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Abstract 

Midlife obesity is a risk factor of late onset Alzheimer’s disease (LOAD) but why this 

is the case remains unknown. As systemic inflammation is involved in both 

conditions, one possibility is that obesity-related neuroinflammation may contribute to 

the development of LOAD. Neuroinflammation is closely linked to white matter myelin 

loss, and this can be measured in vivo with quantitative magnetization transfer (qMT) 

imaging. Here, we investigated whether differences in obesity measures, i.e., in 

Waist Hip Ratio (WHR), abdominal visceral and subcutaneous fat volume fractions 

and Body Mass Index (BMI), were associated with reductions in qMT indices of 

apparent myelin in temporal white matter pathways involved in LOAD (i.e., the fornix, 

the parahippocampal cingulum and the uncinate fasciculus compared with whole 

brain and cortico-spinal white matter) in 166 cognitively healthy individuals (38-71 

years of age). Obesity-related effects on myelin-sensitive markers were contrasted 

with differences in apparent axon density from dual-shell diffusion Neurite Orientation 

Dispersion and Density Imaging (NODDI). Differences in WHR and in visceral fat 

volume fractions were negatively correlated with differences in qMT estimates of 

apparent myelin and tissue metabolism in the fornix but not with any other 

microstructural components. These correlations were not explained by demographic 

(age, sex, education), health (hypertension, alcohol consumption, sedentary lifestyle) 

or genetic (APOE genotype, family history of dementia) risk factors of LOAD. 

Furthermore, differences in the ratio of plasma concentrations of leptin and 

adiponectin were also positively correlated with differences in C-Reactive Protein 

concentrations, and contributed significantly to the correlations between central 

obesity and myelin-sensitive metrics in the fornix. These results are consistent with 

the view that visceral fat-related chronic inflammation may damage white matter 

myelin in limbic regions, known to be vulnerable to LOAD pathology.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/440990doi: bioRxiv preprint 

https://doi.org/10.1101/440990
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   4	
  

Introduction 
 
Obesity is globally on the rise (WHO, 2018), and has become an epidemic in many 

Western countries. In the UK, two-thirds of adults are overweight or obese, defined 

by a Body Mass Index (BMI) of > 25kg/m2 or 30kg/m2 respectively. Western-style diet 

and sedentary lifestyles contribute to obesity risk and obesity-related diseases 

including metabolic syndrome, type 2 diabetes, and cardiovascular disease (Cox et 

al., 2015). Several epidemiological studies have also identified a positive association 

between midlife obesity and the incidence of late onset Alzheimer’s disease (LOAD) 

(estimated risk ratio of ~1.4) (Beydoun et al., 2008; Pedditizi et al., 2016). While the 

effects of excessive adiposity are complex and involve multiple immune, metabolic, 

and endocrine factors, it is increasingly recognised that persistent, low-grade 

inflammation may play a key role in obesity and may also contribute to the 

development of obesity-related diseases such as LOAD (Angelova and Brown, 2015; 

Bartzokis, 2011; Brown, 2009; Conde and Streit, 2006; Heneka et al., 2015; Papuc 

and Rejdak, 2017; Sochocka et al., 2018).  

Neuroinflammation can lead to white matter myelin damage (Di Penta et al., 2013; 

Pang et al., 2010; Serres et al., 2009b), that may occur independently of axonal 

injury (Bitsch et al., 2000).  It is possible to quantify apparent white matter myelin 

changes in vivo with quantitative magnetization transfer (qMT) (Ou et al., 2009; 

Schmierer et al., 2007; Sled, 2017; Weiskopf et al., 2013; Whitaker et al., 2016), an 

MRI technique that is sensitive to changes in macromolecular density. The relative 

signal fractions from free water and semisolid macromolecular constituents of tissue 

are estimated in qMT by applying off-resonance radiofrequency pulses with constant 

amplitudes that are varied between frequency offsets. This selectively saturates the 

macromolecular magnetization with subsequent exchange processes resulting in 

magnetization transfer between saturated macromolecules and free water (Sled, 

2017). In white matter, magnetization transfer is dominated by myelin (Ceckler et al., 

1992; Koenig, 1991), and is also sensitive to microglia-mediated inflammation 
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(Levesque et al., 2010; Schmierer et al., 2007; Serres et al., 2009a). The relative 

number of protons in the macromolecular pool, the macromolecular proton fraction 

(MPF), provides an index of apparent myelin content of white matter (Figure 1A). The 

rate of the magnetization transfer process kf (Sled, 2017) has been shown to be 

sensitive to acute neuroinflammation in response to typhoid vaccination (Harrison et 

al., 2015), and has been proposed to reflect metabolic efficiency of mitochondrial 

function (Giulietti et al., 2012). 

Here we applied MPF and kf to investigate the hypothesis that central obesity is 

associated with reductions in apparent myelin/tissue metabolism of brain white 

matter in 166 cognitively healthy individuals between 38 and 71 years of age from 

the Cardiff Aging and Dementia Risk Study (CARDS).  

QMT estimates of apparent white matter myelin were contrasted with MRI estimates 

of axon microstructure from multi-compartment diffusion based neurite orientation 

dispersion and density imaging (NODDI) (Zhang et al., 2012).  NODDI provides 

separate indices of apparent axon density [intra-cellular signal fraction (ICSF)], of 

neurite orientation dispersion (OD), and of tissue free water contamination [isotropic 

signal fraction (ISOSF)] (Figure 1A). Thus, the combination of qMT and NODDI 

indices allowed us to study whether obesity-related differences in white matter 

microstructure were due to changes in apparent glia myelin/metabolism and/or 

apparent axon density/orientation. 

Most imaging studies into obesity have investigated differences in BMI, an index that 

does not capture variation in body fat distributions (Adab et al., 2018). However, 

there is increasing recognition that it is not body fat per se but visceral rather than 

subcutaneous fat which leads to adverse health effects and increased risk of 

metabolic syndrome and mortality (Koster et al., 2015; Koster et al., 2010). Here, we 

therefore assessed obesity not only with BMI, but also with metrics of central obesity, 

i.e., the Waist Hip Ratio (WHR) and MRI indices of visceral fat volume fractions 

(viscVF) and subcutaneous fat volume fractions (subcVF) (Figure 1C). The examples 
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in Figure 1C demonstrate the considerable individual variation in the distribution of 

abdominal subcutaneous and visceral fat. 

