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Abstract

RNA SHAPE experiments have become important and successful sources of information

for RNA structure prediction. In such experiments, chemical reagents are used to probe

RNA backbone flexibility at the nucleotide level, which in turn provides information on

base pairing and therefore secondary structure. Little is known, however, about the

statistics of such SHAPE data. In this work, we explore different representations of

noise in SHAPE data and propose a statistically sound framework for extracting reliable

reactivity information from multiple SHAPE replicates. Our analyses of RNA SHAPE

experiments underscore that a normal noise model is not adequate to represent their

data. We propose instead a log-normal representation of noise and discuss its relevance.

Under this assumption, we observe that processing simulated SHAPE data by directly

averaging different replicates leads to bias. Such bias can be reduced by analyzing the

data following a log transformation, either by log-averaging or Kalman filtering.

Application of Kalman filtering has the additional advantage that a prior on the

nucleotide reactivities can be introduced. We show that the performance of Kalman

filtering is then directly dependent on the quality of that prior. We conclude the paper

with guidelines on signal processing of RNA SHAPE data.
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Introduction 1

Beyond its role in protein synthesis and the transfer of genetic information, RNA exists 2

as a dynamic cellular component at the core of gene regulation [1]. From microRNAs 3

involved in regulating gene expression [2] and long noncoding RNAs similarly regulating 4

gene expression [3] to ribozymes acting as chemical catalysts [4], RNA plays a central 5

role in a multitude of cellular activities. The diverse repertoire of biological functions 6

that RNAs adopt is deeply rooted in their abilities to form complex three-dimensional 7

structures [1]. This interplay between structure and function underscores the need for 8

robust structural analysis as a prerequisite to a full understanding of the physiological 9

role of RNA [5]. Despite its importance, determining the complex 3D structures of RNA 10

remains a challenging problem, particularly for longer RNAs [6,7]. 11

Considering the hierarchical nature of RNA folding [8], much of the efforts in 12

structure determination have been devoted to its two-dimensional base-pairing pattern, 13

also known as its secondary structure. This secondary structure is generally considered 14

to be more stable than and independent of the final 3D conformation [8]. Though 15

experimental methods such as nuclear magnetic resonance (NMR) [9] and 16

crystallography [10] can be used to accurately resolve 3D RNA structures, they are 17

time-consuming, expensive, and often preclude the analysis of long or flexible 18

molecules [11]. Comparative sequence analysis, the process of inferring base-pairing 19

from co-variations observed in the alignment of homologous sequences, is a robust 20

method for defining the secondary structure of RNA [11,12]. However, this approach 21

has narrow applicability as it relies on the availability of an alignment with a large and 22

diverse set of homologs [13,14]. An approach that circumvents the need for homologs is 23

de novo RNA secondary structure prediction. Many of these sequence-based methods 24

employ a dynamic programming algorithm with a thermodynamics-based scoring 25

function to predict an optimal secondary structure [15,16]. The resulting 26

computationally predicted secondary structures exhibit variable accuracies [17]. As 27

structure prediction relying on sequence alone poses a difficult problem, the addition of 28

auxiliary experimental data is one way to improve these computational structure 29

predictions [18–20]. The data most commonly included in these prediction algorithms 30

are derived from structure probing experiments [21, 22]. However, little is known about 31

the statistics of these data. One goal of this study is to develop a statistical model for 32

the uncertainty in probing data so that robust information can be extracted. 33

Structure probing (SP) refers to a class of experiments designed to link chemical 34

reactivity to molecular geometry. In SP experiments, a chemical reagent selectively 35

modifies nucleotides based on their accessibility. In the case of hydroxyl radical 36

experiments, the accessibility is akin to the solvent accessibility [23–25]. Alternatively, 37

in SHAPE (Selective 2’-Hydroxyl Acylation analyzed by Primer Extension) 38

experiments [26], the chemical reagent probes the backbone flexibility of each nucleotide. 39

This flexibility correlates with the pairing state of the nucleotide: higher reactivities are 40

generally observed for unpaired nucleotides. Thus, by extension, the chemical reactivity 41
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obtained in such experiments is a probe of the RNA’s secondary structure. In practice, 42

a SHAPE experiment is run as follows: The RNA sample is first modified with the 43

chemical probe. Following this, reverse transcription is applied to detect the resulting 44

chemical modifications along the RNA sequence. Those modifications either cause 45

termination of transcription or introduce a mutation to the transcribed cDNA. Modified 46

locations can then be detected through cDNA fragment sequencing. By comparing to 47

data coming from an untreated control sample, the detection of the modifications is 48

then a direct measure of the reactivity for each nucleotide. The resulting sequence of 49

reactivities is referred to as the reactivity profile or simply the profile of the RNA. 50

Recent advances in sequencing have ushered in a new era of affordable and massively 51

parallel SP experiments [20] and applications of resulting data are not limited to 52

structure prediction. In fact, among other uses, SP has been used to direct sequence 53

alignment as well as to strengthen evolutionary signals when searching for conserved 54

RNA structures between organisms [27]. 55

As with any measured value, SP reactivities are corrupted by noise. The standard 56

approach taken by experimentalists to reduce the impact of that noise is to repeat the 57

experiment multiple times under the same condition and combine the results using basic 58

averaging. For SP data, we use the term replicates to refer to the multiple reactivity 59

profiles and measurements to refer to the set of reactivities for a particular nucleotide 60

coming from these replicates. Basic replicate averaging is performed by taking a 61

per-nucleotide average across measurements. This sequence of values forms the average 62

profile. While straightforward, this implies that the noise is additive and has zero-mean. 63

These criteria have not been established for SP experiments. Indeed, the noise observed 64

in SP data has not been explicitly studied and currently no models exist to characterize 65

the observed differences between replicates. In this manuscript, we propose a model for 66

the noise associated with SHAPE data and develop a pragmatic approach to signal 67

denoising. To this end, we borrow from the comprehensive literature available on 68

denoising in signal and image processing (see for example [28] and [29]). We first note 69

that previous analysis of SHAPE data has revealed the log-normality of reactivities [30]. 70

This observation naturally led us to study the replicate noise after applying a 71

logarithmic transformation. Log transformations of data are simple and easily reversible 72

operations that are often applied in the case of skewed data to mitigate the effects of 73

volatile measurements [31]. Apart from their extensive use in image processing, they 74

have also been widely studied in the context of biological data analysis, such as in 75

microarray data analysis where they can act as a variance stabilizer [32]. It is worth 76

mentioning that in dynamic programming based secondary structure prediction 77

methods, such as [18], SHAPE data are integrated into the prediction algorithm via a 78

logarithmic relationship between the reactivities and a pseudo-energy term. This 79

operation implicitly decreases the impact of nucleotides with high reactivity [33]. In this 80

work, we propose an additive Gaussian noise model for log transformed SHAPE data. 81

