For T2D, sensitivity analyses were not carried out in the study [36], and it was thus 
unclear, for example, whether instrumental variable outliers selected in the study may 
impact the estimation of the causal effect of birth weight. Here, we perform a 
large-scale MR study to comprehensively investigate the causal effects of birth weight 
on a total of 21 diseases and 38 complex traits in adulthood. Our results are validated 
with a wide range of sensitivity analyses and simulations to ensure result robustness. 
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Materials and Methods 

We present a brief overview of the analysis procedure with technical details provided 

in Text S1-Text S4. 

Data Sources 

We first obtained summary statistics in terms of marginal effect size estimate of single 

nucleotide polymorphism (SNP) and its standard error on birth weight from the Early 

Growth Genetics (EGG) consortium study [37]. The EGG consortium study is the 

largest genome-wide association study (GWAS) to date on birth weight (a continuous 

trait) and contains association results for 16,245,523 genotyped and imputed SNPs 

based on up to 153,781 individuals collected from 35 studies (Table S1). Next, to 

examine the causal effect of birth weight on adult diseases, we collected summary 

statistics from corresponding GWASs for 21 diseases (Text S1). These diseases 

include advanced age-related macular degeneration (AMD) [38], Alzheimer's disease 

[39], Parkinson's disease [40], chronic kidney disease (CKD) [41], celiac disease [42], 

inflammatory bowel disease (IBD) [43], Crohn's disease (CD) [43], ulcerative colitis 

(UC) [43], primary biliary cirrhosis (PBC) [44], primary sclerosing cholangitis (PSC) 

[45], systemic lupus erythematosus (SLE) [46], coronary artery disease (CAD) [47], 

myocardial infarction (MI) [47], type 2 diabetes (T2D) [36], rheumatoid arthritis (RA) 

[48], type 1 diabetes (T1D) [48], hypertension [48], ankylosing spondylitis (AS) [49], 

ischaemic stroke (IS) [49] and multiple sclerosis (MS) [49]. Finally, to identify 

complex traits that may mediate the causal effect of birth weight on any identified 

adult disease, we also obtained GWAS summary statistics for 38 complex traits in 

adulthood (Text S2). These traits include educational attainment (i.e. EduYears and 

College) [50], smoking behaviors [51], early growth traits [52], blood lipid traits [53], 

glycaemic and harmonic traits [54] and blood pressures [55]. With these data we 

performed MR analyses with series of sensitivity analyses. Detailed modeling 

assumptions and methodological considerations of MR analyses are described in Text 

S3. 

Selecting instruments for Mendelian randomisation analyses 

We first selected 47 independent index genetic variants (Table 1) to serve as valid 
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instrumental variables for birth weight based on the EGG consortium study [37] using 

the clumping procedure of the plink software (version v1.90b3.38) (Text S3) [56] 

following previous work [57]. Next, for each disease in turn, we relied on the 

corresponding GWAS and extracted summary statistics on the disease for the 47 index 

SNPs of birth weight. While our main MR analyses were performed using the above 

47 SNPs as instrumental variables, to examine the robustness of the results, we also 

performed alternative MR analyses using a slightly different set of 48 SNPs. These 48 

SNPs are presented in the original GWAS of birth weight [37] and that are 

independent, un-clumped index SNPs showing strong association with birth weight (p 

< 5.00E-8) (Table S2). For these index SNPs that do not have summary statistics in 

the corresponding disease, we either replaced them with proxy SNPs that are in high 

linkage disequilibrium (LD) with the index SNPs or imputed the summary statistics 

[58] for the index SNPs —  both approaches yield similar results (Text S3). 

Afterwards, we excluded among them SNPs that show horizontal pleiotropic 

associations with the outcome to ensure the validity of MR analysis (Tables S3 and S4, 

which list effect estimates with or without excluding these potentially horizontal 

pleiotropic SNPs) [29, 59]. The number of instruments excluded varies for different 

diseases and ranges from 1 (e.g. for age-related macular degeneration) to 18 (e.g. for 

height) (Table S5). The final set of SNPs that are used as instruments differs across 

diseases and ranges from 23 (for Parkinson's disease) to 47 (for Crohn's disease) in 

our main MR analyses. 

Mendelian randomisation, sensitivity analyses and multivariable analyses 

The main statistical details for data analyses are provided in Text S3. For either set of 

the instrumental variables, for each SNP in turn we estimated the proportion of 

phenotypic variance explained (PVE) by the SNP using summary statistics and further 

computed F statistic to ensure strong instruments. We then performed MR analyses 

using both the fixed-effects version and the random-effects version of the 

inverse-variance weighted (IVW) methods [60-62] to estimate and test the causal 

effects of birth weight on each of the 21 adult diseases. Compared with the 

fixed-effects version, the random-effects version of IVW accounts for causal effect 

size heterogeneity across instruments and often yield more conservative results. 

Besides applying the random-effects version of IVW, we also employ both the Q and 
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I2 statistics to directly measure effect size heterogeneity in the data [63]. 

For each disease identified to be causally affected by birth weight in the MR 

analyses, we performed a series of sensitivity analyses to ensure results robustness. 