As midlife obesity, notably visceral abdominal obesity, is a risk factor of LOAD, and 

LOAD pathology is known to spread from the hippocampal formation via limbic white 

matter pathways such as the fornix (Plowey and Ziskin, 2016) to the neocortex 

(Braak and Del Trecidi, 2015), we hypothesised that obesity-related changes would 

disproportionally affect limbic white and gray matter (fornix, parahippocampal 

cingulum, uncinate fasciculus, hippocampus) relative to whole brain and cortico-

spinal-motor white matter (Kullmann et al., 2015; Metzler-Baddeley et al., 2013) 

(Figure 1B).  

 

Insert Figure 1 here  

 

Mean values of all qMT and NODDI MRI indices were extracted from all regions of 

interest. Fornix, left and right parahippocampal cinguli, uncinate fasciculi, and 

corticospinal tracts were reconstructed with spherical deconvolution-based 

deterministic tractography in ExploreDTI (version 4.8.3) (Leemans et al., 2009) 

(Figure 1B). Whole brain white matter and bilateral hippocampal masks were 

segmented with FreeSurfer (version 5.3) (Fischl et al., 2002; Han and Fischl, 2007) 

(Figure 1B). The hippocampal regions included areas of the presubiculum, 

subiculum, cornu ammonis subfields 1-4, dentate gyrus, hippocampal tail and fissure 

(Iglesias et al., 2015; Iglesias et al., 2016) (Figure 1B).  

 
 

Insert Table 1: Participant information 

 

To disentangle effects of central adiposity from other health-related variables and to 

study the potential link with risk factors of LOAD, information about education, 
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hypertension, alcohol consumption, physical activity, APOE genotype and family 

history of dementia were also collected (Dommermuth and Ewing, 2018; Ricci et al., 

2017) (Table 1). Furthermore, we measured plasma concentrations of high sensitivity 

C-Reactive Protein (CRP) and interleukin-8 as markers of systemic inflammation 

(Swardfager et al. 2010) as well as of leptin and adiponectin, two adipokines that are 

involved in glucose control and the modulation of inflammatory responses 

(Arnoldussen et al., 2014; Doherty, 2011; Farr et al., 2006; Flak and Myers, 2016; 

Myers et al., 2008; Ryan et al., 2003). Leptin is known to up-regulate pro-

inflammatory cytokines, while adiponectin has anti-inflammatory properties and 

down-regulates the release and the expression of pro-inflammatory cytokines 

(Lopez-Jaramillo et al., 2014). 

Inter-individual differences in central obesity, specifically in visceral abdominal fat 

were expected to be associated with differences in MRI markers of apparent 

myelin/inflammation (MPF and kf) in limbic white matter pathways, notably the fornix 

and PHC.  We also expected obesity to be accompanied by increases in ISOSF, a 

marker of CSF partial volume that may reflect unspecific tissue loss. However, we 

did not expect obesity to reduce the density of axons (ICSF) or alter their orientation 

dispersion in white matter. The application of the microstructural metrics to the 

hippocampus should be seen as exploratory, as microstructural indices are more 

difficult to interpret in gray relative to white matter due to its more complex structure. 

For this reason, and to test our assumption that qMT and NODDI indices would 

provide separable measurements of uncorrelated tissue properties, we also explored 

their dimensionality in white and gray matter regions separately, with principal 

component analyses. 
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Methods 
 

Participants 

Over a period of three years (2014-2017), n = 211 community-dwelling individuals 

between 35 and 75 years of age were recruited for CARDS from local Cardiff 

University databases and via internet and poster advertisements. The study was 

approved by the School of Psychology Research Ethics Committee at Cardiff 

University (EC.14.09.09.3843R2) and all participants gave written informed consent 

in accordance with the Declaration of Helsinki. Exclusion criteria were a history of 

neurological disease (e.g. Multiple Sclerosis, Parkinson’s disease, Huntington’s 

disease), psychiatric disease (e.g. schizophrenia, bipolar disorder, depression 

requiring hospitalization or a current PHQ-9 score of > 15 indicating severe 

depression), moderate to severe head injury with loss of consciousness, drug or 

alcohol dependency, high risk cardio-embolic source (mitral or severe aortic stenosis, 

severe heart failure, cardiac aneurysm), known significant large-vessel disease (i.e. 

more than 50% stenosis of carotid or vertebral artery, known peripheral vascular 

disease, coronary bypass or angioplasty) and MRI contraindications (e.g. 

pacemaker, cochlear implants, metal pins, stents, screws etc.). Demographic and 

health information including information about genetic and lifestyle risk factors of 

dementia was collected for all 211 volunteers. Here we report data from n = 166 who 

also underwent MRI scanning at the Cardiff University Brain Research Imaging 

Centre (CUBRIC). Table 1 provides a summary of the demographic, health and 

genetic information available for these 166 participants.  

 

Assessment of body composition/adiposity  

Abdominal adiposity was assessed by measuring participants’ waist and hip 

circumferences to calculate WHR following the World Health Organisation’s 

recommended protocol (Organisation, 2008). Abdominal obesity was defined as a 
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WHR ≥ 0.9 for males and ≥ 0.85 for females. BMI was calculated from participants’ 

height and weight. Normal weight was defined as a BMI of 18-24.9 kg/m2, overweight 

as BMI of 25-29.9kg/m2 and obese as BMI > 30kg/m2. Abdominal and subcutaneous 

fat volume fractions were obtained from MRI segmentation as described below. 

Systolic and diastolic blood pressure (BP) was measured with a digital blood 

pressure monitor (Model UA-631; A&D Medical, Tokyo, Japan) whilst participants 

were comfortably seated with their arm supported on a pillow. The average of three 

BP readings was taken and hypertension was defined as systolic BP ≥ 140 mm Hg. 

Other cardio-vascular risk factors of diabetes mellitus, high levels of blood 

cholesterol controlled with statin medication, history of smoking and weekly alcohol 

intake were self-reported by participants in a medical history questionnaire (Metzler-

Baddeley et al., 2013). Information about participants’ physical activity over the 

preceding week was collected with the short version of the International Physical 

Activity Questionnaire (IPAQ) (Craig et al., 2003). The median number of hours of 

non-sedentary activities including walking, gardening, housework and moderate to 

vigorous activities were recorded. Participants’ intellectual function was assessed 

with the National Adult Reading Test (NART) (Nelson, 1991), cognitive impairment 

was screened for with the Mini Mental State Exam (MMSE) (Folstein et al., 1975) 

and depression with the Patient Health Questionnaire for Depression (PHQ-9) 

(Kroenke et al., 2001). All participants were cognitively healthy and scored at 

superior level of intelligence in the NART.  Eight participants scored ≥ 10 in the PHQ-

9 suggesting moderate levels of depression but no participant was severely 

depressed. 