This transformation allows us to study signal processing techniques that leverage the 82

log-normality of the SHAPE distribution as prior information. In particular, we apply 83
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the Kalman filter [34, 35], an algorithm commonly used in signal processing and control 84

theory, to SHAPE data. This filter works by optimally fusing two sources of 85

information: prior knowledge on nucleotide reactivity and the noisy measurements. It 86

has previously been applied to protein structure determination from NMR data [36,37]. 87

For our purposes, we use the log-normal distribution of SHAPE reactivities as the 88

required prior with the goal of optimally extracting true reactivity information from the 89

noisy measurements. 90

In this work, we explore the following questions. First, how much of an advantage 91

over averaging does a sophisticated denoising strategy, such as Kalman filtering, offer 92

when extracting a reactivity signal from noisy replicates? Second, how many replicates 93

are required for robust signal extraction? Given that the majority of published SP data 94

consists of between one and three replicates, these questions are critical to experimental 95

design. We address these questions under the assumptions of our proposed noise model. 96

The paper is organized as follows: In the Background section, we provide an overview of 97

SHAPE experiments followed by a discussion on the factors contributing to noise in 98

these experiments. We then discuss important characteristics of SHAPE data and give a 99

brief overview of signal filtering. In the section that follows, we revisit the statistical 100

models used in replicate processing and propose a noise model based on the log 101

transformation. We then provide a description of how Kalman filtering can be applied 102

as a denoising strategy in the context of replicate processing. In the Results section, we 103

compare the approaches of averaging and Kalman filtering using replicates simulated 104

under the proposed statistical model. Finally, we conclude with a discussion on the 105

statistical models and signal processing methods described and future directions. 106

Background 107

Overview of SHAPE experiments and reactivity reconstruction 108

In a typical SHAPE experiment, a sample of an RNA is treated with a chemical reagent 109

that selectively forms adducts on nucleotides along flexible regions of the molecule. 110

After treatment, reverse transcription is applied to detect locations of adduct formation. 111

The adducts interfere with this transcription, either by causing termination or, in the 112

case of SHAPE-MaP experiments [38], by introducing a mutation in the nascent cDNA 113

strand. Lengths of the cDNA fragments, or equivalently, mutation sites, correspond to 114

their locations along the RNA. The number of modifications per nucleotide are then 115

converted into a modification rate. Reverse transcription is simultaneously applied to an 116

untreated sample of the RNA. One way to determine a reactivity value per nucleotide is 117

to compute the difference between the modification rates per-site on the reagent-treated 118

and control samples [39,40]. The reactivity resulting from this background-subtraction 119

is a measure of the nucleotide’s sensitivity towards the reagent and correlates with the 120

local backbone flexibility [41]. As structurally constrained regions of an RNA correspond 121

to base-paired nucleotides, nucleotides exhibiting low reactivities are likely paired while 122
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highly reactive nucleotides are indicative of unpaired regions of the RNA [19]. 123

Prior to use in further analysis, reactivity profiles are normalized so that values 124

across a transcript span the typical range of values between 0 and 2. This is done to 125

ensure uniformity between replicates as well as across different transcripts [33]. One 126

commonly applied model-free normalization technique works as follows: First, a 127

percentage of the data corresponding to the highest reactivity values are considered 128

outliers and are removed from the analysis. According to [19], for RNAs shorter than 129

100 nucleotides, no more than 5% of the data should be removed and for longer RNAs, 130

no more than 10% of the data. From the remaining nucleotides, another band of highly 131

reactive nucleotides (usually around the top 8-10%) are averaged in order to calculate a 132

normalization factor [19,33,42]. The entire profile, including the previously excluded 133

outliers, is then normalized by this factor. On the normalized scale, reactive nucleotides 134

are roughly defined as those with reactivities higher than 0.7 and unreactive nucleotides 135

are those with reactivities below 0.3 [18]. 136

Currently, there is no standardized practice for normalization [40] and, even after 137

normalization, it is not uncommon to observe values significantly higher than 2. 138

Additionally, while the standard values of reactivities are positive, negative-valued 139

reactivities are often observed in the data. These values occur when there is a stronger 140

readout in the control sample compared to the reagent-treated sample and the 141

background-subtraction process does not completely account for sequence-specific noise. 142

In practice, negative values are simply set to 0 [33]. 143

Factors contributing to variation in SHAPE experiments 144

There are a number of influencing factors when it comes to uncertainty in SHAPE 145

reactivity values. Discrepancies observed between replicates can be classified as 146

stemming from two main sources [40]. 147

The first source of noise can be classified as technical variation and includes anything 148

from the stochasticities introduced by the sequencing platform to the multiple steps in 149

the cDNA library preparation. Technical considerations also include variations that are 150

a product of the dynamic nature of RNA: RNAs in a sample can fold into and transition 151

between various structures. These changes are sensitive to numerous parameters 152

involved in the probing experiment, including solvent conditions, temperature, and 153

protein interactions [43]. As SHAPE reactivities represent an aggregate measure on all 154

RNA copies co-existing in a sample [44], parametric fluctuations ultimately manifest as 155

observable differences between replicates. RNA thermometers, which shift from a highly 156

structured state to an unfolded state with increasing temperature, are one clear example 157

that demonstrate this effect [45]. The relative concentrations of the two states 158

ultimately cause temperature-dependent variations in the measured reactivities. 159

Along with technical factors, inter-replicate divergences can also be caused by 160

biological factors in the underlying sample. Such effects are referred to as biological 161

variation. One example is the degree of structural diversity in the sample being probed. 162

It is known that the same RNA sequence can fold into many different structures that 163
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co-exist with varying abundances in a sample. Riboswitches, for example, are RNA 164

elements whose functionality hinges on their ability to alternate between two 165

conformations to regulate gene expression [46]. This switching between folds cannot be 166

instantaneous without violating physical laws: the change in structure must be gradual 167

and thus gives way to the existence of intermediate structures between folding pathways. 168

As a SHAPE reactivity reflects the combined reactivity of all RNA copies co-existing in 169

the sample, the degree of structural diversity in the sample ultimately affects the 170

differences between replicate measurements. 171

The discrepancies between replicates reflect a composite effect of both the technical 172

and biological variation. We refer to this combination as the measurement noise, which 173

we aim to model. 174

Characteristics of SHAPE data 175

As SHAPE profiles include measurement noise, a term we use to span the effects of 176

multiple facets of experimental uncertainty, any analysis of these data must include a 177

denoising step. The traditional approach is to compute the average across replicates. 178

This method is sensible under an implicit assumption that the true reactivity value of a 179

nucleotide is corrupted by additive noise that follows a zero-mean distribution. Most 180

often, this distribution is assumed to be Gaussian. However, the number of processing 181

steps involved in the quantification of the SHAPE profile, namely, computing the 182

chemical modification rates, the background-subtraction, and the normalization 183

processes, raise doubts about this assumption. We diverge from the traditional 184

approach and propose a log transformation based noise model that renders the data 185

amenable to well-established signal processing techniques. The foundation of our noise 186

model, which will be introduced in the following section, was further prompted by the 187

following fundamental observation on SHAPE data: the empirical distribution of 188