Specifically, we performed a median-based MR analysis to guard against outlying 

instruments [64]. We conducted a leave-one-out (LOO) cross validation analysis to 

directly examine potential instrument outliers [57]. We carried out MR-Egger 

regression to examine the assumption of directional pleiotropic effects [65, 66]. To 

examine the potential influence of maternal genetic effects, we performed additionally 

sensitivity analyses by excluding SNPs that affect birth weight through maternal 

effects [21, 67, 68]. In addition, we carried out simulations to examine the potential 

impact of maternal effects on causal effect estimations [21] (Text S4). We performed 

reverse causal inference to examine the possible reverse causality from diseases to 

birth weight. We also applied a recently developed analysis method iMAP [69] to 

jointly model all genome-wide SNPs to provide supportive evidence on the 

directionality of the causal relationship between birth weight and these identified 

diseases. 

Finally, we investigated whether any of the 38 complex traits may mediate the 

causal effect of birth weight on the identified adult diseases. To do so, we first 

performed MR analysis to examine whether birth weight causally affect any of the 38 

complex traits. In particular, for each of the 38 traits in turn, we extracted summary 

statistics from the corresponding GWAS for the 47 instrumental variables of birth 

weight. We replaced missing SNPs with proxy ones when necessary and applied the 

IVW methods following the same procedure as described above. Next, we further 

performed a multivariable MR analysis [70-72] for each pair of identified trait and 

disease to investigate whether any of these complex traits may mediate the causal 

effect of birth weight on the identified disease. The multivariable MR analysis allows 

us to estimate and test both the direct effect of birth weight on the disease and the 

indirect effect of birth weight on the disease through the complex trait [72]. 
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Table 1 Summary information for the 47 autosomal SNPs that are used as instrumental variables in the MR analysis 

Chr SNP Position Gene Allele MAF BETA SE p N PVE F 
7 rs138715366 44,246,271 YKT6-GCK T/C 0.01 -0.2412 0.0229 7.20E-26 132,343 8.38E-04 110.99 
17 rs144843919 29,037,339 SUZ12P1-CRLF3 A/G 0.04 -0.0660 0.0116 1.40E-08 121,357 2.67E-04 32.41 
3 rs900399 156,798,732 CCNL1-LEKR1 G/A 0.39 -0.0523 0.0039 2.20E-41 143,663 1.25E-03 179.80 
22 rs41311445 42,070,374 SREBF2 C/A 0.10 -0.0445 0.0066 1.60E-11 135,729 3.35E-04 45.48 
6 rs35261542 20,675,792 CDKAL1 A/C 0.27 -0.0444 0.0041 4.40E-27 143,667 8.16E-04 117.33 
2 rs7575873 23,962,647 ATAD2B G/A 0.12 -0.0384 0.0057 1.20E-11 139,425 3.25E-04 45.33 
6 rs10872678 152,039,964 ESR1 C/T 0.28 -0.0375 0.0041 6.90E-20 143,672 5.82E-04 83.66 
21 rs2229742 16,339,172 NRIP1 C/G 0.13 -0.0360 0.0060 2.20E-09 143,672 2.51E-04 36.07 
4 rs4144829 17,903,654 LCORL T/C 0.73 -0.0341 0.0042 5.30E-16 139,426 4.73E-04 65.98 
8 rs13266210 41,533,514 ANK1-NKX6-3 G/A 0.21 -0.0308 0.0045 1.30E-11 139,429 3.36E-04 46.86 
6 rs1187118 34,169,020 HMGA1 T/A 0.83 -0.0299 0.0051 3.60E-09 137,043 2.51E-04 34.41 
10 rs2497304 94,492,716 HHEX-IDE T/C 0.48 -0.0282 0.0037 2.60E-14 143,673 4.04E-04 58.07 
9 rs7854962 96,900,505 PTCH1 G/C 0.22 -0.0279 0.0046 1.90E-09 139,424 2.64E-04 36.82 
5 rs854037 57,091,783 5q11.2 G/A 0.19 -0.0268 0.0048 2.20E-08 139,429 2.24E-04 31.24 
7 rs11765649 23,479,013 IGF2BP3 C/T 0.25 -0.0267 0.0043 5.80E-10 139,428 2.76E-04 38.49 
20 rs28530618 31,275,581 C20orl203 G/A 0.51 -0.0261 0.0038 7.70E-12 138,162 3.41E-04 47.13 
15 rs7402982 99,193,269 IGF1R G/A 0.57 -0.0232 0.0039 2.30E-09 139,423 2.54E-04 35.42 
8 rs12543725 142,247,979 SLC45A4 A/G 0.41 -0.0231 0.0038 1.20E-09 139,431 2.65E-04 36.96 
7 rs798498 2,795,882 GNA12 G/T 0.31 -0.0229 0.0040 1.30E-08 139,427 2.35E-04 32.77 
3 rs2168443 46,947,087 PTH1R A/T 0.62 -0.0228 0.0039 3.50E-09 139,426 2.45E-04 34.17 
15 rs12906125 91,427,612 FES A/G 0.32 -0.0228 0.0040 1.70E-08 141,281 2.30E-04 32.50 
22 rs134594 29,468,456 KREMEN1 T/C 0.65 -0.0227 0.0040 1.00E-08 137,340 2.34E-04 32.14 
13 rs7998537 40,662,742 LINC00332 A/G 0.32 -0.0222 0.0040 3.90E-08 139,429 2.21E-04 30.82 
3 rs10935733 148,622,968 CPA3 C/T 0.59 -0.0221 0.0039 9.20E-09 139,426 2.30E-04 32.07 