Blood plasma analysis: Venous fasting blood samples were drawn into 9ml heparin 

coated plasma tubes after 12 hours overnight fasting and were centrifuged for 10 

minutes at 2,000xg within 60 minutes from blood collection. Plasma samples were 

transferred into 0.5 ml polypropylene microtubes and stored in a freezer at -80°C. 
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Circulating levels of high-sensitivity CRP in mg/dL were assayed using a human CRP 

Quantikine enzyme-linked immunosorbent assay (ELISA) kit (R & D Systems) and 

interleukin-8 levels in pg/mL were determined using a high sensitivity 

CXCL8/INTERLEUKIN-8 Quantikine ELISA kit (R & D Systems). Leptin 

concentrations in pg/ml were determined with the DRP300 Quantikine ELISA kit (R & 

D Systems) and adiponectin in ng/ml with the human total adiponectin/Acrp30 

Quantitkine ELISA kit (R & D Systems). Determination of interleukin-1β, interleukin-6 

and Tumor Necrosis Factor α (TNFα) levels were trialed with Quantikine ELISA kits 

but did not lead to reliable measurements consistently above the level of detection 

for each assay. All ELISA analyses were carried out in the laboratory of the School of 

Pharmacy and Pharmaceutical Sciences at Cardiff University.  

APOE genotyping: Participants provided a saliva sample using the self-collection kit 

“Oragene-DNA (OG-500) (Genotek) for DNA extraction and APOE genotyping.  

APOE genotypes ε2, ε3 and ε4 were determined by TaqMan genotyping of single 

nucleotide polymorphism (SNP) rs7412 and KASP genotyping of SNP rs429358. 

Genotyping was successful in a total of 207 participants including 165 out of the 166 

individuals that had undergone an MRI scan. The genotypic distribution of those 

successfully genotyped can be found in Table 1 and is comparable to the expected 

frequencies in the normal population (Lahiri et al., 2004). In addition, participants 

provided information about their family history (FH) of dementia, i.e. whether a first-

grade relative (parent or sibling) was affected by LOAD, vascular dementia or Lewy 

body disease with dementia.  

 

MRI data acquisition 

MRI data were acquired on a 3T MAGNETOM Prisma clinical scanner (Siemens 

Healthcare, Erlangen, Germany) equipped with a 32-channels receive-only head coil 

at CUBRIC.  

Anatomical MRI: T1-weighted anatomical images were acquired with a three-
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dimension (3D) magnetization-prepared rapid gradient-echo (MP-RAGE) sequence 

with the following parameters: 256 x 256 acquisition matrix, TR = 2300 ms, TE = 3.06 

ms, TI = 850ms, flip angle θ = 9°, 176 slices, 1mm slice thickness, FOV = 256 mm 

and acquisition time of ~ 6 min.  

High Angular Resolution Diffusion Imaging (HARDI): Diffusion data (2 x 2 x 2 mm 

voxel) were collected with a spin-echo echo-planar dual shell HARDI (Tuch et al., 

2002) sequence with diffusion encoded along 90 isotropically distributed orientations 

(Jones et al., 1999) (30 directions at b-value = 1200 s/mm2 and 60 directions at b-

value = 2400 s/mm2) and six non-diffusion weighted scans with dynamic field 

correction and the following parameters: TR = 9400ms, TE = 67ms, 80 slices, 2 mm 

slice thickness, FOV = 256 x 256 x 160 mm, GRAPPA acceleration factor = 2 and 

acquisition time of ~15 min.  

Quantitative magnetization transfer weighted imaging (qMT): An optimized 3D MT-

weighted gradient-recalled-echo sequence (Cercignani and Alexander, 2006) was 

used to obtain magnetization transfer-weighted data with the following parameters: 

TR = 32 ms, TE = 2.46 ms; Gaussian MT pulses, duration t = 12.8 ms; FA = 5°; FOV 

= 24 cm, 2.5 x 2.5 x 2.5 mm3 resolution. The following off-resonance irradiation 

frequencies (Θ) and their corresponding saturation pulse amplitude (ΔSAT) for the 11 

MT-weighted images were optimized using Cramer-Rao lower bound optimization: Θ 

= [1000 Hz, 1000 Hz, 2750 Hz, 2768 Hz, 2790 Hz, 2890 Hz, 1000 Hz, 1000 Hz, 

12060 Hz, 47180 Hz, 56360 Hz] and their corresponding ΔSAT = [332°, 333°, 628°, 

628°, 628°, 628°, 628°, 628°, 628°, 628°, 332°]. The longitudinal relaxation time, T1, 

of the system was estimated by acquiring a 3D gradient recalled echo sequence 

(GRE) volume with three different flip angles (θ = 3,7,15). Data for computing the 

static magnetic field (B0) were collected using two 3D GRE volumes with different 

echo-times (TE = 4.92 ms and 7.38 ms respectively; TR= 330ms; FOV= 240 mm; 

slice thickness 2.5 mm) (Jezzard and Balaban, 1995).  

Abdominal scans: Paired single-shot in-phase (TE = 2.34 ms) and out-phase (TE = 
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3.4 msec) gradient echo images of the abdomen were acquired at the level of the 

lumbar spine segment 4 (TR = 1910 ms, TI = 1200ms, flip angle θ = 20°, 10mm slice 

thickness). Participants were instructed to hold their breath during the brief image 

acquisition to minimise movement artefacts. 