SHAPE reactivities is highly skewed. This distribution is in fact near-Gaussian after 189

applying a log transformation [30]. We adopt this log-normality as an assumption for 190

the remainder of our work. 191

Before proceeding, we note that some caution is required when defining a noise 192

model for SHAPE data for the following reasons. First, the normalization of SHAPE 193

reactivities does not preclude negative values and such reactivities are incompatible 194

with the log-normal model. While negative values are not rare, they are assumed to 195

occur when the control sample can not be used to adequately describe the true noise 196

component of the reagent-treated sample. In this case, subtraction of the control 197

modification rate from the reagent-treated rate does not suffice as a correction method. 198

As mentioned, negatives are commonly set to 0 in the final SHAPE profile. This 199

practice skews the distribution for unreactive nucleotides and strongly implies an 200

asymmetric distribution of measurement noise. 201

Second, it has been documented that the highest SHAPE values exhibit the most 202

variability between measurements [33]. This is particularly noteworthy as normalized 203

profiles often exhibit highly reactive nucleotides. The relationship between the average 204
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reactivity value for a nucleotide across measurements and the standard deviation 205

between measurements reveals the heteroskedastic nature of SHAPE data. Fig 1 206

illustrates the strong mean-dependence present in the standard deviation values across 5 207

experimental replicates obtained for the RNA3 segment of the cucumber mosaic virus 208

genome [47]. The log of the measurement standard deviations and log of the 209

measurement means are related linearly and the slope of this relationship nearly 1. 210

Equivalently, the measurement standard deviation is nearly proportional to the 211

measurement mean, which may be indicative of a multiplicative noise term. Thus, the 212

standard statistical model relying on an assumption of an additive noise term may not 213

properly serve SHAPE measurements. 214
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Fig 1. The mean-dependence in the standard deviation of SHAPE
measurements. Data from 5 SHAPE replicates obtained on the cucumber mosaic
virus RNA3 sequence (experiments performed on data from infected plant cell
lysates) [47]. For each nucleotide, the mean value of the 5 measurements were calculated
and plotted against their standard deviation on a log-log plot. A linear fit is overlaid in
red. Note that negative reactivity values were not included as they are incompatible
with the log-log plot.

The two extremes of SHAPE reactivities discussed, namely, those corresponding to 215

unreactive and highly reactive nucleotides, underscore the unique characteristics of 216

SHAPE data. Along with the log-normality of the SHAPE distribution, these 217

characteristics prompted our study of a noise model that relies on a log transformation. 218
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Signal filtering 219

The purpose of filtering is to deduce meaningful information from a signal containing 220

unwanted components. Filtering usually relies on the availability of multiple realizations 221

of the signal. The simplest and most common filtering approach utilized in 222

experimental studies is to average the data realizations. Such a filtering relies heavily on 223

the assumption of an inherent randomness in the noise that can be modeled as 224

independent samples of an additive Gaussian distribution. Averaging, however, is not 225

the only form of filtering available from signal processing. In fact, it may not be optimal 226

if the assumption of additive Gaussian noise is invalid. A filter is optimal if it produces 227

the best estimate under a certain prescribed criterion or model [48]. One example of an 228

optimal filter is the Kalman filter (KF) which estimates a parameter in a system 229

affected by additive Gaussian noise. This filter is often utilized in optimal tracking 230

systems and signal processing problems to smooth noisy data or to estimate a parameter 231

from a set of noisy measurements [49]. For the KF, the optimality criterion is defined as 232

minimization of the mean-square error associated with the parameter estimate. At a 233

high-level, the 1 dimensional KF works by iterating between the following two steps: 234

1. Predict: the filter makes a prediction for the current state of the system on 235

which measurements are being made. This prediction is based on a model 236

describing the state dynamics. During the primary predict step, an initial prior on 237

the system state is required to estimate the state sans measurements. 238

2. Update: upon receiving new information in the form of a noisy measurement, the 239

state model is updated. A quantity known as the Kalman gain is calculated and is 240

used to optimally combine information from the prior and the newly incorporated 241

measurement. The state model is updated conditioned on the new measurements 242

using the Kalman gain. The updated conditional distribution is then used as a 243

prior distribution in the ensuing predict step. 244

The Kalman gain is an optimal weighting factor between the previous prediction and 245

the newly observed measurement. Its value depends on the uncertainties of both the 246

prediction and the new measurement. Initially, the prediction is based solely on the 247

input prior. When the measurement is noisy, the model relies more heavily on the prior. 248

Conversely, when the measurements are reliable, the filter puts less weight on the prior. 249

After all measurements have been handled, the final prediction is taken as an estimate 250

of the parameter of interest. This prediction represents an optimal fusion of the prior 251

and the measured values. In classical Kalman filtering applications, the input data is a 252

discrete time series of measurements on a system in which there are two sources of 253

uncertainties: 1. the model dictating the state of the system and its dynamics and 2. 254

the measurements at each time point. For those interested in a derivation of the 255

complete filter and proof of its optimality, we recommend reading [35,49,50]. For our 256

purposes, the “state” of the system is a nucleotide’s true reactivity value. The 257

measurements are taken directly on this reactivity and are corrupted by noise. Our aim 258
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is to remove the errors in these measurements and recover the true reactivity. A full 259

mathematical characterization of the KF implementation employed in this work is 260

provided in Methods. 261

Models for signal extraction in SHAPE data 262

Below, we introduce notation and discuss two noise models for SHAPE data. We also 263

review the methods used for signal extraction under each model. 264

Notation 265

Consider data coming from N repeated SHAPE experiments on an RNA with M 266

nucleotides. For each nucleotide m, we assume an underlying ground truth reactivity 267

value denoted sm. The sequence of ground truth reactivities making up the true profile 268

is denoted by S. The N measurements of sm are denoted r1
m, r

2
m, . . . , r

N
m. After a log 269

transformation, the measurements are denoted lim := log rim. We refer to these values as 270

log measurements. Similarly, lm := log sm denotes the log of the nucleotide’s ground 271

truth reactivity, or its log reactivity. We say the transformed data is in the log domain 272

while the original data is in the data domain. The sequence of log-transformed ground 273

truth reactivities is denoted L. Our goal is to combine the measurement values for each 274

nucleotide in a manner that optimally extracts the true reactivity. This amounts to 275

either recovering sm from the rim values in the data domain, or, equivalently, lm from 276

the lim values in the log domain. 277

Normal Noise Model 278

Measurements across replicates for a nucleotide are generally combined into a single 279

reactivity by taking their average. This naive combination is appropriate if the assumed 280

relationship between the ith replicate rim and the ground truth reactivity sm is governed 281

by the following relationship: 282

rim = sm + zim. (1)

Here, zim is the measurement noise term, which is assumed to follow a zero-mean 283

Gaussian distribution with standard deviation σzm . We term this model the normal 284

noise model. Under this model, the average reactivity for a nucleotide is 285

r̄m =
1

N

N∑
i=1

rim. (2)

