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Abstract 

Objective
The primary objective is to develop an automated method for detecting patients that are ready for 
discharge from intensive care.

Design
We used two datasets of routinely collected patient data to test and improve upon a set of previously
proposed discharge criteria.

Setting
Bristol Royal Infirmary general intensive care unit (GICU).

Patients
Two cohorts derived from historical datasets: 1870 intensive care patients from GICU in Bristol, 
and 7592 from MIMIC-III (a publicly available intensive care dataset).

Results 
In both cohorts few successfully discharged patients met all of the discharge criteria. Both a random
forest and a logistic classifier, trained using multiple-source cross-validation, demonstrated 
improved performance over the original criteria and generalised well between the cohorts. The 
classifiers showed good agreement on which features were most predictive of readiness-for-
discharge, and these were generally consistent with clinical experience. By weighting the discharge 
criteria according to feature importance from the logistic model we showed improved performance 
over the original criteria, while retaining good interpretability.

Conclusions
Our findings indicate the feasibility of the proposed approach to ready-for-discharge classification, 
which could complement other risk models of specific adverse outcomes in a future decision 
support system. Avenues for improvement to produce a clinically useful tool are identified. 

Strengths and Limitations of this study:

 Training data from multiple source domains is leveraged to produce general classifiers.
 The restrictive feature representation tested could be expanded to better exploit the richness 

of available data and boost performance. 
 Our approach has the potential to streamline the discharge process in cases where patient 

physiology makes them clear candidates for a de-escalation of care.
 High-risk patients would require additional levels of decision support to facilitate complex 

discharge planning.    
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Introduction

Demand for intensive care unit (ICU) beds is rising at a time when the resource is constrained[1]. In
order to optimise the allocation of this resource, patients should be discharged from the ICU as soon
as they no longer require the specialist input provided there. The reduced ICU capacity caused by 
discharge delay can result in the delayed admission of patients requiring critical care[2,3]. 
Furthermore, patients remaining in the ICU after they are medically fit to leave are at risk of 
iatrogenic harm and may experience detrimental effects on physical rehabilitation and psychosocial 
well-being[4].

The identification of individuals that are ready to leave ICU is a key component of patient flow 
through the hospital. At present this identification is a manual process, relying on physicians 
reviewing patients on a ward round at a standard point in time. There is a lack of formal guidance to
inform discharge readiness and as such the process is sensitive to both the decision making 
heuristics of individual clinicians and structural factors within the hospital[5]. A number of studies 
have looked to address this problem by attempting to standardise the discharge process.
In a scoping review of these studies Stelfox et al.[6] noted that, while a range of tools have been 
developed to characterise discharge readiness, most studies have been single-centre and have not 
conducted comparative evaluations of different tools.   

Increasingly ICUs are using clinical information systems (CIS) to collect, store and display 
physiological data. The availability of such routinely collected patient data presents the opportunity 
to apply methods from data science, with the potential to transform healthcare in a number of 
ways[7,8]. Two particular avenues for development are the automation of simple tasks[9] and the 
implementation of decision support systems[10], both of which could reduce the cognitive load of 
clinicians and free up scarce resource for tasks that require human expertise. This work considers 
the ICU discharge process, which has accessible data from routine collection and requires a simple 
but important binary decision that could benefit from an evidence-based approach. Indeed, several 
statistical models have recently been developed to predict the risk of adverse events following 
intensive care discharge[11–15]. Such risk models are invaluable tools for clinical decision making 
and, in the context of ICU discharge, can provide information with which to plan complex de-
escalations of care. For example, patients deemed to be at high-risk of readmission may benefit 
from continued close monitoring[16], since early detection of deterioration is a strong predictor of 
outcome[17,18]. 