 

MRI data processing 

The two-shell diffusion-weighted HARDI data were split and b = 1200 and 2400 

s/mm2 data were corrected separately for distortions induced by the diffusion-

weighted gradients and artifacts due to head motion with appropriate reorientation of 

the encoding vectors (Leemans and Jones, 2009) in ExploreDTI (Version 4.8.3) 

(Leemans et al., 2009). EPI-induced geometrical distortions were corrected by 

warping the diffusion-weighted image volumes to the T1 –weighted anatomical 

images which were down-sampled to a resolution of 1.5 x 1.5 x1.5 mm (Irfanoglu et 

al., 2012). After preprocessing, the Neurite Orientation Dispersion and Density 

(NODDI) model (Zhang et al., 2012) was fitted to the dual-shell HARDI data using 

fast, linear model fitting algorithms of the Accelerated Microstructure Imaging via 

Convex Optimization (AMICO) framework (Daducci et al., 2015) to obtain isotropic 

signal fraction (ISOSF), intracellular signal fraction (ICSF) and orientation dispersion 

index (ODI) maps (Figure 2).  

MT-weighted GRE volumes for each participant were co-registered to the MT-volume 

with the most contrast using a rigid body (6 degrees of freedom) registration to 

correct for inter-scan motion using Elastix (Klein et al., 2010). The 11 MT-weighted 

GRE images and T1-maps were modelled by the two pool Ramani’s pulsed MT 

approximation (Ramani et al., 2002). This approximation provided maps of the 

macromolecular proton fraction (MPF) and the forward exchange rate kf,. MPF maps 

were thresholded to an upper intensity limit of 0.3 and kf maps to an upper limit of 3 

using the FMRIB’s fslmaths imaging calculator to remove voxels with noise-only 

data.  
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All image modality maps and region of interest masks were spatially aligned to the 

T1-weighted anatomical volume as reference image with linear affine registration (12 

degrees of freedom) using FMRIB’s Linear Image Registration Tool (FLIRT). 

 

Tractography 

The RESDORE algorithm (Parker et al., 2013) was applied to identify outliers, 

followed by whole brain tractography with the damped Richardson-Lucy algorithm 

(dRL) (Dell'acqua et al., 2010) on the 60 direction, b = 2400 s/mm2 HARDI data for 

each dataset in single-subject native space using in house software (Parker, 2014) 

coded in MATLAB (the MathWorks, Natick, MA). To reconstruct fibre tracts, dRL fibre 

orientation density functions (fODFs) were estimated at the centre of each image 

voxel. Seed points were positioned at the vertices of a 2x2x2 mm grid superimposed 

over the image. The tracking algorithm interpolated local fODF estimates at each 

seed point and then propagated 0.5mm along orientations of each fODF lobe above 

a threshold on peak amplitude of 0.05. Individual streamlines were subsequently 

propagated by interpolating the fODF at their new location and propagating 0.5mm 

along the minimally subtending fODF peak. This process was repeated until the 

minimally subtending peak magnitude fell below 0.05 or the change of direction 

between successive 0.5mm steps exceeded an angle of 45°. Tracking was then 

repeated in the opposite direction from the initial seed point. Streamlines whose 

lengths were outside a range of 10mm to 500mm were discarded.  

The fornix, PHC, CST and UF pathways were reconstructed with an in-house 

automated segmentation method based on principal component analysis (PCA) of 

streamline shape (Parker et al., 2015). This procedure involves the manual 

reconstruction of a set of tracts that are then used to train a PCA model of candidate 

streamline shape and location. Twenty datasets were randomly selected as training 

data. Tracts were reconstructed by manually applying waypoint region of interest 

(ROI) gates (“AND”, “OR” and “NOT” gates following Boolean logic) to isolate specific 
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tracts from the whole brain tractography data. ROIs were placed in HARDI data 

native space on colour-coded fiber orientation maps (Pajevic & Pierpaoli, 1999) in 

ExploreDTI following previously published protocols (Metzler-Baddeley et al., 2013; 

Metzler-Baddeley et al., 2012a; Metzler-Baddeley et al., 2011; Metzler-Baddeley et 

al., 2012c). The trained PCA shape models were then applied to all datasets: 

candidate streamlines were selected from the whole volume tractography as those 

bridging the gap between estimated end points of the candidate tracts. Spurious 

streamlines were excluded by means of a shape comparison with the trained PCA 

model. All automatic tract reconstructions underwent quality control through visual 

inspection and any remaining spurious fibers that were not consistent with the tract 

anatomy were removed from the reconstruction where necessary. 

 

Whole brain white matter and hippocampal segmentation 

Whole brain white matter, left and right whole hippocampus masks were 

automatically segmented from T1- weighted images with the Freesurfer image 

analysis suite (version 5.3), which is documented online 

(https://surfer.nmr.mgh.harvard.edu/). Whole brain white matter masks were thresh-

holded to exclude ventricle CSF spaces from the mask. 

 

Abdominal subcutaneous and visceral fat segmentation 

All images were visually inspected for motion artefacts and in- and out-phase 

alignment in MRIcron (Rorden et al., 2007). Pure fat signal images were created with 

the fslmaths tool from the FSL analysis library (Jenkinson et al., 2012; Smith et al., 

2004) by subtracting out-phase images of the water signal from in-phase images that 

contained signals from both fat and water (Dixon, 1984). Subcutaneous and visceral 

fat regions were then manually segmented from fat-only images in fslview. 

Subcutaneous fat was defined as fat tissue exterior to the abdominal wall (see Figure 

1c). Visceral fat regions were isolated by removing subcutaneous fat, muscle tissue 
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(left and right psoas muscles; left and right internal and external oblique muscles; left 

and right transversus abdominis muscles; left and right rectus abdominus muscles), 

and the spinal disc from the images (Figure 1c).  Subcutaneous and visceral masks 

were thresholded with an intensity of 2 to ensure that only fat tissue was included in 

the masks. Finally, subcutaneous and visceral fat volume fractions were obtained by 

dividing subcutaneous and visceral fat volumes by the total abdominal fat volume. 

 

Statistical analyses 

Statistical analyses were conducted in SPSS version 24 (IBM, 2011) and the 

PROCESS computational tool for mediation analysis (Hayes, 2012). All data were 

inspected for assumptions of normal distribution and variance heterogeneity. Plasma 

adipokines, CRP and IL-6 were log-transformed to correct for skew. Multiple-

comparisons-related Type 1 errors were corrected with a 5% False Discovery Rate 

(FDR) using Benjamini-Hochberg adjusted p-values. All p-values were two-tailed. 

Partial Eta2 (ηp2) and correlation coefficients are reported as indices of effect sizes.  