12 rs2306547 26,877,885 ITPR2 T/C 0.46 -0.0211 0.0037 1.80E-08 139,432 2.33E-04 32.49 
9 rs1411424 113,892,963 LPAR1 A/G 0.52 0.0212 0.0038 2.20E-08 139,428 2.23E-04 31.10 
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6 rs9368777 33,788,637 HMGA1 C/G 0.58 0.0215 0.0038 2.20E-08 135,709 2.36E-04 32.03 
17 rs72833480 45,964,861 SP6-SP2 A/G 0.29 0.0226 0.0041 4.60E-08 139,426 2.18E-04 30.40 
20 rs6040076 10,658,882 JAG1 C/G 0.49 0.0231 0.0039 2.00E-09 139,424 2.52E-04 35.14 
16 rs28415607 19,993,015 GPR139 C/T 0.25 0.0233 0.0043 5.00E-08 143,660 2.04E-04 29.31 
20 rs6016377 39,172,728 MAFB T/C 0.43 0.0239 0.0039 9.50E-10 139,425 2.69E-04 37.51 
5 rs2946179 157,886,627 EBF1 C/T 0.73 0.0240 0.0042 1.30E-08 143,666 2.27E-04 32.62 
4 rs2131354 145,599,908 HHIP A/G 0.53 0.0259 0.0037 4.10E-12 139,431 3.51E-04 48.96 
1 rs3753639 154,986,091 ZBTB7B C/T 0.24 0.0306 0.0045 7.30E-12 138,162 3.35E-04 46.30 
17 rs113086489 7,171,356 CLDN7 T/C 0.56 0.0307 0.0038 9.10E-16 139,426 4.68E-04 65.28 
1 rs72480273 161,644,871 FCGR2B C/A 0.17 0.0313 0.0051 8.00E-10 138,380 2.72E-04 37.65 
1 rs2473248 22,536,643 WNT4-ZBTB40 C/T 0.87 0.0325 0.0057 1.00E-08 139,428 2.33E-04 32.49 
13 rs1819436 78,580,283 RNF219-AS1 C/T 0.87 0.0329 0.0057 6.30E-09 138,979 2.40E-04 33.36 
9 rs10818797 126,020,405 STRBP C/T 0.14 0.0345 0.0054 1.20E-10 139,427 2.93E-04 40.86 
10 rs740746 115,792,787 ADRB1 A/G 0.73 0.0364 0.0042 3.80E-18 143,672 5.23E-04 75.18 
10 rs79237883 104,940,946 NT5C2 C/T 0.08 0.0371 0.0067 3.50E-08 143,666 2.13E-04 30.61 
12 rs7964361 102,994,878 IGF1 A/G 0.09 0.0391 0.0067 4.70E-09 139,428 2.44E-04 34.03 
3 rs11719201 123,068,744 ADCY5 T/C 0.23 0.0463 0.0044 2.40E-26 143,670 7.70E-04 110.71 
2 rs17034876 46,484,310 EPAS1 T/C 0.70 0.0471 0.0042 2.60E-29 134,460 9.34E-04 125.70 
11 rs72851023 2,130,620 INS-IGF2 T/C 0.07 0.0476 0.0075 2.90E-10 135,776 2.97E-04 40.34 
7 rs111778406 72,957,570 MLXIPL G/A 0.07 0.0492 0.0075 5.80E-11 140,932 3.05E-04 43.00 
9 rs3780573 98,239,503 PTCH1 A/G 0.10 0.0555 0.0064 7.00E-18 134,750 5.58E-04 75.23 

These SNPs are associated with birth weight at the genome-wide significance level (p < 5.00E-08) in a meta-analysis with up to 143,677 
individuals of European ancestry. SNPs are ordered based on their effect size estimates. All the genes (fourth column) were reported to be 
associated with birth weight in previous GWASs [37, 73]. Chr: chromosome; SNP: single-nucleotide polymorphism id; Position: genome 
position in base pair; Allele: effect allele and alternative allele; MAF: minor allele frequency; BETA: SNP effect size, SE: standard error; PVE: 
proportion of variance in birth weight explained by the SNP; p, N, and F represent p value, sample size, and F statistic, respectively. 
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Results 

Mendelian randomisation identifies three adult diseases that are causally 
affected by birth weight 

We first selected a set of 47 SNPs from a large-scale GWAS for birth weight based on 

143,677 individuals to serve as instrumental variables for birth weight (Table 1 and 

Fig. S1). We examined the strength of these instrumental variables using F statistic 

based on the EGG GWAS discovery sample of birth weight following [57] (details in 

Text S3). For the 47 instrumental variables, their F statistics individually range from 

29.36 to 179.83 (Table 1) with an overall F statistic of 49.22 for all 47 instruments. 

These values are all above the usual threshold of 10, suggesting that the selected 

genetic variants have sufficiently strong effect sizes to be used as instrumental 

variables and that weak instrument bias is unlikely to occur in our analysis. 

