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Abstract 

High fructose intake is a major risk for metabolic syndrome; however, its effects seem to vary 

across individuals. To determine main factors involved in the inter-individual responses to fructose, 

we fed inbred mouse strains C57BL/6J (B6), DBA/2J (DBA) and FVB/NJ (FVB) with fructose. 

DBA mice showed the highest susceptibility to gain adiposity and glucose intolerance. Elevated 

insulin was found in DBA and FVB mice, and cholesterol levels were uniquely elevated in B6 

mice. The transcriptional profiles of liver, hypothalamus, and adipose tissues showed strain- and 

tissue-specific pathways altered by fructose, such as fatty acid and cholesterol pathways for B6 

and PPAR signaling for DBA in liver, and oxidative phosphorylation for B6 and protein processing 

for DBA in hypothalamus. Using network modeling, we predicted potential strain-specific key 

regulators of fructose response such as Fgf21 (DBA) and Lss (B6) in liver, and validated strain-

biased responses as well as the regulatory actions of Fgf21 and Lss in primary hepatocytes. Our 

findings support that fructose perturbs individualized tissue networks and pathways and associates 

with distinct features of metabolic dysfunctions across genetically diverse mice. Our results 

elucidate the molecular pathways and gene regulatory mechanisms underlying inter-individual 

variability in response to high fructose diet. 

 

 

 

  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/439562doi: bioRxiv preprint 

https://doi.org/10.1101/439562


 3 

Introduction  

One of the most fascinating questions in biomedical research is why individuals react differently 

to the same challenge or treatment. In turn, understanding the mechanisms involved in individual 

variability is crucial for the development of personalized treatments. Metabolic challenges are 

among the most powerful driving forces of biological adaptations, with long-lasting consequences 

on homeostatic control and disease stages. The differential phenotypic response to a metabolic 

perturbation across individuals can stem from differences in the host genome, epigenome, and 

their transcriptomic expression, which can shed light on the molecular mechanisms underlying 

inter-individual variability.   

High fructose consumption is increasingly recognized as a risk factor for the escalating prevalence 

of metabolic syndrome (MetS) worldwide, posing significant risks for type 2 diabetes mellitus 

(T2D), obesity, cardiovascular diseases, and non-alcoholic fatty liver disease (1-5). Previous 

evidence suggests that fructose elicits different effects on obesity phenotypes across mouse strains 

(6), but the inter-individual variability in other cardiometabolic phenotypes such as glucose and 

lipid homeostasis as well as the molecular mechanisms underlying the variability remain unclear. 

To this end, we systematically examined the metabolic parameters and tissue-specific gene 

regulation in response to fructose treatment in multiple inbred mouse strains. Here we choose to 

study C57BL/6J (B6), DBA/2J (DBA), and FVB/NJ (FVB) due to their divergence in genetic 

composition and variable metabolic responses to diets (6; 7). 

To explore the molecular underpinnings of the variable responses to fructose, we focused on 

transcriptomic studies of hypothalamus, liver, and adipose tissues based on their critical roles in 

metabolic regulation. The hypothalamus is a critical master regulator of nutrient sensing, food 
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intake, energy expenditure, body weight, and glucose metabolism (8; 9), and is also sensitive to 

fructose consumption (10). The liver is a main regulator of glucose, steroid, and lipid metabolism 

(11). White adipose tissue (WAT) is critical for energy and lipid storage, hormone secretion, and 

inflammation involved in MetS (12; 13). Here we report that fructose has differential effects on 

the transcriptome of these tissues between mouse strains, which offers insights into key genes and 

pathways underlying the individualized metabolic perturbations carried by fructose.  

 

Materials and methods 

Animals and experimental design  

Male DBA, B6 and FVB mice (Jackson Laboratory, Bar Harbor, ME) of 8-week age weighing 20-

25g were randomly assigned to 8% w/v fructose in drinking water (n=8-12/strain) and control 

group (n=8-10/strain, drinking water) for 12 weeks. We chose 8% fructose in drinking water to 

mimic the intake route and the average fructose consumption found in sugar-sweetened beverages 

(~10% w/v) consumed in humans. All mice had free access to water and a standard Chow diet 

(Lab Rodent Diet 5001, LabDiet, St Louis, MO) and were maintained under standard housing 

condition (22-24°C) with 12h light/dark cycle. Daily food and drink intake were monitored on per-

cage basis. Each mouse was examined for changes in a wide spectrum of metabolic phenotypes 

including body weight, body fat, lean mass, intraperitoneal glucose tolerance test (IPGTT), and 

serum levels of insulin, glucose, and lipids. Mice were sacrificed at the end of the fructose 

treatment (12-week), and hypothalamus, liver, and various WAT depots (mesenteric [mWAT], 

subcutaneous [scWAT], gonadal [gWAT], and intraperitoneal [iWAT]) were dissected out, 

weighed, flash frozen and stored at −70°C. 