In our previous work on the psychology of clinical decision making we have demonstrated the 
effectiveness of simple ‘nudge’ based interventions in changing clinical practice[19–21]. Building 
on this foundation we were motivated to develop a classifier to automatically flag patients that 
appear physiologically fit for discharge. The intention is that such a screening tool could streamline 
morning ward rounds by allowing staff to focus their attention on the most likely-dischargeable 
patients. The tool could also prompt clinicians to consider discharge decisions at other times of day, 
outside of normal rounds. In 2003 Knight proposed a set of nurse-led discharge criteria[22] with a 
similar aim – to expedite discharge from a high-dependency unit by allowing nurses to discharge 
patients who were clearly well enough to leave. These criteria represent a general and highly 
conservative set of constraints on physiology that characterise a patient as suitable for care on an 
acute ward (level 1 care). High-risk patients are unlikely to meet these criteria, but may still be 
dischargeable by a consultant. In this study we use routinely collected patient data to retrospectively
evaluate Knight’s criteria, and then improve upon their performance using machine learning 
methods. To this end we study two historical cohorts. One cohort consists of patients treated on the 
general intensive care unit at the Bristol Royal Infirmary between January 2015 and April 2017, 
while the second consists of patients selected from the MIMIC-III database[23] (see Methods for 
details). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/404533doi: bioRxiv preprint 

https://doi.org/10.1101/404533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods

Discharge criteria

The nurse-led discharge (NLD) criteria proposed by Knight[22] consist of a set of constraints on 
various routinely collected vital signs and laboratory results. If a patient meets all the criteria for a 
period of at least four hours, Knight states that they may be safely discharged by a nurse. The 
motivation behind developing these criteria was to facilitate discharge by nurses in cases where the 
decision was clear, and there is some evidence of improved bed allocation when using such a nurse-
led system[22,24,25]. In order to test the NLD criteria on historical patient data we codified the 
constraints (see online supplementary file section A) into 15 binary tests, which are defined in table 
1. For criteria that were not assigned numeric values in the original publication (B1-4, CNS) we 
used the ‘normal’ bounds as defined in our clinical information system.

Table 1: Codified version of the discharge criteria for application to electronic health record data. 
Here the fifteen criteria have been grouped into intuitive subsets and each assigned a test ID (‘R0’ 
to ‘B4’).  According to the original specification, if all 15 criteria are met for a period of at least 
four hours the patient can be safely discharged.

Test ID Test name Variable Test condition

R0 Respiratory: airway airway airway patent

R1 Respiratory: FiO2 fio2 fio2 ≤ 0.6

R2 Respiratory: blood oxygen spo2 spo2 ≥ 95 (%)

R3 Respiratory: bicarbonate hco3 hco3 ≥ 19 (mmol/L)

R4 Respiratory: rate resp (rate) 10 ≤ resp ≤ 30 (bpm)

C0 Cardiovascular: blood pressure bp (systolic) bp ≥ 100 (mmHg)

C1 Cardiovascular: heart rate hr  60 ≤ hr ≤ 100 (bpm)

P Pain pain 0 ≤ pain ≤ 1

CNS Central nervous system gcs gcs  ≥ 14

T Temperature temp 36 ≤ temp ≤ 37.5 (C)

B0 Bloods: haemoglobin haemoglobin haemoglobin ≥ 9 (g/dL)

B1 Bloods: potassium k 3.5 ≤ k ≤ 6.0 (mmol/L)

B2 Bloods: sodium na 130 ≤ na ≤ 150 (mmol/L)

B3 Bloods: creatinine creatinine 59 ≤ creatinine ≤ 104 (umol/L)

B4 Bloods: urea bun 2.5 ≤ bun ≤ 7.8 (mmol/L)

Cohort selection

Subjects for this study were selected from two distinct historical data sources to form two patient 
cohorts. The inclusion criteria are detailed in section B of the online supplementary file. The first 
data source consists of the routinely collected data from 1870 patients treated on the general 
intensive care unit at the Bristol Royal Infirmary. We refer to the cohort selected from this dataset as
GICU. The second data source was derived from the MIMIC-III database[23], from which we 
selected patients who were admitted to medical or surgical intensive care since this approximates 
the patient type in GICU. We restricted our analysis to the ‘Metavision’ subset of MIMIC-III, since 
the labelling of the variables required to evaluate the NLD criteria was found to be more consistent 
in this portion of the database. Furthermore, we selected only the first intensive care stay of any 
given hospital admission, and only those stays for which there was a recorded callout (ready-for-
discharge) time. Following these criteria, we arrived at a subset of 7592 patients from MIMIC-III, 
forming the cohort we refer to hereafter as MIMIC.
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The use of two cohorts was motivated by two concerns. Firstly, by including the MIMIC cohort, we 
significantly increased the volume of data available for training classifier algorithms. Secondly, the 
use of two cohorts allowed us to study the generalisation of our results between different patient 
populations under different healthcare systems.