Across 21 diseases, with either the random-effects (Fig. 2A) or the fixed-effects 

(Fig. 2B) IVW approaches (see also Table S3). Note that we displayed the causal 

effects of lower birth weight instead of birth weight in all figures and tables 

throughout the text by supplying a negative sign on the estimated birth weight effect. 

We found that lower birth weight is causally associated with increased risks for three 

diseases after Bonferroni correction (i.e. p-value threshold of 0.05/21 = 2.38E-3). 

These three diseases include coronary artery disease (CAD), myocardial infarction 

(MI) [47], and type 2 diabetes (T2D; both in terms of the original T2D status and in 

terms of T2D_BMI which represents the T2D status after adjusting for BMI) [36]. 

Both the random-effects and fixed effects IVW methods yield identical estimates for 

the causal effect sizes, but the former generates slightly wider confidence intervals 

than the later as one would expect. Because the random-effects IVW properly 

accounts for causal effect heterogeneity estimated using each of the 47 instruments 

and because we indeed identified such heterogeneity (Table S3; e.g. p values based on 

Q statistic are 7.41E-1, 1.42E-2, 1.40E-4 and 1.92E-2, and the I2 statistics are 0%, 

33.1%, 48.9% and 31.8% for CAD, MI, T2D and T2D_BMI, respectively), we choose 

to mainly present our results from the random-effects IVW analysis in the following 

main text. 

For each of the three diseases, we compute the odds ratio (OR) of the disease for 
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one unit decrease of birth weight, where the unit is defined as the standard deviation 

of birth weight, estimated to be 488 grams across 35 studies in the original 

meta-analysis (Table S1) [37]. We found that a unit lower birth weight is causally 

associated with an increased CAD risk with an estimated OR of 1.34 [95% confidence 

interval (CI) 1.17 - 1.53, p = 1.54E-5]; a unit lower birth weight is causally associated 

with an increased MI risk with an estimated OR of 1.30 (95% CI 1.13 - 1.51, p = 

3.31E-4); a unit lower birth weight is also causally associated with an increased T2D 

risk, with an estimated OR of 1.41 (95% CI 1.15 - 1.73, p = 1.11E-3) for the original 

T2D, and with an estimated OR of 1.54 (95% CI 1.25 - 1.89, p = 6.07E-5) for the 

BMI-adjusted T2D (i.e. T2D_BMI). 

Finally, consistent with the fetal origins of adult diseases hypothesis, the causal 

effects of lower birth weight on most of the diseases investigated are estimated to be 

positive [14 out of 21 (66.7%), Table S3], though most of these estimates are not 

statistically significantly different from one. In addition, the estimated causal effects 

of lower birth weight on five diseases (ischaemic stroke, multiple sclerosis, 

Parkinson’s disease, primary biliary cirrhosis, and primary sclerosing cholangitis) in 

addition to the three diseases mentioned in the above paragraph are above OR of 1.2, 

though these estimates came with large standard errors. Power simulation results 

based on parameters estimated in the MR analysis also suggest that the nonsignificant 

results for the remaining diseases may be due to a lack of statistical power (Table S3). 

The lack of power for the remain diseases suggest that a lack of association between 

birth weight and these diseases should not be over-interpreted and that larger sample 

sizes are needed to elucidate the causal effects of birth weight on these diseases. 

Mendelian randomisation results are robust with respect to instrument outliers 

and the choice of instrumental variables 

We examine the causal relationship between birth weight and the three diseases (CAD, 

MI, T2D, and T2D_BMI) in details here. We first display the causal effects of lower 

birth weight for each of the three diseases estimated using individual instrumental 

variables in Fig. 3. We also plot the SNP effect sizes on birth weight versus the effect 

sizes on these diseases in Fig. 4. One SNP, rs138715366, appears to be an outlier for 

all these traits. rs138715366 has a low minor allele frequency (MAF = 0.89%), is 

located within the intronic regions of the gene YKT6-GCK on Chr 7 and has the 
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largest effect size on birth weight among all instrument variables (= -0.24; with 95% 

CI -0.20 - -0.29; p = 7.20E-26; Fig. S1 and Table 1). In addition, another SNP, 

rs144843919, also appears to be a potential outlier for CAD. The effect size of 

rs144843919 on birth weight is estimated to -0.066 (95% CI -0.09 - -0.04, p = 

1.40E-8). However, as we will show in the next paragraph, neither SNP has 

substantial influence on the estimation of the causal effects. 

The LOO analysis results are stable and demonstrate that no single instrumental 

variable substantially influences the estimation of the casual effects of birth weight on 

CAD, MI, T2D, or T2D_BMI (Fig. S2). For example, after removing rs138715366, 

the ORs for a unit decrease of birth weight are estimated to be 1.34 (95% CI 1.20 - 

1.49, p = 9.70E-8) for CAD, 1.30 (95% CI 1.15 - 1.47, p = 1.66E-5) for MI, 1.48 

(95% CI 1.27 - 1.71, p = 2.66E-7) for T2D and 1.57 (95% CI 1.32 - 1.87, p = 3.95E-7) 

for T2D_BMI, almost identical to the ORs estimated using all these instrumental 

variables together (Fig. 2). 