Body weight and body mass composition 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/439562doi: bioRxiv preprint 

https://doi.org/10.1101/439562


 5 

Body weight was measured weekly and body mass composition (lean mass, fat mass) was 

determined by NMR in a Bruker mimispec series mq10 machine (Bruker BioSpin, Freemont, CA) 

every two weeks.  

IPGTT 

Prior to IPGTT at the 1st, 4th, 9th and 12th week of fructose treatment, the animals were fasted 

overnight at each time point. Each mouse was injected intraperitoneally with 20% glucose at 2g 

glucose/kg body weight. Blood glucose levels from tail vein were measured at 0, 15, 30, 90, and 

120 min after glucose injection using an AlphaTrak portable blood glucose meter (Abbott 

Laboratories, North Chicago, IL). Area under the curve (AUC) was calculated as a measure of 

glucose tolerance. 

Serum lipids and glycemic traits 

Mice were fasted overnight before sacrifice, and blood samples were collected through retro-

orbital bleeding. Serum total cholesterol (TC), high density lipoprotein cholesterol (HDL), un-

esterified cholesterol (UC), free fatty acids (FFA), triglycerides (TG), glucose, and insulin were 

measured by enzymatic colorimetric assays at UCLA GTM Mouse Transfer Core as previously 

described (10). Low density lipoprotein cholesterol (LDL) was calculated as LDL = TC - HDL - 

(TG/5). 

RNA sequencing (RNAseq) and data analysis 

Total RNA was extracted from a total of 96 hypothalamus, liver, and mWAT tissues 

(n=6/tissue/group/strain for liver and mWAT; n=4/group/strain for hypothalamus) using All-Prep 

DNA/RNA/miRNA Universal Kit (Qiagen, CA. USA). mWAT was chosen due to its stronger 
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implications in MetS than other fat depots (14). Sample size was based on previous RNAseq 

studies in which findings were validated using qPCR and gene perturbation experiments (10; 15; 

16). RNA quality was evaluated, and sequencing libraries were prepared and sequenced in pair-

end mode on an Illumina HiSeq 4000 sequencing system as previously described (10; 15; 16).  To 

identify the differentially expressed genes (DEGs), we employed a pipeline containing HISAT, 

StringTie and Ballgown (17) to align reads to mouse genome mm10 (18), assemble transcripts 

(19), and identify DEGs using a linear model test after filtering genes with low expression levels 

(FPKM<1) (20). Multiple testing was corrected using the q value approach and false discovery 

rate (FDR) < 0.05 was used to determine significant DEGs. DEGs were assessed for enrichment 

of pathways in Gene Ontology and KEGG using the DAVID tool (21; 22). Pathways at FDR < 

0.05 were considered significant. RNAseq data was deposited to Gene Expression Omnibus with 

accession number GSE123896. 

Identification of network key drivers (KDs) of fructose DEGs 

To investigate the gene-gene regulations among the fructose DEGs and to identify potential 

regulators, Bayesian networks of hypothalamus, liver, and adipose tissues were first constructed 

using an established method (23; 24) (details in Supplementary Methods). The weighted key driver 

analysis (wKDA) in Mergeomics (25) was employed to predict key regulatory genes, or KDs, of 

the fructose DEGs from each tissue and each strain. KDs are defined as the network genes whose 

network neighboring genes were significantly enriched for fructose DEGs based on a Chi-square 

like statistics followed by FDR assessment in wKDA (Supplementary Methods). Network genes 

reaching FDR < 0.05 were reported as potential KDs. The gene subnetworks of KDs were 

visualized using Cytoscape (26). 
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Validation of strain-specificity and regulatory role of predicted liver KDs using primary 

hepatocyte cell cultures 

We tested whether two predicted strain-specific liver network KDs, namely Fgf21 for DBA and 

Lss for B6 indeed show strain-specificity in fructose response. Primary hepatocytes were isolated 

from male B6 and DBA mice 12 weeks of age (n=3/strain) and subject to direct fructose treatment 

at 5mM and 45mM concentrations for 6, 12, 24 and 48 hours, with duplicates at each time 

point/concentration/mouse combination. We then isolated RNA and analyzed expression levels of 

Fgf21 and Lss using qPCR (Supplementary Methods; Supplementary Table 1). Three-way 

ANOVA was used to test for the effects of mouse strain, fructose dosage, and time points on Fgf21 

and Lss expression. Tukey post-hoc test was used to determine statistical significance in gene 

expression changes between strains within each concentration and time point.  