Exploratory Principal Component Analysis (PCA) was used for the purpose of 

assessing data dimensionality and of reducing data complexity. A PCA procedure 

with orthogonal Varimax rotation of the component matrix that used the Kaiser 

criterion of including all components with an eigenvalue of >1(IBM, 2011) was 

employed. Cattell’s scree plot (Cattell, 1952) and component loadings were 

inspected with regard to their interpretability. Loadings that exceed a value of 0.5 

were considered as significant. 

Omnibus multivariate regression analysis was conducted to test for the relationships 

between the four body composition/adiposity metrics and demographic variables 

(age, sex, years of education), health-related variables (alcohol consumption, blood 

pressure, physical activity, plasma adipokines) and genetic risk of LOAD (APOE 

genotype, FH). Post-hoc group comparisons were conducted with independent t-

tests. Pearson correlations coefficients were calculated between body 
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composition/adiposity metrics and brain measurements. Post-hoc t-test and Pearson 

correlations were FDR corrected. These were followed up by partial Spearman rho 

correlations coefficients to explore the contribution of any confounding variables 

identified in the multivariate omnibus regression analysis and by mediation analyses 

to explore for the contribution of systemic inflammation markers to the observed 

brain-obesity relationships.  

 

Missing data 
 
Four participants did not complete the 90 minutes MRI scanning session due to 

claustrophobia, and qMT and abdominal MRI data are missing for these individuals. 

The abdominal scans were acquired at the end of the MR session and thirty-two 

abdominal datasets had to be excluded from the analyses due motion artefacts and 

due to participants holding their breath at different points of the breathing cycle 

during in and out-phase image acquisition, i.e. at the end of an exhalation in one 

image and at the end of an inhalation in the other. This meant that the image pairs 

were not spatially aligned and hence subcutaneous and visceral fat regions could not 

be reliably delineated. Furthermore, bloods could not be drawn or analysed for 18 

participants. For one participant APOE could not be genotyped from the saliva 

sample and two participants did not know their family history of dementia.  

 

Results 
 

Cross-correlations between obesity metrics 

Individual differences in BMI correlated positively with differences in the subcutVF 

[r(130) = 0.4, p < 0.001] and with differences in the WHR [r(166) = 0.21, P = 0.006] 

but not with differences in viscVF (p = 0.29). Differences in WHR correlated positively 

with differences in viscVF [r(130) = 0.28, p = 0.001] but not with subcVF (p = 0.7). 

There was a negative correlation between differences in viscVF and subcutVF  
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[r(130) = -0.42, p < 0.001].  

 

Multivariate regression analysis exploring the relationship between body 

composition/adiposity metrics and demographic, health and genetic variables  

Effects of demographic variables (age, sex, years of education), health-related 

variables (alcohol consumption, systolic and diastolic blood pressure, physical 

activity, plasma leptin, adiponectin, CRP, interleukin-8) and genetic risk of LOAD 

(APOE genotype, FH) on the four body composition/adiposity metrics (BMI, WHR, 

subcVF and viscVF) were tested with multivariate regression analysis. Omnibus 

effects were followed up by FDR corrected post-hoc comparisons.  

The omnibus analysis revealed significant effects of age [F(4, 84) = 3.4, p = 0.013; 

ηp2 = 0.14], sex [F(4, 84) = 9.1, p < 0.001, ηp2 = 0.3], adiponectin [F(4, 84) = 2.5, p = 

0.046, ηp2 = 0.11] and leptin [F(4, 84) = 12.2, p < 0.001, ηp2 = 0.37] on the four body 

composition/adiposity metrics.  

 

Insert Figures 2 and 3 

 

Post-hoc comparisons showed that men had higher WHR [t(164) = 5.5, p < 0.001] 

and viscVF [t(128) = 3.1, p = 0.002] than women (Figure 2a). Older individuals over 

60 had larger viscVF than younger individuals in their 40ies [t(82) = 3.24, p = 0.002] 

(Figure 2b). Leptin was positively correlated with BMI [r(148) = 0.54, p < 0.001] 

(Figure 3a) and subcutVF [r(115) = 0.46, p < 0.001] (Figure 3b), and adiponectin was 

negatively correlated with WHR [r(148) = -0.38, p < 0.001] (Figure 3c).  

 

Dimensionality of microstructural indices in white matter and hippocampal gray 

matter 

PCA explored the dimensionality of the microstructural indices in all regions of 

interest. This was done separately for white and gray matter as the two tissue types 
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differ in their microstructural organisation, i.e., white matter consists of relatively 

aligned axons and glia, whilst gray matter comprises a more complex microstructure 

of cell bodies, dendrites, synapses and glia. PCA was also employed to reduce the 

complexity of the microstructural data [40 measurements for white matter and 10 for 

the hippocampus) for subsequent correlation analyses with the body 

composition/adiposity metrics.  

Table 2 summarizes the component loadings for the extracted WM components. 

PCA resulted in five components that all exceeded an eigenvalue of 2 and explained 

together 65.4% of the data variation. The first component had high loadings of 

ISOSF and ODI, the second of kf, the third of MPF, and the fourth of ICSF in all 

regions. The fifth component had loadings from ISOSF, MPF and kf, of the fornix only. 

PCA of microstructural metrics from left and right hippocampi extracted four 

components that accounted for 75% of the data. These components were: 1st ODI 

and MPF, 2nd ISOSF, 3rd ICSF, and 4th kf from left and right hippocampi (Table 3). 

 

Correlations between body composition/adiposity metrics and white and gray matter 

microstructure 

Pearson correlation coefficients were calculated between BMI, WHR, subcVF, and 

viscVF and the following brain components: WM ODI/ISOSF, WM ICSF, WM MPF, 

WM kf, hippocampal ODI/MPF, hippocampal ISOSF, hippocampal ICSF and 

hippocampal kf. As fornix was a separate component in the PCA with high loadings 

from fornix MPF, kf, and ISOSF, these variables were also included in the analyses. 