Our primary results described in the previous section are based on using 47 

instrumental variables. For certain diseases, summary statistics for some of the 47 

index SNPs are unavailable. In these cases, we have used proxy SNPs that are in high 

LD using a certain correlation threshold. We found that our results are robust with 

respect to various correlation thresholds to obtain these proxy SNPs (Fig. S3). Besides 

using proxy SNPs, we imputed summary statistics for the unavailable index SNPs and 

performed analysis using all index SNPs. Results with imputed summary statistics 

remain similar (Fig. S4). We also performed analysis using only part of the 47 index 

SNPs that are available for the given disease, without using any proxy SNPs or 

imputation; we again obtained consistent results (Fig. S5). Finally, besides the 

analysis using clumped SNPs, we performed an alternative analysis by using 48 

un-clumped instrumental variables (Table S2) that are presented in the original 

meta-analysis study [37]. Again, the alternative analysis results are largely similar to 

those in our main analyses (Fig. S6 and Fig. S7). 

Various sensitivity analyses further validate the main Mendelian randomisation 
results 

We performed sensitivity analyses to complement our main MR analysis results 
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obtained by using the IVW approaches. First, to guard against the possibility that 

some instruments are invalid, we conducted a MR analysis using the weighted median 

method [64] for CAD, MI, T2D and T2D_BMI. The weighted median estimate 

approach yields qualitatively similar results as our main analysis (Text S3), suggesting 

that invalid instruments unlikely bias our main results. 

To guard against the possibility that the used instruments may display horizontal 

pleiotropy and thus bias causal effect estimation, we performed the MR-Egger 

regression [65, 66] for the four traits. The results from the MR-Egger regression 

analysis are again consistent with our main results (Text S3, see also Fig. 2). In 

addition, none of the intercepts from MR-Egger regression are significantly deviated 

from zero: they are estimated to be 0.005 (95% CI -0.010 - 0.020, p = 0.515) for CAD, 

-0.003 (95% CI -0.019 - 0.013, p = 0.756) for MI, -0.010 (95% CI -0.031 - 0.012, p = 

0.383) for T2D and -0.003 (95% CI -0.026 - 0.019, p = 0.783) for T2D_BMI, 

respectively. Moreover, funnel plots also display symmetric pattern of effect size 

variation around the point estimate (Fig. S8). Together, MR-Egger regression results 

and funnel plots suggest that horizontal pleiotropy unlikely bias our results. 

One of the main difficulties in causal inference is to distinguish causality from 

reverse causality [60]. Because of the time order and the fact that birth weight 

precedes adult diseases, the issue of reverse causation is unlikely a concern in our 

study. Nevertheless, to guard against the small possibility that our results are driven 

by reverse causality, we performed IVW analysis in the reverse direction to examine 

the causal effects of CAD, MI, T2D, or T2D_BMI on birth weight. Results show that 

there are no reverse causal associations between any of the four traits and birth weight 

as one would expect (Fig. S10). 

To complement the MR analysis, we also performed analysis using the recently 

developed iMAP method [69]. iMAP analyzes a pair of traits jointly and borrows 

information across all genome-wide SNPs to provide additional evidence regarding to 

the causal relationship between the two traits. In particular, iMAP estimates the 

proportion of SNPs associated with one trait that is also associated with the other. By 

estimating such proportions, iMAP has the potential to provide evidence supporting 

potentially directional causality between the two analyzed traits [69, 74]. Here, we 

applied iMAP to analyze birth weight and each of the four traits at a time. We 
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estimated the proportions of SNPs associated with birth weight that are also 

associated with CAD, MI, T2D, and T2D_BMI to be 0.125, 0.134, 0.452, and 0.472, 

respectively. In contrast, the proportion of SNPs associated with CAD, MI, T2D, and 

T2D_BMI that is also associated with birth weight are only 0.053, 0.029, 0.211, and 

0.130, respectively. The asymmetrical probabilities estimated from iMAP suggest that 

SNPs associated with the birth weight are also more likely associated with the disease 

than the other way around. Therefore, iMAP provides additional genome-wide 

evidence supporting the causal effects of birth weight on the identified diseases. 

Causal effects of birth weight on the three identified diseases are not mediated 

through other complex traits 

We explored the causal pathways through which birth weight causally affect the adult 

diseases. To do so, we obtained 35 quantitative traits and 3 binary traits that may 

mediate the causal effects of birth weight onto diseases (Text S2). For each trait in 

turn, we estimated the casual effect of birth weight on the trait using all available 

instruments using IVW (Fig. S11 and Table S4). Among all examined traits, we only 

identified adult weight to be causally affected by birth weight based on the Bonferroni 

adjusted significance threshold (p < 0.05/38) in both the fixed-effects and 

random-effects IVW analyses. In particular, the causal effect of birth weight on adult 

weight is estimated to be 0.36 in the fixed-effects IVW analysis (95% CI 0.17 - 0.55, 

p = 1.77E-4) and is estimated to be 0.36 in the fixed-effects IVW analysis (95% CI 

0.12 - 0.60, p = 3.18E-3). 