To validate the role of these predicted KDs in regulating gene subnetworks, we used siRNAs to 

knockdown Fgf21 or Lss. Six oligos for Fgf21 and 3 oligos for Lss (Sigma-Aldrich, St. Louis, MO; 

Supplementary Table 1) were tested, among which one for Fgf21 and two for Lss achieved >60% 

knockdown efficiency. These were used for knockdown experiments, followed by measuring the 

expression changes in ten predicted downstream network genes using qPCR (Supplementary 

Methods; Supplementary Table 1). 

Correlation between fructose DEGs and phenotypic characteristics  

To assess whether and which of the fructose DEGs were related to the metabolic phenotypes, we 

calculated the Pearson correlation between the DEGs and individual metabolic traits. Benjamini-

Hochberg was used to control FDR.  

Relevance of the fructose DEGs to human GWAS genes of cardiometabolic diseases 
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Summary statistics of human GWAS for various metabolic phenotypes related to obesity, T2D, 

and coronary artery disease (CAD) were retrieved from the summary statistics links in GWAS 

catalog (27) (https://www.ebi.ac.uk/gwas/downloads/summary-statistics; Supplementary Table 2). 

The fructose DEGs from our mouse study were assessed for enrichment of human GWAS signals 

using the marker set enrichment analysis (MSEA) in Mergeomics (25) (Supplementary Methods).  

Statistics  

For metabolic phenotypes, two-sided Student’s t test was used to determine statistical differences 

between fructose-fed and control mice within each mouse strain. For phenotypes measured at 

multiple time points, two-way ANOVA were used to determine the significance of fructose 

treatment and time points. The statistics of genomic analyses was described in the corresponding 

sections above. 

Study approval 

This study was performed in accordance with National Institutes of Health Guide for the Care and 

Use of Laboratory Animals. The experimental protocol was approved by the Chancellor's Animal 

Research Committee of the University of California at Los Angeles. 

Results 

Distinct metabolic responses to fructose consumption between mouse strains 

In response to 12-week fructose consumption, fructose-fed DBA mice gained significant body 

weight and fat mass compared to the water group, while B6 and FVB showed no differences 

(Figure 1A-E). In addition, only fructose-fed DBA mice showed a decrease in lean mass (Figure 

1F) and increases in the weights of rWAT, mWAT, and scWAT (Figure 1G) at the end of the 12-

week fructose treatment. To determine whether caloric intake accounted for these differences, we 
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measured drink and food intake weekly, and found an increasing trend for fructose intake 

accompanied by a decrease in food intake across the three strains (Supplementary Figure 1). Total 

caloric intake was similar between treatment groups (Figure 1H). The body composition 

differences were also not explained by the amount of fructose intake, as B6 (resistant) and DBA 

(susceptible) had similar fructose intake whereas FVB (resistant) had higher fructose intake 

(Supplementary Figure 1). 

As obesity is a risk factor for diabetes and could lead to insulin resistance, we analyzed the glucose 

tolerance of mice at different time points using IPGTT. Fructose consumption caused increased 

glucose AUC in DBA mice starting at the 4th week till the 12th week, indicating that fructose 

impaired glucose homeostasis in DBA. In contrast, B6 and FVB exhibited no difference between 

treatment groups (Figure 2A-C). No significant difference in serum glucose levels was observed 

between treatment groups for any of the strains (Fig. 2D), but DBA and FVB showed significantly 

elevated serum insulin levels in fructose-fed mice (Fig. 2E).  

Lastly, we assessed the influence of fructose consumption on serum lipid profiles. In contrast to 

the stronger obesity and diabetic phenotypes in fructose-fed DBA mice, lipid traits did not change 

in DBA. Fructose-fed B6 mice had increased levels of TC, UC, HDL and LDL, while fructose-fed 

FVB mice displayed elevated TG and FFA but reduced TC, LDL and UC (Figure 2F-K).  

Altogether, the above results strongly support that mice with diverse genetic backgrounds exhibit 

distinct metabolic responses to fructose. 

Distinct transcriptomic changes in response to fructose in metabolic tissues of different 

mouse strains   
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To explore the potential mechanisms underlying the differences in metabolic phenotypes among 

the mouse strains, we examined the transcriptomic alterations in tissues relevant to nutrient sensing, 

energy homeostasis, and metabolic regulation. RNAseq of tissues from B6, DBA and FVB mice 

identified 578, 760 and 246 DEGs in liver, and 157, 43 and 9 DEGs in hypothalamus, and 1043, 

884, and 427 DEGs in the adipose tissues, respectively, at a threshold of FDR < 0.05 (Figure 3A-

C; top DEGs in Table 1; full DEGs in Supplementary Table 3). Based on the DEG numbers, DBA 

liver and adipose tissues and all three tissues from B6 appear to be more sensitive to fructose 

compared to FVB.  