Assuming independence in the zims, this is also the maximum likelihood estimate for 286

sm [51]. We refer to the sequence of M nucleotides averaged in this way as the average 287

profile and denote it S̄. Although it is often not explicit, data processing pipelines that 288

employ an average across measured values are predicated on such a normal noise model. 289
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Despite being a straightforward approach to combining replicates, averaging in this way 290

relies on a key assumption of the normal noise model that has yet to be experimentally 291

verified; that is, the assumption of an additive Gaussian distribution of noise in the data 292

domain for probing data. 293

Log-Normal Noise Model 294

We have discussed three noteworthy features of SHAPE data: its log-normal 295

distribution, the skew in measurements introduced by replacing negative-valued 296

reactivities with zeros, and the heteroskedasticity observed in replicates. These features 297

allude to an asymmetric noise distribution. As the empirical SHAPE distribution is 298

Gaussian in the log domain, it is a natural extension to assume that the noise in 299

measurements follows a similar distribution. We were thus motivated to study the data 300

after a log transformation and further modeled the noise as following an additive 301

Gaussian distribution in the log domain. In such a model, the log measurement lim is 302

related to the ground truth lm according to the following relationship: 303

lim = lm + wi
m. (3)

The measurement noise term, wi
m, is assumed to follow a zero-mean Gaussian 304

distribution with standard deviation σwm
. The wi

m values are assumed to be 305

independent between measurements. We refer to this model as the log-normal noise 306

model. As before, the log measurements can be combined by taking their average. To 307

distinguish it from averaging in the data domain, we will refer to this process as 308

log-averaging. The log-averaged estimate of lm is 309

l̄m =
1

N

N∑
i=1

lim. (4)

By reverting back to the data domain, we obtain el̄m as the final estimate for the 310

reactivity sm. In the log domain, the sequence of log-average reactivities for the M 311

nucleotides is denoted L̄. After reverting to the data domain, we refer to the sequence 312

of log-average reactivities as the log-average profile and denote it eL̄. We note that 313

additive noise in the log domain implies multiplicative noise in the data domain, hence 314

rim = W i
msm, (5)

where W i
m = ew

i
m . 315

The central assumptions of the log-normal noise model render the problem of 316

optimally extracting a reactivity value from noisy measurements directly applicable to 317

Kalman filtering. The KF exploits the distribution of the SHAPE data in the log 318

domain as an auxiliary information source and uses it to extract information from noisy 319

measurements. We apply a simplified version of the 1 dimensional KF to a system 320

consisting of a single nucleotide with a ground truth reactivity value that persists 321
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between measurements. The measurements of the system state, i.e. the nucleotide’s 322

reactivity, are described by Eq. 3. The filtering process is carried out in the log domain 323

separately for each nucleotide. The KF inputs are summarized below: 324

1. The log measurements, l1m, l
2
m, . . . , l

N
m, which make up the measurement vector. 325

2. The uncertainty in the measurements, σwm . This value is estimated using the 326

sample variance of the lim values. It is required by the filter to calculate the 327

Kalman gain. 328

3. The empirical distribution of log-transformed SHAPE data fit to a Gaussian 329

distribution, N (µ0, σ0). This is used as the prior in the initial predict step. 330

The resulting KF reactivity is denoted km and is an estimate of the log reactivity, lm. 331

Transforming back to the data domain gives ekm as an estimate of the reactivity, sm. 332

The sequence of filtered reactivities is denoted K in the log domain and eK in the data 333

domain. We refer to eK as the Kalman filter profile or KF profile. A detailed 334

description of our KF implementation is provided in Methods. The two log domain 335

processing pipelines, log-averaging and Kalman filtering, are summarized in Fig 2. 336

Results 337

We compared the two statistical filtering approaches for analyzing SHAPE replicates in 338

the log domain introduced above: log-averaging and Kalman filtering. The results 339

presented below are organized as follows. First, we discuss noise levels that are observed 340

in real SHAPE experiments. Then, using simulations, we compare the accuracies of log 341

average profiles to KF profiles by evaluating the ability of each approach to recover the 342

ground truth profile. Finally, we compare data-directed secondary structure prediction 343

results on profiles processed under assumptions of the normal and log-normal noise 344

models. 345

Noise levels observed in SHAPE experiments 346

We studied the noise observed in SHAPE data collected on the 2216 nucleotide RNA3 347

segment of the cucumber mosaic virus [47]. Included in this analysis were data coming 348

from experiments run on three forms of the RNA: in vitro (5 replicates), purified viral 349

RNA extracted from virion particles (3 replicates), and from infected plant cell lysates 350

(3 replicates). Measurements were first transformed to the log domain. We then 351

calculated the sample standard deviations of the log measurements per nucleotide for 352

each of three different forms of the RNA. Thus, standard deviation values were 353

calculated using either 3 or 5 measurements. A histogram of these values and their 354

empirical cumulative density function (CDF) are shown in Fig 3. We used these data to 355

define low, medium, and high noise regimes as follows: 356
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Fig 2. A conceptual representation of measurement combination methods
under the log-normal noise model for three SHAPE replicates. Replicates are
first transformed into the log domain. The log-average (L̄) and KF (K) profiles are
then computed. The resulting profiles are transformed back to the data domain.

1. We defined the low noise regime by measurements with log domain standard 357

deviation values between 0.5 and 1. This corresponds to about 60% of the data 358

with log domain standard deviation values lying in the 60th percentile. 359

2. We defined the medium noise regime by measurements with log domain 360

standard deviation values between 0.5 and 1. This range was selected to lie 361

between the low and high noise regimes and covers about 26.5% of the data. 362

3. We defined the high noise regime by measurements with log domain standard 363

deviation values between 1 and 1.5. This corresponds to about 10% of the data, 364

with log domain standard deviation values lying between the 86.6th and 95.3rd
365

percentile of the data. 366

Based on these ranges, we simulated replicates in the log domain with different noise 367

levels by uniformly selecting a standard deviation value within one of the specified 368
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ranges (either low, medium, or high). Note that just under 5% of the nucleotides in this 369

analysis exhibit variability in measurements exceeding the high level. 370
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Fig 3. Log domain standard deviation values of measurements coming
from real SHAPE data. Standard deviation values were calculated for each
nucleotide on log measurements. (a) Histogram of standard deviation values. (b)
Empirical CDF of standard deviation values. The shaded regions correspond to our
definition of low, medium, and high noise regimes.
All non-positive measurements were removed from the initial set of data. Nucleotides
with a single positive measurement were excluded so that a total of 3723 data points

were considered.