WHR was positively associated with fornix ISOSF [r(166) = 0.29, p < 0.001] and the 

hippocampal ISOSF component [r(158) = 0.29, p < 0.001], and negatively with fornix 

MPF [r(162) = -0.3, p < 0.001] and fornix kf  [r(162) = -0.28, p < 0.001]. ViscVF 

correlated negatively with fornix MPF [r(129) = -0.3, p = 0.001 and fornix kf  [r(129) = -

0.33, p < 0.001] and positively with fornix ISOSF [r(130) = 0.25, p = 0.004]. 
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Insert Figure 4  

 

Controlling for the variables that showed significant omnibus effects in the 

multivariate regression analysis above, i.e., age, sex, leptin and adiponectin with 

partial Spearman rho correlation, removed all correlations with fornix ISOSF (p = 

0.15 and 0.35) and hippocampal ISOSF (p=0.18). However, the correlations between 

WHR and fornix kf  [r(108) = -0.26, p = 0.007], between WHR and fornix MPF [r(108) 

= -0.21, p = 0.03], and between viscVF and fornix MPF [r(108) = -0.22, p = 0.02] 

remained significant (Figure 4). 

 

Mediation analysis testing for the contribution of systemic inflammation 

Mediation analyses testing for the contributing effects of individual differences in 

CRP and interleukin-8 plasma concentrations as well as in the leptin/adiponectin 

ratio (difference between log10 leptin and log10 adiponectin plasma concentrations) 

(Lopez-Jaramillo et al., 2014) to the WHR/viscVF- fornix MPF/kf relationships were 

carried out. Differences in the leptin/adiponectin ratio contributed significantly to the 

correlations between fornix MPF and WHR (t = 3.1, p = 0.002), and fornix MPF and 

viscVLF (t= 3.3, p = 0.001) but not to the correlations with fornix kf. CRP and 

interleukin-8 did not significantly contribute, but CRP was correlated positively with 

the leptin/adiponectin ratio [r(145) = 0.47, p < 0.001]. 
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Discussion 
 

Midlife obesity is a risk factor of LOAD, but the biological mechanisms underpinning 

this link remain poorly understood. Both conditions are associated with systemic 

inflammation, and it is increasingly recognised that microglia-mediated immune 

responses play an important role in LOAD (Dansokho and Heneka, 2018; Heneka et 

al., 2015; Sarlus and Heneka, 2017; Tejera and Heneka, 2016). It has therefore been 

proposed that obesity induced gut dysbiosis may trigger micro-glia mediated 

neuroinflammation that in turn may contribute to the development of LOAD pathology 

(Bartzokis, 2011; Sochocka et al., 2018; Venegas et al., 2017). If that was the case, 

one might expect adverse effects of obesity-related neuroinflammation to manifest in 

brain regions involved in LOAD. Furthermore, as the pathological processes leading 

to LOAD are likely to accumulate over many years (Jack et al., 2013), it may be 

possible to identify such brain tissue changes in cognitively healthy individuals prior 

to the onset of any memory symptoms. 

Here we tested this hypothesis by studying the impact of central obesity on MRI 

indices of white matter microstructure in limbic regions in a cohort of cognitively 

healthy individuals (38 – 71 years of age) that were well characterised with regards 

to their lifestyle and genetic risk of LOAD (Table 1). Consistent with the above 

hypothesis, we observed central obesity related reductions in myelin-sensitive 

metrics of fornix white matter that were not explained by differences in demographic, 

health or genetic risk related variables.  

More specifically, individual differences in body adiposity were measured with BMI, 

WHR, and with MRI estimates of abdominal fat distribution i.e. with visceral and 

subcutaneous fat volume fractions. In addition, tissue microstructure was assessed 

with quantitative MRI indices that allowed the separate investigation of white matter 

properties related to myelin/ tissue metabolism and axon density.  
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Correlation analyses revealed positive correlations between WHR and viscVF but not 

with subcutVF. In contrast, BMI correlated positively with subcutVF but not with 

viscVF.  Whilst BMI and WHR were positively correlated, viscVF and subcVF 

correlated negatively with each other. From this pattern of cross-correlations, it is 

clear that BMI and WHR captured quite different fat distributions in our sample. 

Indeed, negative correlations with white matter microstructure were only observed for 

WHR and viscVF, but not for BMI or subcVF. These results are consistent with 

previous findings of visceral but not subcutaneous fat being associated with an 

increased risk of metabolic syndrome and mortality (Koster et al., 2015; Koster and 

Schaap, 2015; Koster et al., 2010) as well as with reduced brain volume (Debette et 

al., 2010). 

The observed pattern of correlations also implies that the direct comparison of results 

across studies with different measures of body obesity/distribution may be difficult.  

This observation may explain discrepant findings in the literature, as some studies 

reported beneficial effects of larger BMI or waist circumference on white matter 

microstructure (Birdsill et al., 2017), whilst other studies reported adverse effects 

Kullmann et al., 2015; Ronan et al., 2016). Previously we reported significant 

correlations between BMI and fornix white matter microstructure in a smaller group of 

older adults (Metzler-Baddeley et al., 2013), a result that was not replicated here. At 

first glance these findings seem at odds with the present study. However, the first 

study investigated white matter microstructure with DTI indices of fractional 

anisotropy (FA), mean, axial, and radial diffusivity, and observed positive correlations 

between BMI and the diffusivities, but no correlation with FA. DTI indices are non-

specific metrics of white matter microstructure that are affected by changes in 

biological white matter properties as well as by their geometrical and organisational 

architecture (Beaulieu and Allen, 1994; De Santis et al., 2014).  Hence it is not 

possible to interpret BMI-related increases in fornix diffusivities in terms of 

differences in myelin or axon density. Furthermore, participants in the first study were 
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older adults with BMI levels from within the normal to overweight range (53-93 years 

of age, Meanage = 68, MeanBMI =24.9, n = 38), whilst the majority of middle-aged 

participants in this study were overweight (MeanBMI =27), with 20% falling within the 

obese category. As we proposed in the previous paper, the observed relationship 

between BMI and fornix microstructure may not relate to mechanisms underpinning 

obesity, but may rather reflect some functional properties of the fornix within 

hippocampal-hypothalamic-prefrontal food control networks (Metzler-Baddeley et al., 

2013).  

The results of the PCA for the white matter microstructural indices were consistent 

with our assumption that MPF, kf and ICSF provide estimates of different white 

matter tissue properties, i.e. of apparent myelin, inflammation-related tissue 

metabolism, and apparent axon density. ODI and ISOSF, however, were jointly 

loading on one component, suggesting that in our dataset they captured overlapping 

microstructural features. Exploratory PCA of the microstructural indices in 

hippocampal gray matter revealed separate components for kf , ICSF, and ISOSF but 

here ODI and MPF were found to load jointly on one component. This suggests that 

qMT and NODDI indices may not be directly comparable across white and gray 

matter. As they have primarily been validated in white matter (Sled, 2017; Zhang et 

al., 2012), their interpretation in gray matter remains speculative and requires 

histological validation. 