Comparison of the DEGs within each tissue across mouse strains revealed high strain-specificity 

(Figure 3A-C).  Overall, only 4 adipose DEGs (Snord17, Ier5, Hist1h1d, Jun), 15 liver DEGs 

(Ppa1, Sec13, Arf4, Gstm1, Abca1, Htatip2, Gstp1, Cyb5b, Abat, Samm50, Urad, Ephx1, Grhpr, 

Nudt7, Id3) and one hypothalamus DEG (Cd200) overlapped across strains (Figure 3A-C). Among 

these, only three genes (Jun from adipose tissue, Id3 from liver, and Cd200 from hypothalamus) 

showed consistent direction of changes across strains (Supplementary Table 3).  

Previous studies have revealed ChREBP and SREBP-1c as liver transcription factors that regulates 

fructose activities in liver (28-30). We examined the expression of ChREBP (gene Mlxipl), 

SREBP-1c (gene Srebf1), and their known target genes in our liver transcriptome data. Mlxip1 was 

significantly altered only in DBA while no changes in Srebf1 were found in any of the strains. 

However, many of their target genes such as Aldob, Dgat1, Dgat2, Fgf21 and Gck were 

significantly altered by fructose in liver, particularly in DBA mice (Figure 3D). Of the genes 

involved in fructose metabolism (29; 31), Khk was downregulated in B6 while upregulated in DBA 

and FVB, and Aldob was downregulated in DBA (Figure 3D).  
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Functional categorization of fructose DEGs reveals alterations of strain- and tissue-specific 

pathways 

We annotated the functions of the DEGs and identified tissue- and strain-specific biological 

pathways affected by fructose (top pathways in Table 1; full results in Supplementary Table 4). 

Within adipose tissue, B6 DEGs were mainly related to oxidation pathways, DBA DEGs were 

enriched for nucleosome assembly genes, and protein folding/processing pathways were enriched 

in FVB DEGs. For liver tissue, B6 DEGs were over-represented with oxidation, lipid and 

cholesterol metabolic pathways, DBA DEGs were related to oxidation, PPAR signaling, and fatty 

acid, lipid and cholesterol metabolic pathways, and FVB DEGs were enriched for genes involved 

in vesicle mediated transport. With respect to the hypothalamus, B6 DEGs were involved in 

oxidative phosphorylation and protein translation while DBA DEGs were related to protein 

processing.  

wKDA analysis prioritized strain- and tissue-specific key drivers (KDs) of fructose DEGs 

To explore the potential regulatory genes upstream of the fructose-induced DEGs, we used a data-

driven network analysis, wKDA, to pinpoint key regulatory genes of fructose activities in 

individual tissues/strains. This type of analysis previously identified novel regulators of various 

diseases which were subsequently validated via gene perturbation experiments (10; 32-34). Using 

wKDA, we predicted KDs of the fructose DEGs from each tissue/strain using tissue-specific gene 

regulatory networks (top KDs in Table 1; full lists in Supplementary Table 5).  

In liver, the top KDs for B6 DEGs were mostly related to sterol biosynthesis such as Dhcr7, Fdft1, 

and Lss. The top KDs for DBA included Fgf21, a target of ChREBP and a metabolic regulator for 

insulin sensitivity and obesity (6; 35), Insig2, a negative regulator of SREBP targeting lipid 

metabolism (36), Irgm, which induces inflammatory cytokine production (37),  and Arntl, a key 
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circadian rhythm gene. FVB top liver KDs included Itih3, implicated in liver glutathione 

metabolism (38), and Akr1d1, important for bile acid and steroid hormone metabolism (39). For 

hypothalamus, KDs were identified only for the B6 DEGs, including genes involved in 

extracellular matrix (e.g., Fmod, Foxc2, Bgn). For adipose tissue, DBA-specific KDs are involved 

in inflammation (Cd68, Itgis), obesity (Dio2), and cell cycle (Evi2b, Ptpn18); B6-specific KDs are 

related to branched chain amino acid (BCAA) metabolism (Aldh6a1, Echs1, Hadh, Hibadh, 

Hibch); FVB KDs are related to kynurenine pathway which is activated in obesity (40) (Ccbl2) 

and BCAA metabolism (Hibch, Cpa1). As shown in Figure 4A-C, the top KDs in each tissue 

orchestrate numerous strain-specific DEGs and there were distinct subnetworks highlighting 

unique organization of DEGs from each strain. 