Readiness-for-discharge

The key to testing and improving on the discharge criteria was to be able to identify, from the 
historical data, patients that were ready-for-discharge (RFD) and not-ready-for-discharge (NRFD). 
Whereas previous models have looked to predict the occurrence of adverse events following ICU 
discharge[12,15] we wanted to learn to classify those patients that appear physiologically fit to 
leave the unit. These are subtly different tasks. The former requires the identification of patients at 
risk of negative outcomes from those who have already been declared fit for discharge, while the 
later looks to identify, from a sample of ICU patients, those who are no longer in need of critical 
care. Clearly the latter is an easier task. In order to train a classifier for this task it was necessary to 
define instances of the positive (RFD) and negative classes (NRFD). Both datasets (GICU and 
MIMIC) contain a callout for each patient, which marks the time at which a patient was declared 
clinically ready to leave the intensive care unit. A patient was defined as RFD at their time of 
callout, provided they had a positive outcome after leaving ICU. Conversely, patients with a 
negative outcome were defined as NRFD at their time of callout. A positive outcome was defined as
the patient leaving hospital alive without readmission to ICU. A negative outcome was defined as 
either readmission to ICU during the same hospital admission, or in-hospital mortality after 
discharge from ICU. We note that it is more conventional to use readmission (or mortality) within 
48 hours to define a negative outcome related to ICU care[12,26]. However, this practice is not 
universal[27] and in our case it was not possible because of limitations in the data available locally.

Table 2: Patient characteristics for the two cohorts. Discharge delay defined as length of time 
between callout and discharge from ICU. Readmission to ICU defined as readmission during same 
hospital stay. Negative outcome is in-hospital mortality and/or readmission.

 MIMIC GICU

Total patients 7592 1870

Gender, % female 47.6 40.5

Age, median years (IQR)) 64.0  (50.9-77.0) 63.0  (49.0-72.8)

BMI, median (IQR) 28.1  (24.9-31.6) 26.5  (22.8-30.6)

Length of stay, median days (IQR) 1.93  (1.11-3.34) 2.96  (1.69-5.14)

Discharge delay, median days (IQR) 0.27  (0.18-0.39) 0.34  (0.20-1.04)

In-hospital mortality, # (%) 466  (6.14) 67  (3.58)

Readmission to ICU, # (%) 589  (7.76) 52  (2.78)

Negative outcomes, # (%) 954  (12.57) 109  (5.83)

Given the low rates of negative outcome following callout in both MIMIC and GICU (see table 2), 
we generated further instances of the negative class, in order to balance the class sizes. 
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Conceptually this is equivalent to providing more instances for the classifier to learn the 
physiological characteristics of patients requiring ongoing critical care. To do this we sampled 
patients at between three and eight days prior to their callout (see supplementary section B: figures 
1-3), under the assumption that patients were not-ready-for-discharge at this point in time, 
regardless of their eventual outcome state (positive or negative). Patients within the first 24 hours of
their ICU stay were omitted from this sample. Full details of the sampling procedure are given in 
section B of the online supplementary file.

Feature extraction

We used the same feature set to evaluate the NLD criteria and to train machine learning 
classifiers.We constructed either one or two features corresponding to each of the NLD criteria, 
depending on the criteria in question and on data availability. For example, the features ‘resp min’ 
and ‘resp max’ were used to test the criterion R4, whereas the single feature ‘bun’ was used to test 
B4. Where possible the feature values were calculated from a four hour sample window, as 
specified by the original NLD criteria. In the cases where no data was available during the four hour
window, an extended 36 hour window was used. This extended window was mainly relevant for 
infrequently measured laboratory test results (see table 1 in section C of the online supplementary 
file). Full details and justification of the feature extraction procedure are provided in section C of 
the online supplementary file. Since this feature set is somewhat restrictive, consisting of 18 
physiological features, we also defined an extended feature set that included the following extra 
features: age, sex, BMI and hours since admission.