In white matter, however, we only observed negative correlations between 

WHR/viscVF and the qMT metrics of MPF and kf , but not with ICSF, suggesting that 

central obesity impairs apparent myelin glia properties rather than apparent axon 

loss. Furthermore, the correlations between WHR and viscVF and 

myelin/inflammation-sensitive metrics were specifically observed in the fornix tract 

but not for microstructural components across the other white matter regions of 

interest.  As the fornix is known to be impaired in Mild Cognitive Impairment and 

early LOAD (Metzler-Baddeley et al., 2012b; Oishi and Lyketsos, 2014; Oishi et al., 
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2012; Plowey and Ziskin, 2016; Yu et al., 2017), this pattern of results is consistent 

with the view that visceral fat may be associated with processes that have adverse 

effects on limbic areas involved in LOAD. Indeed, animal studies have shown that 

diet-induced obesity can trigger microglia-mediated inflammation in the hippocampus 

that impairs synaptic functioning and spatial memory (Hao et al., 2016). In the 

present study, we did not observe specific effects on hippocampal microstructure.  

However, for the reasons outlined above, one may expect qMT metrics to be more 

sensitive to myelin damage in white rather than in gray matter, especially as we were 

studying a sample of cognitively healthy individuals. 

Omnibus regression analysis identified effects of sex, age, leptin and adiponectin on 

the obesity measurements. Controlling for these variables reduced the size but did 

not fully remove the correlations between WHR and fornix kf , or between viscVF and 

fornix MPF, suggesting that these effects were not simply reflecting the observed age 

and sex differences in WHR and viscVF.  

In contrast, education, blood pressure, weekly alcohol consumption, physical 

exercise, APOE genotype and family history of dementia had no effect on inter-

individual differences in obesity measures in our sample. There was also no direct 

relationship between obesity measures and plasma CRP and interleukin-8 

concentrations. However, differences in the leptin/adiponectin ratio correlated 

positively with differences in CRP concentrations (Figure 3) and contributed 

significantly to the correlations between WHR/viscVF and fornix MPF. In addition, 

adiponectin, a hormone with anti-inflammatory properties (Graßmann et al., 2017)  

was negatively correlated with WHR (Figure 3). Together, this pattern of results 

suggests that an obesity-related shift in the ratio between leptin and adiponectin, due 

to increases in leptin and reductions in adiponectin (Figure 3), determines the net 

effect on inflammatory mediators such as CRP. Thus it is possible, that WHR-related 

reductions in adiponectin, by means of exacerbating neuroinflammation (Ouchi and 

Walsh, 2012), may have contributed to WHR-related myelin damage in the fornix.  
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The fact that we did not observe any direct correlations between CRP and 

interleukin-8 concentrations and WHR/viscVF or fornix microstructure also needs to 

be seen within the context that in our cohort of middle-aged healthy participants 

without clinical inflammatory conditions, plasma concentrations of inflammatory 

markers such as interleukin-1β, interleukin-6 and TNFα were generally below the 

limit of detection of the assays, and we had to employ high sensitivity ELISA kits to 

measure CRP and Interleukin 8. Thus, the lack of direct correlations with obesity and 

microstructural indices may also partly be due to the very low levels of inflammatory 

markers in our cohort of healthy individuals.  

To summarise, the present study demonstrated that central obesity, notably 

abdominal visceral fat accumulation, was associated with reductions in qMT indices 

of apparent myelin and tissue metabolism in a sample of cognitively healthy 

individuals at midlife and early older age. The precise mechanisms underpinning this 

relationship are likely to be complex. However, our results suggest that obesity-

related shifts in the leptin/adiponectin ratio, that was positively correlated with the 

systemic inflammation marker CRP, contribute to obesity related reductions of 

myelin-sensitive metrics in the fornix. Overall, these results are consistent with the 

view that obesity-related changes in immune responses, and associated white matter 

glia changes may contribute to the link between midlife obesity and LOAD.  
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Table 1: Summary of participants’ demographic, cognitive, anthropomorphic, 

physiological and genetic information 

Mean (SD) Participants (n = 166) 

Age (in years) 55.8 (8.2) 

Females 56% 

Years of education 16.5 (3.3) 

NART 116.7 (6.7) 

MMSE  29.1 (1.0) 

Positive Family History dementia  35.1% 

APOE Genotype  39.9% ε4+, 60.1% ε4- 

Central obesity (Waist Hip Ratio)  61.3% 

Overweight/Obese (BMI) 63.9% 

Subcutaneous volume fraction  0.39 (0.1) 

Visceral volume fraction  0.2 (0.06) 

Systolic Hypertension  28% 

Smokers 5.4% 

Diabetes 1.8% 

Statins 7.2% 

Alcohol units per week 7.4 (9.3) 

Physical activities* 

(Median hours per week) 

10.3 (12.1) 

Adiponectin log10 ng/ml 4.04 (0.26) 

Leptin log10 pg/ml 4.05 (0.47) 

C-Reactive Protein log10 ng/ml 3.05 (0.47) 

Interleukin-6 log10 pg/ml 0.7 (0.15) 
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Table 2 Rotated component matrix of the principal component analysis of the 