Kalman filter improves information extraction from noisy 371

replicates 372

We compared the performances of log-averaging and Kalman filtering for replicates 373

simulated under the log-normal noise model. We first assembled a database of 22 RNAs 374

with published SHAPE profiles and reference secondary structures [18,30,52–54]. The 375

database includes ribosomal RNAs, riboswitches, and viruses. RNA lengths vary from 376

34 to 2094 nucleotides and sum to a total of 11070 nucleotides (see Table 1 of Methods 377

for a complete description). The known SHAPE profiles were treated as ground truth. 378

We simulated 3 replicates for each sequence according to the log-normal noise model. 379

We varied the simulated noise level by increasing the standard deviation of the log 380

measurements from 0 to 5. We then assessed the signal extraction capabilities of 381

log-averaging and Kalman filtering by comparing each resulting processed reactivity to 382

the ground truth. Root mean square (RMS) errors for varying reactivity and 383

noise-levels are shown in Fig 4 (a). In low noise regimes, the two methods performed 384

comparably. However, in higher noise regimes, Kalman filtering recovered better the 385

ground truth reactivity than did log-averaging. 386

We repeated this analysis using 10 simulated replicates for each RNA. The RMS 387

errors for the two processing methods are shown in Fig 4 (b). With this increase in 388

replicates, as expected, both methods exhibited an increase in performance compared to 389

using 3 replicates. Additionally, the simple log-averaging estimate extracted the true 390

reactivity profile as accurately as the more complex Kalman filtering approach, even in 391
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(a) N = 3 replicates

(b) N = 10 replicates
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Fig 4. Comparison of log-averaging and Kalman filtering using (a) N = 3
and (b) N = 10 simulated replicates under log-normal noise model. The
vertical axis represents the data domain ground truth reactivity, sm. The horizontal
axis represents the log domain standard deviation of the simulated measurements, σwm .
Nucleotides were binned based on sm and σwm

values. Left panel shows RMS errors
calculated between ground truth and log-averaged reactivities for all nucleotides in a
bin. Right panel shows RMS errors calculated between ground truth and Kalman
filtered reactivities for all nucleotides in a bin. Error calculations were carried out in the
log domain and ground truth values were the log reactivities. See Methods for RMS
calculation details.

the higher noise regime. Hence, Kalman filtering is a more robust method for signal 392

extraction in the case of high noise levels or limited replicates. 393

Using more than four replicates marginally improves accuracy 394

The results presented in the previous section emphasized the impact of replicate count 395

on the relative performances of log-averaging and Kalman filtering. Given 10 replicates, 396

the accuracy of the log-averaging approach mirrors that of Kalman filtering, even in the 397

presence of substantial noise. However, 10 experimental replicates are almost never 398

obtained in practice. To explore how the accuracies of both approaches are affected by 399

replicate count, we repeated our simulations using from 2 to 10 replicates and 400

performed log-averaging and Kalman filtering for each replicate count. We performed 401

this simulation for replicates generated at low, medium, and high noise levels for all 402
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RNAs in our database. The RMS errors for both methods are shown in Fig 5 plotted 403

against the number of replicates. These plots reinforces the results presented above: for 404

moderate noise, log-averaging and Kalman filtering perform comparably. Meanwhile, in 405

the high noise regimes, Kalman filtering better recovers the ground truth. This 406

advantage is only present for a small number of replicates, specifically, less than 4. If 407

the number of replicates is increased above this, then the two methods perform 408

comparably even in the presence of high noise. Thus, increasing the number of 409

replicates to be more than 4 does not significantly improve the results of either method. 410

Based on these findings, we recommend obtaining a minimum of 4 replicates. 411
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Fig 5. Comparison of the log-average and Kalman filter approaches using
N = 2 to N = 10 replicates simulated at (a) low (b) medium and (c) high
noise levels under log-normal noise model. RMS errors were calculated between
ground truth and log-averaged reactivities (solid line) and between ground truth and
the Kalman filtered reactivities (dotted line) over entire set of nucleotides. Error
calculations were carried out in the log domain and the ground truth values were the log
reactivities. See Methods for RMS calculation details. In moderate noise regimes, only a
negligible difference between the log-averaging and Kalman filtering approaches is
observed. However, in the high noise regime, the Kalman filtering approach better
recovers the ground truth. This advantage is marginal after the replicate count is
increased beyond 4. Note that errors increase with increasing noise levels.

Refining the Kalman filter prior improves accuracy 412

The results of the log-averaging approach can be improved either by increasing the 413

number of replicates or by improving the data quality. In contrast, Kalman filtering 414

offers an additional channel for improvement by way of the prior distribution. The prior 415

is used by the filter along with the measurements to extract signal information. Thus, 416

the success of the KF relies on how faithful this model is to the data, in addition to the 417

data quality. With a well-tailored prior, we expect an improvement in Kalman filtering 418

results. Here, we demonstrate this idea with a simple simulation in which we defined an 419

“ideal” prior specialized for each nucleotide. This ideal prior is a Gaussian distribution 420

centered at the ground truth (log reactivity) for that nucleotide and with a small 421

standard deviation. We studied how deviations for this ideal prior affected the KF 422

results by examining the effects of two possible changes. The first was a shift in the 423

prior mean away from the ground truth. This mean offset represents a loss of accuracy 424

in the prior. The second was an increase in the prior standard deviation, representing a 425
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loss of precision in the prior. The definitions of the ideal prior and the deviations are 426

described in detail in Methods. We calculated the Kalman filtered reactivity with 427

different mean offset and standard deviation values for 3 replicates simulated under the 428

low, medium, and high noise regimes. The RMS errors calculated over all nucleotides in 429

our database are shown in Fig 6. As this result confirms, the quality of the KF results 430

are related to that of the prior. The KF applied with a prior having high accuracy and 431

precision performs the best. 432
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Fig 6. KF results as the prior mean and standard deviation are varied for
N = 3 replicates simulated at (a) low (b) medium and (c) high noise levels
under log-normal noise model. The horizontal axis represents an increase in the
prior standard deviation, σm,0. The vertical axis represents the offset, µoffset, which was
added to the ground truth log reactivity to define the prior mean. The value of each bin
is the RMS error calculated over all nucleotides in our database between the ground
truth and Kalman filtered reactivities. Error calculations were carried out in the log
domain and the ground truth values were the log reactivities. See Methods for RMS
calculation details.

Intuitively, applying the KF with a prior that is inaccurate (i.e. having a large mean 433

offset) and precise (i.e. having a small standard deviation) results in the filter placing a 434

high level of confidence in a biased initial prediction. On the other hand, applying the 435

KF with a prior that is inaccurate but also imprecise (i.e. having a large standard 436

deviation) is comparable in performance to the log-averaging approach. This is because 437

the KF places a high level of confidence in the measurements while the prior is largely 438

ignored. To confirm this intuition, we performed the following two experiments: 439

• The prior used had a mean that was offset from the ideal by a fixed value. We 440

increased its standard deviation and studied the effects on the KF results. RMS 441

errors are shown in Fig 7 plotted against the prior standard deviation. 442

• The prior used had mean that was fixed at the ideal value. We increased its 443

standard deviation and studied the effects on the KF results. RMS errors are 444

shown in Fig 8 plotted against the prior standard deviation. 445

As expected, the KF performed best when provided with an accurate and precise prior 446

distribution. Its performance suffered the most when the prior mean offset was 447

increased but its standard deviation remained small. However, when the KF was fed a 448

highly inaccurate but also imprecise prior, the results mirrored that of log-averaging. 449