To produce the results presented in the main text, missing feature values were imputed using k-
nearest neighbour imputation[28]. Full details of the imputation procedure are given in section D of 
the online supplementary file, along with a complete case analysis that addresses the sensitivity of 
our results to this imputation strategy. When training and testing the machine learning classifiers, 
features were standardised by subtracting the mean and dividing by the standard deviation. The 
feature matrices for the imputed and complete case data sets are visualised using the t-SNE 
algorithm[29] in figures 4 and 5 of section D in the online supplementary file. 

Analysis of NLD criteria

Knight originally specified that all 15 criteria must be met in order to allow safe discharge by a 
nurse[22]. Following this specification we evaluated the criteria for both MIMIC and GICU, 
determining which instances were classified as RFD and NRFD, and comparing these results to 
ground-truth. We then further investigated the performance of the NLD criteria as a classification 
system, by relaxing the constraint that all 15 tests must be passed in order to make an RFD 
classification. Instead we used the NLD criteria to produce probability estimates of being RFD, by 
summing the number of tests passed and dividing by 15 to produce a normalised output between 0 
and 1. In this formulation each of the 15 criteria contribute equally to the RFD probability. 
Subsequently we weighted each of the criteria according to a measure of feature importance (see 
below) in order to improve their predictive performance. Using the probability outputs it was 
possible to evaluate the performance of the NLD criteria in the same way as the machine learning 
classifiers described below.

Machine learning classifiers

To improve upon the performance of the NLD criteria, we trained and tested two machine learning 
classifiers: a random forest (RF)[30], and a logistic classifier (LC)[31]. These two algorithms were 
chosen for their simplicity in implementation and ease of interpretation in their predictive output. 
The training methodology we used was intended to produce classifiers that made good use of the 
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training data that comes from multiple source domains, whilst generalising well to new patient 
populations. As such we employed multiple-source cross-validation[32]. A single iteration of this 
procedure is as follows. Each source dataset is split into train and test data. For GICU 30% of the 
data is held out for testing. For MIMIC an equal sized test set is held out (~10%). Multiple-source 
cross-validation is then used to optimise the hyper-parameters on the training data (see section E of 
the online supplementary file) with two folds, one derived entirely from MIMIC and the other 
derived entirely from GICU. The optimised classifier is then retrained on the full training data 
(MIMIC and GICU), and its performance is tested on the held-out test data. This procedure is 
repeated over 100 random train-test splits to produce estimates of the mean and standard deviation 
of classifier performances.

In order to determine the feature importances for each classifier, and therefore understand which 
features were most predictive of readiness-for-discharge, we calculated the permutation feature 
importance[33]. In short this procedure involves iterative random permutation of the values of each 
feature, and the calculation of average loss of classifier performance (we used area under the ROC 
curve) resulting from this feature randomisation.  The overall performance of our trained classifiers,
and the NLD criteria, was characterised by producing receiver-operator-characteristic (ROC) and 
precision-recall (PRC) curves[34], and by evaluating a suite of common performance metrics.
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Results.

The original specification of the NLD criteria proved to be highly conservative as expected, 
producing low false positive and true positive rates for both cohorts (supplementary section D: 
tables 2-5). The true positive rates for MIMIC and GICU were 1.1% and 6.6% respectively. Varying
the threshold number of criteria required to make an RFD classification allowed us to produce ROC
and PRC curves for the NLD criteria. These curves are illustrated in figure 1 for a single train-test 
data split. On this data split the NLD criteria obtained precisions of greater than 0.7 up to a recall of 
0.6 for both cohorts. The random forest using the extended feature set showed large performance 
gains on this data split, with precisions of greater than 0.8 up to a recall of 0.8.

Table 3: Performance metrics for the various classification systems. All scores are averaged over 
100 train-test data splits and given as: mean (standard deviation). All metrics other than AUROC 
and Brier score are evaluated at a specificity of 0.7, using linear interpolation to estimate this 
operating point in ROC-space. NLD_weighted are the NLD criteria, weighted by feature importances 
from the logistic classifier. LC_extended and RF_extended are the machine learning classifiers with 
extended feature sets.