white matter microstructural indices a 

ROI WM index Components 

 ISOSF/ODI kf MPF ICSF Fornix 

Fornix  ICSF -0.201 -0.039 -0.081 0.497 0.431 

 ISOSF -0.045 0.012 -0.015 0.039 -0.93 

 ODI 0.622 -0.041 -0.027 -0.122 -0.364 

 MPF -0.114 0.041 0.458 0.049 0.782 

 kf -0.09 0.525 -0.014 0.008 0.757 

Left PHC ICSF 0.264 0.107 0.101 0.792 -0.191 

 ISOSF 0.781 -0.045 0.01 0.11 -0.042 

 ODI 0.641 -0.251 -0.091 -0.287 0.123 

 MPF 0.124 0.276 0.552 0.347 0.005 

 kf 0.09 0.814 -0.048 0.18 -0.004 

Right PHC  ICSF 0.116 0.054 0.225 0.77 -0.233 

 ISOSF 0.752 -0.008 0.09 -0.08 -0.081 

 ODI 0.621 -0.086 -0.155 -0.285 0.206 

 MPF 0.049 0.149 0.701 0.265 -0.01 

 kf 0.007 0.82 0.026 0.156 0.107 

Left UF ICSF -0.043 0.075 0.377 0.743 0.007 

 ISOSF 0.728 -0.062 0.234 -0.083 -0.029 

 ODI 0.831 -0.054 -0.066 -0.103 0.028 

 MPF 0.018 0.262 0.76 0.182 0.04 

 kf -0.154 0.814 0.178 0.108 -0.054 

Right UF ICSF -0.039 0.09 0.427 0.647 0.089 

 ISOSF 0.642 -0.021 0.226 -0.28 0.066 

 ODI 0.781 -0.03 -0.025 -0.154 0.039 

 MPF -0.027 0.204 0.772 0.086 0.002 

 kf 0.04 0.752 0.351 0.005 -0.043 

Left CST ICSF -0.222 0.02 0.031 0.66 0.085 

 ISOSF 0.742 -0.087 -0.032 0.077 -0.088 

 ODI 0.797 0.029 0.022 0.036 0.097 

 MPF -0.067 -0.045 0.83 0.132 0.042 

 kf -0.155 0.818 0.107 -0.088 0.073 

Right CST ICSF -0.271 0.049 0.147 0.56 0.079 

 ISOSF 0.716 -0.116 -0.127 0.115 -0.132 
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 ODI 0.826 0.026 -0.053 0.064 0.065 

 MPF -0.114 -0.024 0.85 0.077 -0.015 

 kf -0.167 0.802 0.169 -0.067 0.069 

Total WM ICSF -0.298 0.001 0.267 0.701 -0.333 

 ISOSF 0.752 -0.037 -0.105 -0.147 0.201 

 ODI 0.527 0.06 -0.186 0.005 -0.195 

 MPF -0.065 0.1 0.812 0.196 0.235 

 kf -0.095 0.928 0.051 0.047 0.062 

Loadings > 0.5 are highlighted in bold. Abbreviations: CST= corticospinal 

tract, ICSF = intracellular signal fraction, ISOSF = isotropic signal fraction, kf 

= forward exchange rate, MPF = macromolecular proton fraction, ODI = 

orientation dispersion index, PHC = parahippocampal cingulum, UF = 

uncinate fasciculus, WM = white matter. 

a Rotation method: Varimax with Kaiser normalization. 
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Table 3 Rotated component matrix of the principal component analysis of the 

hippocampal microstructural indicesa 

ROI GM index Components 

 ODI/MPF ISOSF ICSF kf  

Left HC ICSF 0.047 -0.058 0.941 0.066  

 ISOSF 0.104 0.877 -0.015 -0.174  

 ODI 0.834 0.106 0.005 -0.246  

 MPF -0.537 -0.378 0.236 -0.195  

 kf -0.044 -0.118 -0.02 0.859  

Right HC ICSF -0.191 -0.078 0.901 -0.033  

 ISOSF 0.153 0.846 -0.077 -0.262  

 ODI 0.863 0.025 0.005 -0.217  

 MPF -0.526 -0.437 0.218 -0.115  

 kf -0.194 -0.189 0.05 0.807  

Loadings > 0.5 are highlighted in bold. Abbreviations: GM = gray matter, HC 

= hippocampus, ICSF = intracellular signal fraction, ISOSF = isotropic signal 

fraction, kf = forward exchange rate, MPF = macromolecular proton fraction, 

ODI = orientation dispersion index.  

a Rotation method: Varimax with Kaiser normalization. 
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Figure 1 A) displays the MRI modalities and maps acquired from dual-shell high 

angular resolution imaging (HARDI) and from quantitative magnetization transfer 

(qMT) imaging. HARDI data were modelled with neurite orientation dispersion and 

density (NODDI) yielding maps of intracellular signal fraction (ICSF), isotropic signal 

fraction (ISOSF) and orientation density index (ODI). qMT based maps were the 

macromolecular proton fraction (MPF) and the forward exchange rate kf. B) Mean 

indices of the metrics were extracted from the left hippocampus (red), right 

hippocampus (blue), whole brain white matter (WBWM) mask (yellow), fornix (red) , 

parahippocampal cinguli (PHC) (yellow), uncinate fasciculi (UF) (green) and 

corticospinal tract (CST) (orange). Hippocampi and WBWW were segmented from 

T1- weighted images with FreeSurfer version 5.3 and fornix, PHC, UF and CST were 

reconstructed with damped-Richardson Lucy spherical deconvolution (dRL) based 

deterministic tractography on colour coded principal direction maps (RGBλ). C) 

Examples of abdominal images from individuals with a) larger visceral than 

subcutaneous fat volume fraction, b) larger subcutaneous than visceral fat volume 

fraction and c) low visceral and subcutaneous fat volume fractions. 

 
Figure 2 A) Men (black) showed larger Waist-to-Hip Ratios (WHR) and Visceral fat 

Volume Fractions (viscVF) than women (grey). B) Older individuals over 60 years of 

age had larger viscVF than younger individuals in their 40ies. ** FDR-corrected p-

values. 

 

Figure 3 A) Individual differences in plasma leptin concentrations were positively 

correlated with differences in the body mass index (BMI) and b) differences in 

subcutaneous fat volume fraction (subcVF). C) Differences in plasma adiponectin 

concentrations correlated negatively with the waist hip ratio (WHR) and D) 

differences in the leptin/adiponectin ratio were positively correlated with differences 

in plasma concentrations of C-Reactive Protein (CRP). 
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Figure 4 A) Fornix macromolecular proton fraction (MPF) was negatively correlated 

with Waist-to-Hip Ration (WHR) and visceral volume fraction (viscVF). B) Fornix 

forward exchange rate kf was negatively associated with WHR and viscVF. All p-

values were FDR corrected. Note that three extreme outliers in the WHR variable, 

that deviated more than three standard deviations from the regression slope, were 

removed from the scatterplot for display purposes, but their removal did not alter the 

results.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/440990doi: bioRxiv preprint 

https://doi.org/10.1101/440990
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   41	
  

 

Figure 1 
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Figure 2 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/440990doi: bioRxiv preprint 

https://doi.org/10.1101/440990
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   43	
  

 

Figure 3 
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Figure 4 
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