Experimental validation of strain- and tissue-specific KDs 

Fmod and Bgn are both B6-specific hypothalamic KDs and were previously found to be 

hypothalamic KDs in a rat fructose study (10). Ablation of Fmod or Bgn in mice led to altered 

metabolic phenotypes and tissue-specific pathways that overlap with those affected by fructose 

(10; 41). To validate additional strain-specific KDs, we tested the B6-specific liver KD Lss and 

the DBA-specific liver KD Fgf21 by treating primary hepatocytes isolated from B6 and DBA with 

fructose. Agreeing with the strain specificity of the KD predictions based on our liver 

transcriptome data, Fgf21 was particularly responsive to fructose in DBA hepatocytes (Figure 4D) 

and Lss was more responsive to fructose in B6 hepatocytes (Figure 4E). Perturbing these predicted 

KDs using siRNAs also affected liver network genes (selected from Figure 4B) surrounding the 

respective KDs (Figure 4F-G). Altogether, these results support the importance of the network 

analysis in predicting functional aspects of gene regulation in response to fructose. 
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Relationship between DEGs and metabolic phenotypes in mouse and human  

To investigate the relationships between fructose DEGs and cardiometabolic phenotypes, we 

performed a correlation analysis to identify DEGs that show correlation with individual 

phenotypes in the three mouse strains. At an unadjusted P < 0.01, DBA had the largest numbers 

of adiposity-correlated DEGs from each of the three tissues (Figure 5A; Supplementary Table 6). 

In contrast, B6 had the largest number of adipose DEGs correlating with TC and FVB liver DEGs 

showed correlations with LDL, which are consistent with the observed cholesterol phenotypes in 

these strains. Few of the hypothalamic DEGs correlated with the metabolic phenotypes measured. 

At the stringent Benjamini-Hochberg adjusted FDR < 0.05, DBA liver DEGs involved in lipid 

metabolism and adipogenesis (St6gal1, Scd1, and Pla2g6) were correlated with adiposity (Fig. 5B-

D) and FVB liver DEGs (Aldh2, Enho, Svip) were correlated with LDL (Fig. 5E-G).  

To assess the association between the fructose DEGs with human cardiometabolic disorders 

(obesity, T2D, CAD, and lipids), we performed GWAS enrichment analysis using Mergeomics 

(42). As shown in Table 2, DBA liver and adipose DEGs showed strong enrichment for human 

GWAS signals for T2D and obesity traits; FVB DEGs from liver and adipose tissues are mostly 

related to lipid traits; B6 liver and adipose DEGs showed relevance to most cardiometabolic traits 

tested. These results suggest that the fructose-affected genes are relevant to human cardiometabolic 

diseases. 
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Discussion 

Our multi-strain multi-tissue systems analysis shows that fructose consumption elicits differential 

phenotypic and transcriptomic profiles among mice of different genetic background.  At the 

phenotypic level, DBA mice exhibited stronger vulnerability to alterations in body composition 

and glucose intolerance while B6 and FVB mice had stronger cholesterol alterations. We also 

report strain-specific regulatory genes and pathways in key metabolic tissues that may underlie the 

inter-individual phenotypic responses to fructose.  

Our findings are in line with prior studies that demonstrated strain-specific responses to diets (6; 

7) and offer a comprehensive account of the fructose-induced metabolic and molecular differences 

between strains. Interestingly, the patterns of phenotypic differences are not only strain-specific 

but also diet-specific. For example, among the three strains (B6, DBA, and FVB), B6 mice gained 

the most weight when fed a high fat high sucrose diet (7), whereas DBA mice gained the most 

weight when fed fructose diet. This diet-specific variability across strains indicates different 

adaptive abilities of distinct genetic background towards different diets. Our transcriptomic studies 

provide clues to the potential molecular underpinnings of the differential metabolic responses to 

fructose between mouse strains. In particular, we found very limited overlap between strains in the 

DEGs altered by fructose in individual tissues, and unique pathways represented by the strain-

specific DEGs are biologically relevant to the distinct phenotypes in the corresponding mouse 

strains, as detailed below.  

Liver-specific DEGs in the DBA mice were uniquely enriched for the PPAR signaling pathway, 

which agrees with results that DBA was the only strain to gain weight and fat mass and to show 

glucose intolerance in response to fructose. Indeed, PPAR gamma agonists are commonly used to 
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improve insulin sensitivity and glucose intolerance and have influence on body weight (43). 