  NLD NLD_weighted LC RF LC_extended RF_extended

G
IC

U

AUROC 0.7913 (0.0098) 0.8197 (0.0098) 0.8788 (0.0087) 0.8692 (0.0093) 0.8822 (0.0091) 0.8721 (0.0094)

Accuracy 0.7222 (0.0248) 0.7829 (0.0339) 0.8397 (0.0492) 0.8389 (0.0496) 0.8318 (0.0475) 0.8426 (0.0505)

F1 0.7473 (0.0109) 0.7709 (0.0153) 0.8109 (0.0099) 0.8102 (0.0115) 0.8050 (0.0119) 0.8129 (0.0109)

Specificity 0.7000 (0.0000) 0.7000 (0.0000) 0.7000 (0.0000) 0.7000 (0.0000) 0.7000 (0.0000) 0.7000 (0.0000)

pAUROC 0.1469 (0.0061) 0.1471 (0.0076) 0.1961 (0.0068) 0.1876 (0.0078) 0.1989 (0.0068) 0.1888 (0.0079)

Brier 0.2677 (0.0060) 0.2265 (0.0083) 0.1465 (0.0052) 0.1502 (0.0056) 0.1439 (0.0059) 0.1482 (0.0049)

Sensitivity 0.7426 (0.0166) 0.8098 (0.0263) 0.8870 (0.0171) 0.8860 (0.0196) 0.8767 (0.0196) 0.8909 (0.0185)

M
IM

IC

AUROC 0.7442 (0.0059) 0.8248 (0.0056) 0.8549 (0.0124) 0.8605 (0.0122) 0.8726 (0.0108) 0.8859 (0.0110)

Accuracy 0.6783 (0.0125) 0.8007 (0.0358) 0.8366 (0.0513) 0.8387 (0.0517) 0.8494 (0.0533) 0.8531 (0.0545)

F1 0.6908 (0.0120) 0.7830 (0.0103) 0.8084 (0.0171) 0.8097 (0.0158) 0.8175 (0.0123) 0.8201 (0.0133)

Specificity 0.7000 (0.0000) 0.7000 (0.0000) 0.7000 (0.0000) 0.7000 (0.0000) 0.7000 (0.0000) 0.7000 (0.0000)

pAUROC 0.1238 (0.0030) 0.1429 (0.0043) 0.1677 (0.0100) 0.1729 (0.0099) 0.1837 (0.0092) 0.1955 (0.0091)

Brier 0.2510 (0.0029) 0.1986 (0.0046) 0.1470 (0.0065) 0.1472 (0.0069) 0.1394 (0.0056) 0.1388 (0.0064)

Sensitivity 0.6713 (0.0126) 0.8337 (0.0174) 0.8827 (0.0282) 0.8860 (0.0265) 0.9001 (0.0207) 0.9049 (0.0210)

In general the machine learning classifiers outperformed the NLD criteria. These performances, 
averaged over all 100 train-test data splits are summarised in table 3. The random forest performed 
better than the logistic classifier on MIMIC, according to all performance metrics, when using both 
the original and extended feature sets. On GICU the random forest and logistic classifier produced 
similar scores. For this cohort, the logistic classifier with the original feature set narrowly 
outperformed the random forest according to all metrics, but only won on three metrics (AUROC, 
pAUROC and Brier score) when the extended feature set was used. Overall, when training and 
testing on the imputed dataset, the random forest with extended feature set showed the best 
performance. The complete case analysis (table 6 in section D of the online supplementary file) 
produced qualitatively similar results but there was a clearer distinction between classifiers, with the
logistic classifier performing better on GICU and the random forest performing better on MIMIC. 
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Average receiver operating characteristics are summarised for all classifiers in tables 7 and 8 of 
section D in the online supplementary file.

Table 4: Feature importances given by the random forest (RF) and logistic classifier (LC), 
evaluated over 100 train-test data splits. Importance values are given as: mean (standard 
deviation). Features are ranked according to mean importance value, and the table is ordered 
according to the ranking given by the logistic classifier.