The lack of significant causal effects of birth weight on most examined complex 

traits are consistent with the lack of significant causal effects of birth weight on some 

of the examined diseases described in the earlier section. For example, we found that 

birth weight is not causally associated with both systolic blood pressure (SBP) and 

diastolic blood pressure (DBP) (estimated causal effect on SBP is 0.35, 95% CI -0.10 

- 0.79, p = 0.127; estimated causal effect on DBP is 0.27, 95% CI -0.17 - 0.71, p = 

0.233) by random-effects IVW analysis. The lack of causal association between birth 

weight and blood pressure is consistent with our earlier result on a lack of detectable 

causal association between birth weight and hypertension. In addition, the lack of 

causal association between birth weight and many complex traits suggests that the 

causal effects of birth weight on CAD, MI or T2D are unlikely to be mediated by 
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blood pressures or many other complex traits, which is further confirmed by the 

following multivariable regression. 

To examine the possibility that some complex traits (e.g. adult weight, BMI, blood 

pressures, blood lipids, or hypertension) may mediate the causal effect of birth weight 

on each of the four traits (i.e. CAD, MI, T2D and T2D_BMI), we performed a 

comprehensive multivariable MR analysis for all the 38 complex traits (Text S2) [72]. 

The results provide the evidence that those complex traits are not likely to be the 

mediators of birth weight and support the conclusion that birth weight is an 

independent casual risk factor for CAD, MI, and T2D (Table S6). For example, the 

estimated direct effect for a unit lower birth weight for CAD, MI, T2D and T2D_BMI 

are 1.28 (95% CI 1.09 - 1.50, p = 4.57E-3), 1.28 (95% CI 1.07 - 1.52, p = 8.48E-3), 

1.66 (95% CI 1.17 - 2.37, p = 6.84E-3) and 1.73 (95% CI 1.19 - 2.51, p = 6.28E-3). 

The estimated indirect effect of birth weight on CAD, MI, T2D and T2D_BMI are 

1.05 (95% CI 0.85 - 1.30, p = 0.653), 1.02 (95% CI 0.84 - 1.23, p = 0.852), 0.85 (95% 

CI 0.56 - 1.28, p = 0.432) and 0.89 (95% CI 0.58 - 1.37, p = 0.606), respectively. 

Therefore, the lack of detectable indirect effect suggests that adult weight unlikely 

mediate the causal effect of birth weight on any of the three diseases. 

Special sensitivity analyses to examine the influence of maternal effects on the 
main Mendelian randomisation results 

Finally, we performed two additional sensitivity analyses to examine the influence of 

maternal effects on MR results (details available in the Text S4). First, we excluded 

among the set of 47 instruments those instruments that may potentially exhibit 

maternal effects on birth weights relying on a recent GWAS of maternal effects on 

birth weights [67]. We deleted a total of ten instruments, and with the remaining 37 

instruments, we estimated the ORs (again, after removing the potentially pleiotropic 

instruments as done above) for a unit decrease in birth weight to be 1.37 (95% CI 1.17 

- 1.61, p = 8.18E-5) for CAD, 1.31 (95% CI 1.10 - 1.55, p = 1.90E-3) for MI, 1.42 

(95% CI 1.11 - 1.80, p = 4.62E-3) for T2D, and 1.41 (95% CI 1.10 - 1.80, p = 6.35E-3) 

for T2D_BMI, respectively. The results are consistent with the main results, 

suggesting that maternal effects unlikely bias our estimates. Second, we performed 

simulations to evaluate the extent to which the maternal effects may influence the 

birth-weight causal effect estimation in MR (Fig. S12) [21]. The simulation results 
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(Fig. S13) show that the causal effects of birth weight are approximately unbiased 

when the maternal effect is in a reasonable range [37, 67] (e.g. each instrument has a 

maternal effect that explains 0.1% or 0.01% of phenotypic variance). Only when the 

maternal effect is unrealistically strong (e.g. each explains 1% or 10% of phenotypic 

variance), then, as one would expect, the causal effect estimates can be slightly biased 

upward. The approximate unbiasedness results in simulations also suggest that our 

main MR results are unlikely biased by realistic maternal effects. 
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Discussion 

A summary of our Mendelian randomisation analyses 

We have investigated the fetal origins of adult diseases hypothesis by performing a 

series of comprehensive MR analyses to examine the causal effects of birth weight on 

21 adult diseases and 38 other complex traits. Our study relies on summary statistics 

obtained from 37 GWASs with sample sizes ranging from 4,798 (for rheumatoid 

arthritis [48]) to 339,224 (for BMI [75]), thus representing one of the largest and most 

comprehensive MR analyses performed on birth weight to date. The large sample size 

used in our study allows us to fully establish an inverse causal relationship between 

birth weight and three adult diseases that include CAD, MI and T2D. These inferred 

causal relationships are robust with respect to the selection of instrumental variables 

and to the choice of statistical methods, and are carefully validated in the present 

study through various sensitive analyses. In addition, our analysis also suggests that 

the lack of causality evidence between birth weight and the other diseases may be 

partly due to a lack of statistical power resulting from relatively small sample sizes for 

the remaining diseases. Finally, we investigate the possibility that any of the analyzed 

38 complex traits may mediate the causal effects of birth weight on CAD, MI or T2D. 

Overall, our study provides important causality evidence supporting the fetal origins 

hypothesis for three adult diseases and suggests that increasing sample size is likely 

needed to reveal causal effects of birth weight for the other disorders. 