Network modeling revealed Fgf21 to be a DBA-specific key regulator in the liver in response to 

fructose. FGF21 is a hormone primarily produced in the liver and holds promise as a potential 

therapy for obesity and glucose intolerance (44; 45).  In our study Fgf21 is significantly reduced 

by fructose in DBA mice, which agrees with the compromised glucose homeostasis and increased 

adiposity observed. Our in vitro fructose treatment experiments in primary hepatocytes confirmed 

that Fgf21 is a direct and acute target of fructose in hepatocytes, particularly in DBA. There is also 

an interesting directional shift in Fgf21 between the acute fructose response in primary hepatocytes 

where Fgf21 immediately increases upon fructose treatment at early time points, whereas in our 

long-term (12-week) in vivo treatment study Fgf21 is inhibited by fructose most significantly in 

DBA. Perhaps Fgf21 is an early homeostatic regulator with a quick response to fructose upon 

initial exposure, but after long-term exposure, fructose or its metabolites or other downstream 

effectors inhibit Fgf21.  

In contrast, B6 liver DEGs and top KDs are primarily cholesterol related genes, agreeing with the 

cholesterol-centric phenotypic responses of B6 to fructose. In FVB mice, fructose altered liver 

genes involved in vesicle-mediated transport pathways; the top KDs of FVB DEGs include Itih3 

and Akr1d1; DEGs Aldh2, Enho, and Svip are correlated with LDL. These genes are related to 

protein processing and metabolic pathways involving glutathione, cytochrome P450, and lipids, 

and may play roles in the unique decrease in plasma cholesterol and LDL levels in response to 

fructose in this strain.  

In the hypothalamus, fructose induced the strongest transcriptomic changes in B6 mice compared 

to the other two strains, and our network analysis revealed extracellular matrix genes such as Fmod 

and Bgn as key drivers of the fructose-responsive DEGs. This is consistent with our previous study 
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in which these genes were also identified as key regulators in the rat hypothalamus in response to 

fructose consumption (10). Both Fmod and Bgn knockout mice showed significantly altered 

cholesterol phenotypes (10), agreeing with the significant increases in these traits in B6 in response 

to fructose. The B6-specific increases in cholesterol species in response to fructose could also be 

related to dysregulation of liver key drivers related to cholesterol biosynthesis such as Lss as 

revealed in our network analysis. Lss encodes lanosterol synthase which converts (S)-2,3 

oxidosqualene to lanosterol, a key intermediate in cholesterol biosynthesis, and there is growing 

interest in targeting this enzyme therapeutically to lower blood cholesterol (46). 

In addition to the strain-specific DEGs and pathways, our transcriptomic analysis also revealed 

certain shared fructose DEGs across strains, which may imply robust targets of fructose regardless 

of genetic background. Some of these genes are involved in the response to xenobiotic stimulus 

(Gstp1, Ephx1, Gstm1) or organic cyclic compounds (Abca1, Id3, Abat), metabolic processes 

(Abca1, Htatip2, Grhpr, Nudt7), transcriptional regulation (Ier5, Jun, Id3), and immune 

modulation (Cd200). In particular, Htatip2 modulates lipid metabolism through mediating the 

balance of lipid storage and oxidation (47). Grhpr encodes an enzyme involved in guiding the 

carbon flux to gluconeogenesis by converting hydroxypyruvate into D-glycerate (48). Many of the 

DEGs show correlations with metabolic traits in our mouse models and show significant over-

representation of the candidate causal genes identified in GWAS of human cardiometabolic 

diseases. 

To explore the gene regulatory mechanisms, we examined previously known transcription factors 

ChREBP and SREBP-1c (28-30). We found indirect evidence supporting their regulatory roles by 

observing changes in their target genes. Fructose metabolic enzymes such as Khk and Aldob also 

showed alterations but the direction of change and significance varied between strains in our 12-
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week fructose feeding study. More importantly, our data-driven network analysis revealed 

numerous additional strain-specific regulators of fructose activities in individual tissues, such as 

Fgf21 (DBA), Lss (B6), and Akr1d1 (FVB) in liver, BCAA genes (B6 and FVB) and Dio2 (DBA) 

in adipose tissue, and extracellular matrix genes (B6) in hypothalamus. These context-specific 

regulatory genes identified here extend our knowledge about how fructose perturbs divergent 

pathways and triggers differential metabolic manifestations between individuals. Further 

investigations of these regulators, the genetic determinants of their context-dependent interactions 

with fructose or metabolites, and their downstream gene networks/pathways are warranted. 