While these simulations can be seen as a purely theoretical exercise, we note that the 450

prior distribution was modeled based on data collected from years of RNA SHAPE 451
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Fig 7. Kalman filtering results using an inaccurate (biased) prior improves
with increased uncertainty in prior. RMS errors were calculated over all
nucleotides in our database. Error calculations were carried out in the log domain and
the ground truth values were the log reactivities. See Methods for RMS calculation
details. The prior used in the KF was biased by adding the offset µoffset= 3 to the ideal
prior mean. As the standard deviation of the prior, σm,0, was increased, the filters
performance improved, despite the mean offset. On the other hand, when standard
deviation was close to 0, the filter is influenced by a narrow, biased prior and produced
poor results.
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Fig 8. Kalman filtering results using an accurate (unbiased) prior performs
comparable to log-averaging when the uncertainty is increased. RMS errors
were calculated over all nucleotides in our database. Error calculations were carried out
in the log domain and the ground truth values were the log reactivity. See Methods for
RMS calculation details. The prior mean was fixed to the ideal value. Its standard
deviation, σm,0, was then increased. As the standard deviation increased, the more
comparable the Kalman filtering’s performance was to log-averaging.

experiments. As more data is obtained, data characterizations will inevitably improve. 452

It is thus not far-fetched to foresee future datasets that beget more specialized prior 453

models. 454

Comparison of data-directed structure predictions under 455

different replicate processing strategies 456

A major applications of SHAPE data is in RNA secondary structure prediction. In 457

dynamic programming based secondary structure prediction algorithms, reactivities are 458

incorporated into the structure prediction algorithm by first being converted into a 459

pseudo-energy change term. This term is based on a linear-log relationship between 460

reactivities and pseudo-energies. Thus, the prediction algorithm internally transforms 461

the input profile to the log domain. For this section, we employ the RNAstructure 462
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software package [55], which implements such an algorithm. When using multiple 463

replicates, the goal is to first combine them in a way that optimally removes the noise 464

component. The resulting profile is then used as input to the prediction software to 465

ultimately improve prediction accuracies. The replicate processing can be done either in 466

the data domain by averaging, or in the log domain by log-averaging or Kalman 467

filtering. To compare these three approaches, we ran the following sets of computational 468

experiments to make secondary structure predictions on each of the 22 RNAs in our 469

database: 470

1. Reference set (SET0): The original SHAPE profile (ground truth) was used as 471

input to RNAstructure. The accuracy of the resulting predicted structure was 472

used as a baseline for comparison to those predicted in SET1, SET2, and SET3. 473

2. Average set (SET1): We generated 3 replicates under the log-normal noise 474

model for each RNA. In the data domain, the average profile was calculated and 475

used as input to RNAstructure. 476

3. Log-average set (SET2): Using the same 3 replicates, the log-average profile 477

was calculated in the log domain, transformed back to the data domain, and used 478

as input to RNAstructure. 479

4. Kalman filter set (SET3): Using the same 3 replicates, the KF profile was 480

calculated in the log domain, transformed back to the data domain, and used as 481

input to RNAstructure. 482

For each set, the differences between the predicted structure and the reference structure 483

were quantified using the Matthews Correlation Coefficient (MCC) [56,57] (see Methods 484

for MCC definition). As SET0 is the baseline set, we subtracted the MCC values of 485

SET1, SET2, and SET3 from those in SET0. These results are shown in Fig. 9 for 3 486

replicates simulated in the low, medium, and high noise regimes. Results using 2 and 4 487

simulated replicates are shown in S1 Fig and S2 Fig. For replicates simulated under 488

moderate noise levels, we did not observe substantial differences between the results of 489

SET1, SET2, and SET3. However, in the presence of high noise, the structures 490

predicted in SET2 and SET3 (using the log-average and KF profiles, respectively) were 491

closer in MCC to the baseline than SET1 (using the average profile). Comparing the 492

results of SET1 (averaging) and SET2 (log-averaging), for 17 of the 22 RNAs, the MCC 493

coefficients for the structures predicted using the log-average profiles were closer to the 494

baseline than those predicted using the average profiles. For these RNAs, the 495

improvement observed in the results in SET2 compared to SET1 was between 0.69% 496

and 48.21%. For the remaining RNAs, the decrease in MCC values in SET2 compared 497

to SET1 was less than 6.05%. On the other hand, the differences between the results of 498

the two log-domain processed profiles, SET2 (log-averaging) to SET3 (Kalman filtering) 499

where negligible, even in the high noise regime. 500
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Fig 9. RNAstructure results for profiles calculated using different
processing methods. 3 replicates simulated at (a) low (b) medium and (c) high noise
regimes. MCC differences are plotted compared to the baseline calculated in SET0. An
MCC difference of 0 indicates that when the processed profile was used as input to the
RNAstructure software, the resulting predicted structure had the same accuracy as the
one predicted using the ground truth profile as input. A positive MCC difference
indicate that when the processed profile was input to to the RNAstructure software, the
resulting predicted structure was less accurate than the one predicted using the ground
truth profile as input. Note that the scale of the MCC differences vary between noise
regimes. RNAs are ordered by length. See Table 1 of Methods for corresponding
sequence names and lengths. Error bars represents standard errors over 10 repeated
runs of replicate simulations.

Discussion 501

In this work, we explored models of noise in SHAPE experiments and compared 502

methods for replicate processing. The goal of replicate processing is to generate a profile 503

that captures as well as possible the true sequence of reactivities. This is done by 504

combining measurements for each nucleotide in a way that eliminates the contaminating 505

noise. Any statistically sound processing method is closely linked to the model 506

describing the system. A system model includes models for both the reactivity of a 507
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nucleotide and the noise effecting measurements, which is composed of many 508

contributing factors. Based on an empirical distribution of SHAPE data, we modeled 509

reactivities as following a log-normal distribution. We described two models for the 510

measurement noise in SHAPE experiments: the normal noise model and the log-normal 511

noise model. In both models, each nucleotide in an RNA was assumed to have a ground 512

truth reactivity value that persists between replicates. Nucleotide reactivities were also 513

assumed to be independent across an RNA. Considering the normal noise model, 514

replicate processing corresponds to simple measurement averaging. In the log-normal 515

noise model, we outlined two methods for replicate processing: log-averaging and 516

Kalman filtering. Our analyses of SHAPE experiments underscored that a normal noise 517

model is not adequate to represent the data. We instead discussed the relevance of the 518

log-normal noise model. Under the assumptions of this model, we noted that processing 519

such experiments by data domain averaging leads to bias in the resulting profile. This 520

bias can have an affect on the ensuing applications of the data, such as in the case of 521

data-directed RNA secondary structure prediction. These detrimental effects can be 522

avoided by carrying out the replicate processing in the log domain, either by 523

log-averaging or Kalman filtering. Within the log-normal noise model, application of the 524