Comparison of our findings with those in previous studies 

Our causality results are consistent with some of the previous association results 

obtained using standard logistic regressions. For example, we have estimated the OR 

of T2D per 488g lower of birth weight to be 1.41, which is very close to a previous 

meta-analysis estimate obtained using logistic regression where the OR of T2D per 

500g lower of birth weight is estimated to be 1.47 [13]. We have estimated the OR of 

CAD per 488g lower of birth weight to be 1.34, which is also close to that obtained 

from a birth cohort study where the OR of CAD for a 500g decrease in birth weight is 

estimated to be 1.27 [10]. Our conclusions of T2D and CAD here are also consistent 

with those previously derived by a genetic risk score regression [34] and a similar MR 

analysis [68]. In addition, our results suggest that the inverse causal associations of 
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birth weight with CAD, MI, or T2D are not likely mediated by other risk factors such 

as blood pressures or adult weight, again in line with previous studies [19]. 

Nevertheless, we also acknowledge that our results may appear to be inconsistent with 

those in [68] in terms of detecting the causal effects of birth weight on LDL, BMI and 

2-hours glucose. However, for LDL and BMI, we note that our results are based on a 

more stringent p-value significance threshold adjusted by Bonferroni correction (to 

adjust for the multiple traits examined). Our results of birth weight on LDL or BMI 

are indeed marginally significant based on the normal p-value threshold of 0.05 with 

expected effect direction (i.e. negative effect on LDL and positive effect on BMI), and 

are thus consistent with [68]. For 2-hours glucose, we suspect the difference in the 

SNP instruments used may lead to different power and thus different results. 

Importantly, compared to those previous MR studies [34, 35, 68], our study has the 

following unique advantages: (i) we employed a larger number of valid instruments 

which were obtained from larger scale GWASs; (ii) we performed a more 

comprehensive analysis by considering a larger set of adult diseases and mediators; 

(iii) we carried out much more extensive sensitivity analyses and simulations to 

guarantee the robustness of our results, including sensitivity analyses with regard to 

pleiotropy and maternal effects. 

Public health implications of our results 

Our results on the causal effects of birth weight on multiple adult diseases have 

important implications from a public health perspective. The benefits of reasonably 

high birth weight in terms of reducing the risks of adult diseases suggest that 

strategies to increase birth weight can achieve substantial health gains in later life. 

Indeed, birth weight can be modified via intervening various other modifiable risk 

factors. For example, cession or reduction in cigarette smoking or drinking during 

pregnancy can improve birth weight; improved prenatal care and nutrition can 

improve birth weight; proper supplement of folic acid, iron and multi-mineral 

vitamins can improve birth weight; educational programs and strict and regular 

prenatal care can improve birth weight; appropriately longer spacing pregnancies can 

also decrease the risk of low birth weight [76-79]. Public health policy towards 

intervening these modifiable risk factors to influence birth weight in the positive 

direction could reduce disease burden in the adulthood. Importantly, such public 
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health policy towards improving birth weight may have added more benefits in the 

developing counties than in the developed counties. For example, half of world’s low 

birth weight infants are born in South Asia [80]; nutrition-based intervention towards 

improving birth weight [26] there may help curb the unusually high risks of CAD [81], 

MI [82] and T2D [83] in these developing counties (e.g. India, Pakistan and Nepal). 

Additionally, as birth weight is often tied with social/economic status [76], some of 

these strategies intervening the modifiable risk factors to birth weight may have a 

higher impact in developing countries than in developed countries. 

Limitations of our study 

Our analysis results are not without limitations. First, we acknowledge that there was 

a small overlap between individuals used in the EGG GWAS for birth weight (Table 

S1) and individuals used in the DIAGRAM GWAS for T2D (Table S7), suggesting 

that a small set of individuals are simultaneously used to obtain SNP effect size 

estimates for both birth weight and T2D. In particular, the European Prospective 

Investigation into Cancer and Nutrition (EPIC) study was included in both these two 

aforementioned GWASs with an overlapping sample size of ~9,000 individuals (8,939 

in EGG and 9,292 in DIAGRAM). Sample overlapping is commonly encountered in 

GWAS-based MR analysis [84] and can result in model overfitting and biased causal 

effect estimates. However, the proportion of individuals in the EPIC study is relatively 

small and represents only 6.22% of the EGG study and 5.86% of the DIAGRAM 

study, suggesting that the bias resulting from overlapped samples is neglectable [84]. 

In addition, there is no overlap between samples used in EGG (for birth weight) 

(Table S1) and samples used in CARDIoGRAMplusC4D (for CAD and MI) (Table 

S8). Second, for some complex traits, we had to use GWASs with relatively small 

samples due to data availability reasons. For example, we had to use summary 

statistics for blood pressures from the Atherosclerosis Risk in Communities (ARIC) 

GWAS cohort data (Text S2) [55] with only 8,749 individuals. The ARIC sample size 

is small compared with the previous largest GWAS meta-analysis for blood pressure 

that includes ~200,000 individuals [85]. However, this largest GWAS for blood 

pressure only released summary statistics in terms of the absolute effect size estimate 

but without the effect size direction/sign, and thus cannot be used in the present study. 