In conclusion, we found distinct metabolic phenotypes and molecular signatures in mice of 

different genetic background in response to fructose. These results provide important insight into 

how individuals differ in their response to fructose consumption by engaging specific gene 

regulatory mechanisms in both central and peripheral metabolic tissues. Future examination of 

additional mouse strains and tissues will help further dissect the inter-individual variability and 

tissue-specific genetic regulation of fructose response. Given the exponential rise of 

fructose consumption and concomitant increase in obesity and metabolic syndrome, our study 

provides key information for guiding personalized preventive and therapeutic strategies for diet-

induced metabolic diseases. 
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Tables. 

Table 1. Summary of DEGs in adipose, liver and hypothalamus tissues of three mouse strains 

at FDR< 0.05 and their top representative key drivers (KDs). Full lists of DEGs, pathways, 

and KDs are in Supplementary Tables 3-5. 

 

 

 

Tissue Strain DEG No. Top over-represented pathways Top representative KDs 

li
v

er
 

B6 578 Oxidation-reduction process, Metabolic pathways,  

Lipid metabolic process, Biosynthesis of antibiotics, 

Cholesterol metabolic process 

Dhcr7, Fdft1, Lss, Sc4mol, Sqle 

DBA 760 Oxidation-reduction process, Metabolic pathways, 

Lipid metabolic process, PPAR signaling pathway, 

Fatty acid metabolic process 

Rtp4, Usp2, Irgm, Insig2, Fgf21 

FVB 246 Besicle-mediated transport, protein transport, 

Metabolic pathways, oxidation-reduction process, 

Chemical carcinogenesis 

Itih3, Akr1d1 

 

A
d

ip
o

se
 

  

B6 1034 Oxidation reduction process, TCA cycle and 

respiratory electron transport, Non-alcoholic fatty 

liver disease (NAFLD), Lipid metabolic pathways 

Aldh6a1, Echs1, Hadh, Hibadh, 

Hibch 

DBA 884 Nucleosome assembly  Evi2b, Cd68, Dio2, Itih5, Ptgis 

FVB 427 Protein folding, Response to topologically incorrect 

protein, Protein complex subunit organization, 

Cellular component disassembly, Catabolic process 

Klhl2, Ccbl2, Hibch, Tmeff1, 

Cpa1 

H
y

p
o

th
al

am
u

s 

B6 484 Ribosome, Translation, Transport, Oxidative 

phosphorylation, Mitochondrial respiratory chain 

complex III assembly 

Fmod, Gpr81, Aldh1a2, 

Serping1, Slc22a6, Bgn 

DBA 119 Protein processing in endoplasmic reticulum, 

Response to endoplasmic reticulum stress 

 

None 

FVB 25 None 

 

None 
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Table 2. Enrichment of human GWAS signals for metabolic syndrome related traits  

among strain- and tissue-specific DEGs based on Marker Set Enrichment Analysis  

 (MSEA) in Mergeomics.  

Note: Only traits and statistics with uncorrected MSEA enrichment P < 0.05 from at least one DEG list were shown. 

P values in bold passed Bonferroni-corrected P < 0.05. CAD: coronary artery disease; T2D: type 2 diabetes; HDL: 

high density lipoprotein cholesterol; LDL: low density lipoprotein cholesterol; TC: total cholesterol; TG: triglycerides; 

WCadjBMI: BMI-adjusted waist circumference; HIPadjBMI: BMI-adjusted hip circumference. N.S.: not significant; 

P > 0.05 in MSEA. 

 

  

Tissue of DEGs Disease/trait B6 DBA FVB 

Liver CAD 9.65E-05 N.S 2.85E-31 

T2D 6.56E-08 4.02E-08 N.S 

HDL 3.30E-05 N.S 8.90E-15 

LDL 2.96E-03 3.77E-05 N.S 

TC N.S 2.57E-02 3.51E-03 

TG 7.43E-12 1.93E-03 1.24E-03 

Fasting glucose N.S 4.60E-04 1.30E-03 

WCadjBMI N.S N.S 1.54E-03 

HIPadjBMI 2.37E-06 2.06E-09 2.77E-03 

Adipose T2D 1.72E-13 N.S N.S 

HDL 8.80E-41 1.25E-07 4.10E-02 

LDL N.S N.S 8.09E-18 

TC 9.41E-07 N.S N.S 

TG 1.87E-12 3.53E-03 8.12E-07 

Obesity 4.89E-05 2.34E-10 N.S 

WCadjBMI 3.58E-36 N.S 5.17E-07 

HIPadjBMI 8.81E-23 N.S 1.17E-07 

Hypothalamus HDL 1.57E-02 N.S N.S 

LDL 1.57E-02 N.S N.S 

TC 9.64E-03 N.S N.S 

TG 2.36E-02 N.S N.S 

Obesity 2.41E-02 N.S N.S 
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Figures 