Kalman filtering approach has the advantage that a prior on the nucleotide reactivities 525

can be introduced. The performance of Kalman filtering is directly dependent upon the 526

quality of the prior and replicate processing can significantly improve with a reliable 527

prior. This auxiliary prior information employed by the filter is particularly useful for 528

signal extraction in the case of substantial noise or as the number of replicates decreases. 529

Accordingly, a well characterized prior represents an additional opportunity for 530

improvement in signal extraction beyond data quality and replicate count. 531

As mentioned above, Kalman filtering results are strongly tied to the quality of this 532

prior. We observed that a high quality prior mitigates the use of multiple replicates, 533

which can be a serious advantage in resource limited analysis of large RNA molecules. 534

Because such a prior is based on an empirical distribution which can be built with any 535

reasonably sized database, we take this opportunity to advocate the use of public data. 536

As more data becomes available, we anticipate that more specialized priors can be 537

generated, further improving filtering results. We again note that although we focused 538

on the SHAPE probe in this work, there are a variety of other experimental probes 539

available providing a wealth of opportunity for data characterization. 540

Future directions 541

Kalman filtering is just one of many possible signal processing methods available for 542

information extraction. In fact, the KF is a specialized form of the general class of 543

Bayesian filters [58]. Extended Kalman filters and particle filters and other members of 544

this class of filters loosen the Kalman constraints and can also be applied to the analysis 545

of SHAPE data. 546

A distinct advantage of filtering is that, as with the use of the prior distribution, it 547

provides opportunity to incorporate other types of information into the denoising 548
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scheme. Consider, as one example, the correlation effects of neighboring nucleotides in 549

SHAPE experiments, which have been noted and modeled [54]. Although in our study 550

we assumed independence between nucleotides, these effects can be incorporated into 551

processing algorithms to improve signal extraction. Such complex modeling is simply 552

inaccessible under an averaging framework, leaving these correlations as untapped 553

avenues for improved signal extraction. 554

As a final note, we reiterate that much work is to be done to fully characterize the 555

noise in any SP experiment. The intimate coupling of noise characterization and signal 556

extraction underscores the importance of this step in data processing. Although 557

structure prediction is the most prominent applications of SHAPE data, there exists a 558

breadth of emerging applications for SP data, such as data-directed sequence alignment 559

and the identification of conserved and functional RNA structures [27,54,59]. SP data 560

and filtering techniques need to be examined in the context of these data-drive 561

applications. 562

Materials and Methods 563

Preprocessing SHAPE data 564

Normalized SHAPE reactivity scores are expected to fall between 0 and 2. However, 565

values exceeding 2 and below 0 are not rare and most SHAPE profiles contain both 566

negative and 0 values. Thus, prior to the application of a log transformation, the profile 567

must undergo some preprocessing. A common approach for dealing with negative values 568

is to simply replace each occurrence with 0 [33]. We refrained from using this method as 569

a profile processed in this way still precludes the use of the log transformation. Another 570

approach is to replace negative reactivities with their absolute value. The drawback of 571

this approach stems from the distribution of negative valued reactivities: while negative 572

values correspond to unreactive nucleotides, the long tail in the distribution can result 573

in an unreactive nucleotide being assigned an uncharacteristically high reactivity. 574

To circumvent these problems, we followed a procedure similar to the one taken 575

in [30]. Using a large set of SHAPE data, we built a “background distribution” from the 576

empirical distribution of all negative values observed. Our background distribution 577

included data coming from the SHAPE profiles of all 22 RNAs in our database (see 578

Table 1 of Methods). All values below a certain cutoff were removed from this set in 579

order to truncate the tail of the background distribution. In our experiments, we set 580

this cutoff to -0.25. For a given profile, each negative and 0 valued reactivity were 581

replaced by sampling from the truncated distribution. The absolute value of this sample 582

was used as the updated reactivity. After all negative and 0 valued reactivities were 583

replaced, the resulting processed profile was strictly positive and amenable to a log 584

transformation. The original and processed SHAPE profiles of the 22 RNAs in our 585

database are included in S1 Dataset. 586
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Simulation of replicates 587

To generate a replicate under the log-normal noise model for an RNA with ground truth 588

profile S, we simulated the reactivity measurements for each nucleotide m separately. 589

As log measurements follow Eq. 3, the log reactivity of nucleotide lm is corrupted by 590

additive noise wm following distribution N (0, σwm
). A log measurement was simulated 591

by sampling from this distribution and adding it to lm. We selected σwm
from a 592

uniform distribution U(σmin, σmax). The values of σmin and σmax were dictated based 593

on the selected noise regime (See Results for definition of noise regimes). This was 594

repeated for the M nucleotides in the RNA sequence to generate a complete replicate 595

profile. Replicates were reverted to the data domain via an exponential transformation. 596

A comparison of the mean-dependence in the standard deviation of real and simulated 597

replicates are shown in Fig. 10. 598
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Fig 10. Comparison of mean-dependence in the standard deviation of (a)
real and (b) simulated SHAPE measurements. For each nucleotide, the mean
value of the 5 measurements (real and simulated) were calculated and plotted against
their standard deviation on a log-log plot. A linear fit is overlaid in red for each. The
left panel is a recreation of Fig. 1 for comparison. The right panel consists of data
coming from simulated replicates for the same RNA. The ground truth reactivity used
the in replicate simulation was the average measurement per nucleotide coming from the
real replicates. For the simulated replicates, noise levels were between σmin = 0 and
σmax = 1.5. Note that negative reactivity values in the real data are not included as
they are incompatible with the log-log plot.

Kalman filter implementation 599

We now provide a description of the simplified 1 dimensional implementation of the KF 600

we applied in the log domain. To maintain notational simplicity in this section, we drop 601

the m subscripts denoting the nucleotide but restate that the filter is applied per 602

nucleotide. 603

Recall in the log domain the relationship between the log measurements li and the 604

true log reactivity l is 605

li = l + wi. (6)
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We assume the wi values are independent and identically distributed as ∼ N (0, σw). 606

The measurement vector is [l1, l2, . . . , lN ]. The order of measurements imposed in this 607

vector is random and does not affect the final filtered result. The variance, σ2
w, 608

represents the uncertainty in each measurement. Its approximate value, σ̂2
w, is the 609

sample variance of the li values. That is, 610

σ̂2
w =

1

N − 1

N∑
i=1

(li − l̄)2. (7)

The prior distribution is denoted N (µ0, σ0). The log reactivity for a nucleotide, l, is 611

assumed to be a sample of this distribution. We set µ0 = −1.74 and σ0 = 1.52. These 612

values were obtained using Gaussian fit to the empirical distribution of our database of 613

10690 log transformed SHAPE reactivity values. Let l̂i denote the optimal estimate of l 614

after the ith KF iteration. The uncertainty in this estimate is denoted by σ2
i . The 615

Kalman gain term at the ith iteration is denoted by Ki. 616

The filter is initialized as follows. Prior to the inclusion of the first measurement, the 617

estimate l̂0 relies solely on the prior. The estimate is thus the prior mean and its 618

uncertainty is the same as the prior variance. That is, 619

l̂0 = µ0

σ2
0 = σ2

0 .