Besides the largest GWAS of blood pressure, we also examined the UK Biobank data 
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[86] and obtained summary statistics available from the online MR-Base platform [87] 

for blood pressures. Unfortunately, these two data sources contain part of the samples 

in the EGG study of birth weight without releasing detailed individual overlapping 

information, and thus cannot be used in the present study. Therefore, we had to use the 

ARIC data with a relatively small sample size and we emphasize that future research 

with larger samples to investigate blood pressures will likely be beneficial. Third, like 

many other MR applications, we have assumed a linear relationship between birth 

weight and adult diseases. It is certainly possible that non-linear relationships exist; 

for example, a U-shaped association pattern between birth weight and T2D was 

observed in a case control study for low birth weight (i.e. birth weight < 2,500g vs. > 

2,500g) [13]. However, because birth weights for most individuals collected in the 

EGG study [37] are in the normal range (95% range is 2,492 - 4,405g; Table S1), a 

linearity assumption is likely a sensible choice for our study. Fourth, due to the use of 

GWAS summary statistics, we unfortunately cannot perform stratified analysis by 

gender and cannot estimate the causal effects of birth weight on adult diseases in 

males and females separately. Therefore, we are unable to validate different gender 

specific causal effects of birth weight on adult diseases that are observed in early 

studies [5]. Fifth, our study focuses only on European population, and future studies 

are needed to investigate whether our conclusions can be generalized to other human 

populations. 

Conclusion 

Our results suggest that lower birth weight is causally associated with an increased 

risk of CAD, MI and T2D in later life, supporting the fetal origins of adult diseases 

hypothesis 
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Supplementary text for method details, and supplementary Tables and Figures. 

Abbreviations 

MR Mendelian Randomisation 
CAD coronary artery disease 
T2D type 2 diabetes 
SNP single-nucleotide polymorphism 
EGG Early Growth Genetics 

GWAS genome-wide association study 
AMD age-related macular degeneration

PSC primary sclerosing cholangitis 
CKD chronic kidney disease 

CD Crohn's disease 
UC ulcerative colitis 

PBC primary biliary cirrhosis 
IBD inflammatory bowel disease 
SLE systemic lupus erythematosus 
OR odds ratio 
AS ankylosing spondylitis 
IS ischaemic stroke 

MS multiple sclerosis 
T1D type 1 diabetes 
RA rheumatoid arthritis 

LOO leave-one-out 
MI myocardial infarction 

IVW inverse-variance weighted 
PVE phenotypic variance explained 
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Legend  

Fig. 1 Graphical illustration of MR analysis. Arrows or dot lines represent the 

presence or absence of associations, respectively. The MR analysis estimates the 

causal effect of birth weight to adult disease risk in the presence of various measured 

and unmeasured confounding factors by carefully selecting SNPs that are associated 

with birth weight to serve as instrumental variables. Valid MR requires these selected 

SNPs to satisfy three conditions: selected SNPs are strongly associated with birth 

weight (condition i); selected SNPs are not associated with any known or unknown 

confounders that are associated with both birth weight and disease (condition ii); 
selected SNPs are independent of adult disease conditional on birth weight (condition 

iii). Note that the effects of instrumental variables (G) on the exposure of interest (x) 

may be indirect and mediated through mediator variables. Exemplary traits include 

BMI (body mass index), T2D (type 2 diabetes) and CAD (coronary artery disease). 

The notations in the figure are defined further in Text S4 
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Fig. 2 Causal effect estimates and 95% confidence intervals for lower birth weight on 

21 diseases based on either the random-effects inverse variance weighted (IVW) 

method (A) or the fixed-effects IVW method (B). Diseases are ordered based on their 

causal effect estimates. Estimations are carried out using both index SNPs and proxy 

SNPs. In both panels, dot size is proportional to the number of instrumental variables 

used for the given disease while dot color represents significance (p < 0.05 are 

highlighted in red). Disease names (x-axis) are further highlighted in red if the causal 

effects are significant after Bonferroni correction (p < 0.05/21) 
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Fig. 3 Causal effect estimates and 95% confidence intervals for lower birth weight on 

(A) CAD, (B) MI, (C) T2D, and (D) T2D_BMI. Estimations are carried out either 

using all SNPs (first column on x-axis) or using individual SNPs (the remaining 

columns on x-axis) based on Equation (14) in Text S3. Dot size is proportional to the 

effect size estimates while dot color represents significance (p < 0.05 are highlighted 

in red). SNP that yields the largest causal effect estimate is also highlighted in red 

(x-axis) 
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Fig. 4 Relationship between the effect size estimates on lower birth weight (x-axis) 

and the effect size estimates on diseases (y-axis) for the 47 SNPs that serve as 

instrumental variables. Examined diseases include (A) CAD, (B) MI, (C) T2D, and 

(D) T2D_BMI. 95% confidence intervals for the estimated SNP effect sizes on disease 

are shown as vertical black lines, while the 95% confidence intervals for the estimated 

SNP effect sizes on birth weight are shown as horizontal black lines. The vertical and 

horizontal red dotted lines represent zero effects. The slope of fitted lines represents 

the estimated the casual effects of birth weight on the corresponding disease obtained 

using either the IVW methods (red solid lines) or the MR-Egger regression (blue 

dotted lines). SNP outlier rs13875366 (chocolate dot) was not included in MR-Egger 

regression to avoid outlier influence. Due to the inclusion of an intercept in the 

MR-Egger regression, the fitted lines by MR-Egger regression (blue dotted lines) do 

not necessarily pass the origin 
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