 Importance (LC) Importance (RF)
Rank
(LC)

Rank
(RF)

gcs_min 0.1053 (0.0026) 0.1029 (0.0102) 0 0

airway 0.0776 (0.0026) 0.0602 (0.0076) 1 1

bun 0.0190 (0.0009) 0.0139 (0.0025) 2 3

fio2 0.0096 (0.0006) 0.0205 (0.0024) 3 2

hr_max 0.0063 (0.0009) 0.0076 (0.0015) 4 4

haemoglobin 0.0061 (0.0006) 0.0040 (0.0014) 5 6

resp_max 0.0037 (0.0006) 0.0031 (0.0010) 6 7

hr_min 0.0024 (0.0006) 0.0047 (0.0014) 7 5

na 0.0010 (0.0003) 0.0005 (0.0004) 8 15

hco3 0.0009 (0.0003) 0.0006 (0.0005) 9 14

spo2_min 0.0005 (0.0002) 0.0005 (0.0003) 10 16

bp_min 0.0003 (0.0001) 0.0013 (0.0009) 11 11

resp_min 0.0001 (0.0001) 0.0020 (0.0007) 12 9

pain 0.0000 (0.0000) 0.0009 (0.0006) 13 13

creatinine 0.0000 (0.0000) 0.0028 (0.0011) 14 8

k 0.0000 (0.0000) 0.0003 (0.0003) 15 17

temp_min 0.0000 (0.0000) 0.0012 (0.0009) 16 12

temp_max 0.0000 (0.0000) 0.0018 (0.0008) 17 10

Broadly the two classifiers agreed as to which features were important in classifying patients as 
ready-for-discharge (table 4). Eight of the features ranked in the top ten by the logistic classifier 
were also ranked in the top ten by the random forest, and the Spearman’s rank correlation 
coefficient between the feature rankings was 0.761 (p=0.00002). Both classifiers ranked gcs_min 
and airway as the two most important features by a significant margin. There was little change in 
these feature rankings under the complete case analysis (table 9 in section D of the online 
supplementary file). We attempted to improve the classification performance of the NLD criteria by 
weighting each of the criteria according to the corresponding feature importance given by the 
logistic classifier. This weighting produced small performance gains over the original criteria (see 
NLDweighted in table 3), but not enough to warrant their use instead of a machine learning classifier in 
a clinical setting.
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Discussion

Identifying which patients are suitable for ICU discharge is complex[1,6]. Delayed and out of hours
discharges are associated with increased mortality[35], and patients in ICU who could be managed 
on the ward put an unnecessary strain on resources. The determination of ready-for-discharge status 
is influenced by many unmeasured factors, such as ICU census[25],and this leads to unwarranted 
variation in clinical decision making. Furthermore, the decision to declare someone fit for discharge
is based on the judgement of individual clinicians and is likely to be given a lower priority than 
decisions about treatment options for patients who are more unwell.

In this study we have put forwards the concept of a decision support tool that would prompt 
clinicians to consider discharging a patient when they appear physiologically ready-for-discharge. 
Such a prompt would occur by means of a dashboard notification, or ‘nudge’[20]. It would need to 
be sufficiently sensitive as to recommend high numbers of potential discharges, whilst providing 
enough specificity to retain clinician engagement. Here we have detailed the development of two 
machine learning algorithms intended for such a purpose, and demonstrated their performance 
improvement over a previously published set of criteria that were originally aimed at discharge 
automation[22]. At a threshold specificity of 0.7, the algorithm with best overall performance 
achieved mean sensitivities of 0.8909 and 0.9049 for the GICU and MIMIC cohorts respectively 
(table 7 in section D of the online supplementary file). This represents a relatively high rate of false 
positives and suggests that further development is required before a tool based on this approach 
could be deployed clinically. 