During the ith KF iteration, the ith measurement, li, is incorporated into the estimate. 620

First, the Kalman gain is calculated as: 621

Ki =
σ2
i−1

σ2
i−1 + σ̂2

w

(8)

The new estimate, l̂i, and its uncertainty, σi, are then calculated as: 622

l̂i = l̂i−1 +Ki(l
i − l̂i−1) (9)

σi = (1−Ki)σi−1 (10)

The uncertainty, σi, is in fact the variance in the posterior distribution of the prior 623

conditioned on the measurements incorporated so far. This value decreases as more 624

measurements are incorporated. The new estimate represents an optimal fusion of the 625

previous estimate and the newly incorporated measurement. The filter repeats Eqs. 8 - 626

10 until all N measurements have been incorporated into the model. The final estimate 627

of l is k := l̂N . 628

Note that our implementation appears to bypass the predict step of the standard KF 629

algorithm. This is because we assume no uncertainty in our model that the nucleotide’s 630

reactivity remains constant between replicates. Thus, the predicted value for the 631
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(i+ 1)st measurement is simply the ith estimate, l̂i. 632

A Python implementation of this method is provided in S1 File. 633

Ideal prior for the Kalman filter 634

The ideal prior is perfect information. Such a prior has a mean that is the value to be 635

predicted and a standard deviation of 0. For a nucleotide m with ground truth 636

reactivity sm, the prior distribution used in the KF is denoted N (µm,0, σm,0). In the 637

case of the ideal prior, µm,0 = lm and σm,0 = 0. We studied how deviations from this 638

ideal model affected the KF results by adding an offset to the ideal mean. That is, 639

µm,0 = lm + µoffset (11)

The offset value, µoffset, was varied between -3 and 3. The prior standard deviation, 640

σm,0, which signifies the uncertainty in the prior, was similarly increased from 0 to 5. 641

Error calculations 642

We calculated the root mean square (RMS) error over all nucleotides considered (in an 643

RNA or relevant bin for heat map generation) as 644

RMS =

√√√√ 1

M

M∑
i=1

(
l̂m − lm

)2

. (12)

Here, l̂m is the value to be compared against the ground truth, lm. M is the number of 645

nucleotides considered (in an RNA or relevant bin for heat map generation). For our 646

calculations, l̂m was either the log-average reactivity, l̄m, or the KF reactivity, km. 647

Matthews Correlation Coefficient 648

The accuracy of a computationally predicted secondary structure for a given RNA 649

sequence can be assessed by comparing it to a reference structure. The number of true 650

positives, TP, is the number of base pairs that appear in both structures. The number 651

of false positives, FP, is the number of base pairs that appear in predicted structure but 652

not in the reference structure. The number of true negatives, TN, is the number of 653

possible base pairs that do not appear in either structure. Finally, the number of false 654

negatives, FN, is the number of base pairs that appear in the reference structure but do 655

not appear in the predicted structure. As defined in [57], the MCC value of the 656

predicted structure is calculated as 657

MCC =
TP× TN− FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
. (13)
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Data used 658

Fig. 1, 3, and 10 were created using the cucumber mosaic virus RNA3 sequence data 659

from [47]. The database used in the rest of our analysis was comprised of data coming 660

from the 22 RNAs listed in Table 1 with their appropriate source. The total number of 661

nucleotides in our database was 11070. From the published SHAPE profiles of these 662

RNAs, 1262 of the nucleotides have non-positive SHAPE reactivities. These were used 663

to build the background distribution described above. Another 380 nucleotides do not 664

have SHAPE scores recorded in the published profiles. Hence, a total of 10690 SHAPE 665

reactivities were used in our study. 666

Table 1. Summary of RNA sequences with SHAPE profiles included in database.

RNA Length Reference
Pre-Q1 riboswitch, B. subtilis 34 [52]
Fluoride riboswitch, P. syringae 66 [52]
Adenine riboswitch, V. vulnificus 71 [52]
tRNA(asp), yeast 75 [18]
tRNA(phe), E. coli 76 [52]
TPP riboswitch, E. coli 79 [52]
cyclic-di-GMP riboswitch, V. cholerae 97 [52]
SAM I riboswitch, T. tengcongensis 118 [52]
5S rRNA, E. coli 120 [52]
M-Box riboswitch, B. subtilis 154 [52]
P546 domain, bI3 group I intron 155 [18]
Lysine riboswitch, T. martima 174 [52]
Group I intron, Azoarcus sp. 214 [52]
Hepatitis C virus IRES domain 336 [52]
Group II intron, O. iheyensis 412 [52]
Group I Intron, T. thermophila 425 [52]
5′ domain of 23S rRNA, E. coli 511 [52]
5′domain of 16S rRNA, E. coli 530 [52]
16S rRNA, H. volcanii 1474 [53]
16S rRNA, C. difficile 1503 [53]
16S rRNA, E. coli 1542 [18]
23S rRNA, E. coli 2904 [18]

Supporting information 667

S1 Fig. RNAstructure results for profiles calculated using different 668

processing methods. 2 replicates simulated at (a) low (b) medium and (c) high noise 669

regimes. MCC differences are plotted compared to the baseline calculated in SET0. An 670

MCC difference of 0 indicates that when the processed profile was used as input to the 671

RNAstructure software, the resulting predicted structure had the same accuracy as the 672

one predicted using the ground truth profile as input. A positive MCC difference 673

indicate that when the processed profile was input to to the RNAstructure software, the 674

resulting predicted structure was less accurate than the one predicted using the ground 675
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truth profile as input. Note that the scale of the MCC differences vary between low and 676

high noise regimes. RNAs are ordered by length. See Table 1 of Methods for 677

corresponding sequence names and lengths. Error bars represents standard errors over 678

10 repeated runs of replicate simulations. 679

S2 Fig. RNAstructure results for profiles calculated using different 680

processing methods. 4 replicates simulated at (a) low (b) medium and (c) high noise 681

regimes. MCC differences are plotted compared to the baseline calculated in SET0. An 682

MCC difference of 0 indicates that when the processed profile was used as input to the 683

RNAstructure software, the resulting predicted structure had the same accuracy as the 684

one predicted using the ground truth profile as input. A positive MCC difference 685

indicate that when the processed profile was input to to the RNAstructure software, the 686

resulting predicted structure was less accurate than the one predicted using the ground 687

truth profile as input. Note that the scale of the MCC differences vary between low and 688

high noise regimes. RNAs are ordered by length. See Table 1 of Methods for 689

corresponding sequence names and lengths. Error bars represents standard errors over 690

10 repeated runs of replicate simulations. 691

S1 Dataset. Original and processed SHAPE profiles for the 22 RNAs of 692

Table 1. 693

S1 File. Python implementation of 1D Kalman filter for RNA SHAPE 694

replicates. 695
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