 

Figure 1. Body weight and body composition changes and caloric intake in three strains of 

mice in response to fructose consumption. A-C: Cumulative change in body weight in B6 (A), 

DBA (B) and FVB (C) mice fed normal Chow diet with water or 8% fructose over 12 weeks. Two-

way ANNOVA was used to test the differences between treatment groups and time points, 

followed by Sidak post-hoc analysis to examine treatment effects at individual time points. * 

denotes P < 0.05 from the post-hoc analysis. D: body weight gain at the end of experiment. E-F: 

Body composition change in three strains of mice, with fat mass (E) and lean mass (F) measured 

using NMR.  G: Individual fat masses of DBA mice. BAT: brown adipose tissue; gWAT: gonadal 

white adipose tissue; rWAT: retroperitoneal white adipose tissue; mWAT: mesenteric white 

adipose tissue; scWAT: subcutaneous white adipose tissue. H: Caloric intake of three stains of 

mice. A-H: Error bars in the graph are standard errors. E-H: * denotes P < 0.05 and ** denotes P 

< 0.01 by two-sided Student’s t-test. Sample size n=8-12/group/strain. 
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Figure 2. Glucose metabolism and lipid changes in three strains of mice in response to 

fructose consumption. A-C: Glucose tolerance analysis using IPGTT were conducted at baseline 

(0 day), 1st, 4th,9th and 12th week shown as area under the curve (AUC). D: Plasma glucose. E: 

Plasma insulin. F: Plasma triglyceride. G: Plasma total cholesterol. H: HDL. I: LDL. J: 

Unesterified cholesterol. K: Free fatty acid levels. A-K: sample size n=8-10 per group. *P < 0.05 

and **P < 0.01 by two-sided Student’s t-test. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/439562doi: bioRxiv preprint 

https://doi.org/10.1101/439562


 27 

Figure 3. Differentially expressed genes (DEGs) and representative over-represented 

pathways in adipose, liver and hypothalamus of three mouse strains. A-C: Venn diagrams of 

adipose (A), liver (B), and hypothalamus (C) DEGs and pathways across three strains. D: Fold 

change and significance of gene expression differences between fructose and control groups for 

known target genes of fructose, ChREBP (encoded by Mlxipl), SREBP-1c (encoded by Srebf1) in 

the three mouse strains. Fold change for each gene is the normalized average expression level in 

fructose mice over that of the control mice. * P < 0.05, ** P < 0.01, # FDR<5%, ## FDR<1% in 

RNAseq analysis using a linear model. Sample size n=6/group/tissue/strain for liver and adipose 

tissues; n=4/group/strain for hypothalamus tissue. 
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Figure 4. Gene subnetworks and top network key drivers (KDs) of DEGs in three strains of 

mice and validation of select strain-specific liver KDs in primary hepatocytes. A: Top adipose 

KDs and subnetworks. B: Top liver KDs and subnetworks. C: Top hypothalamus KDs and 

subnetworks. D: Direct response to fructose for DBA-specific KD Fgf21 is stronger in DBA 

hepatocytes than in B6 hepatocytes. E: Direct response to fructose for B6-specific KD Lss is 

stronger in B6 hepatocytes than in DBA hepatocytes. D-E: P values for strain, fructose 

concentration, and time points are from 3-way ANOVA. At each concentration and time point, p 

values between mouse strains are from Tukey post-hoc analysis. Sample size n=3 (2 

replicates/mice) per strain per concentration per time point. F: Expression changes of genes in 

Fgf21-driven network after siRNA-mediated knockdown of Fgf21 in DBA primary hepatocytes. 

Genes surrounding Fgf21 were selected from Figure 4B. G: Expression changes of genes in Lss-

driven network after siRNA-mediated knockdown of Lss in B6 primary hepatocytes. Genes 

surrounding Lss were selected from Figure 4B. F-G: NC represents scrambled siRNAs as negative 

controls. *P < 0.05 and **P < 0.01 by two-sided Student’s t-test. Sample size n=3 (2 

replicates/siRNA).  
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Figure 5. Relationship between DEGs and metabolic traits in mice. A: Numbers of strain-

specific DEGs that are correlated with metabolic traits in our fructose study (P < 0.01 by Pearson 

correlation).  B-D: Select examples of DEGs in liver correlating with adiposity in DBA mice.  E-

G: Select examples of DEGs in liver correlating with LDL in FVB mice. 
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