The features identified as most important by the classifiers were clinically meaningful. Clinicians 
will recognise that coma score, respiratory function and renal function are strongly related to 
successful ICU discharge. Under the logistic classifier certain features, such as body temperature 
and creatinine, appeared to be less important than we expected. This may be, in part, a consequence 
of patient heterogeneity on the general intensive care unit[36]. For example, body temperature may 
be predictive for patients with infection yet much of this predictive power is lost in our attempt to fit
a general model for the whole ICU population. Similarly, although creatinine levels are indicative of
renal function, persistently high creatinine should not be a criterion against discharge readiness for 
patients with chronic renal failure. The ability of the random forest to better model such non-linear 
feature dependencies may explain why it gave a higher rank to these features. 

In general, the performance of both classifiers would benefit from expanding the feature 
representation. The feature set we used was chosen to be directly analogous with the features tested 
by the discharge criteria. This feature set is restrictive, having been originally designed to be 
manually recorded by nurses using paper charts. We demonstrated that adding four extra features 
(age, sex, BMI and hours since admission) improved classification performance. However, machine
learning methods have the power to further exploit the richness of the data held in electronic 
charting systems by including more physiological parameters, and learning the most predictive 
feature representation of these parameters (see for example [37]). One barrier to this approach is the
challenge of harmonising the data, especially when combining data from different sources. This is 
one reason that we did not include diagnosis codes or severity of illness scores in this study, 
although they have previously been shown to be predictive of adverse events following 
discharge[11,12]. During a patient’s stay in ICU, many of their physiological parameters are 
controlled by clinical intervention, and their expected physiological state is dependent on their 
medical history (see, for example, guidelines on acceptable levels of Hb in different patient 
types[38]). Therefore, conditioning features on medical interventions and applying methods for 
patient sub-typing[36,39] are two improvements that we expect could significantly boost 
performance. Also, although the complete case analysis did not qualitatively alter our results, the 
development of a more sophisticated multiple-imputation strategy[40] would likely improve 
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performance by making best use of the available training data and exploiting the value in 
missingness[41]. 

A range of different tools and methods have previously been proposed with the aim of improving 
ICU discharge practice. These tools range from criteria to evaluate discharge readiness[22,42], to 
guidelines for discharge planning and education[6]. Additionally, a number of risk models have 
been developed to predict adverse outcomes following ICU discharge[11–13,15,43]. In particular 
Badawi and Breslow demonstrated that mortality and readmission should be modelled 
independently as separate outcomes[12]. Clearly a comparative evaluation of the existing tools is 
required in a clinical setting. We argue that a future decision support system for discharge planning 
should draw elements from all these methods. A screening algorithm, such as the one we have 
outlined here, could notify clinicians of dischargeable patients in cases where the decision is clear. 
Decisions around high-risk patients, which are frequently required, would benefit from an extra 
level of decision support, such as individual predictions of mortality and readmission risk[12]. The 
increasing availability of intensive care research datasets[44,45] is sure to improve the performance 
and generality of such models, particularly as methods from transfer learning are applied[15]. 
Ultimately the benefit from these models comes from the manner in which they are deployed. We 
have shown in previous work that subtle changes to the presentation of information can have 
significant impact on clinical decision making[20]. The aggregate effects of the small improvements
produced by such approaches could be widely beneficial[46]. We suggest that the proposed decision
support system would maximise engagement by addressing issues of model 
interpretability[47,48], and could leverage clinical expertise by learning online with a human-in-
the-loop[49].
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Conclusion

This work outlines a framework for the use of machine learning algorithms to identify patients that 
are physiologically fit for discharge from the ICU. A decision support tool based on these methods 
could contribute to the solution of this significant clinical and operational problem by streamlining 
the discharge process and reducing unnecessary ICU stay. We have identified a number of 
improvements that would be required before the deployment and testing of such a tool in a clinical 
setting, and highlighted how the tool would benefit from the inclusion of multiple complementary 
modelling frameworks. As more patient data becomes available in the wider hospital setting there is
extensive scope to use data-driven methods, such as the one presented here, to improve patient flow 
through hospitals.
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Figure legends:

Figure 1: Performance of the nurse-led discharge criteria (NLD) and random forest with extended 
feature set (RFext) evaluated on held-out data for a single train-test split. Left: ROC curves with 
associated area-under-curve (AUC) scores. Right: precision-recall curves.
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Figure 1.
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