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Abstract

Modern high-throughput experiments provide a rich resource to

investigate causal determinants of disease risk. Mendelian randomiza-

tion (MR) is the use of genetic variants as instrumental variables to

infer the causal effect of a specific risk factor on an outcome. Multi-

variable MR is an extension of the standard MR framework to consider

multiple potential risk factors in a single model. However, current im-

plementations of multivariable MR use standard linear regression and

hence perform poorly with many risk factors.

Here, we propose a novel approach to two-sample multivariable MR

based on Bayesian model averaging (MR-BMA) that scales to high-

throughput experiments. In a realistic simulation study, we show that

MR-BMA can detect true causal risk factors even when the candidate

risk factors are highly correlated. We illustrate MR-BMA by analysing

publicly-available summarized data on metabolites to prioritise likely

causal biomarkers for age-related macular degeneration.

Wordcount: 142/150

Mendelian randomization (MR) is the use of genetic variants to infer the

presence or absence of a causal effect of a risk factor on an outcome. Under

the assumption that the genetic variants are valid instrumental variables,

this causal effect can be consistently inferred even in the presence of unob-

served confounding factors [1]. The instrumental variable assumptions are

illustrated by a directed acyclic graph as shown in Figure 1 [2].

Recent years have seen an explosion in the size and scale of datasets with

biomarker data from high-throughput experiments and concomitant genetic

data. These biomarkers include proteins [3], blood cell traits [4], metabo-
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Figure 1: Directed acyclic graph of instrumental variable assumptions made
in univariable Mendelian randomization. G = genetic variant(s), X = risk
factor, Y = outcome, U = confounders, θ = causal effect of interest.

lites [5] or imaging phenotypes such as from cardiac image analysis [6]. High-

throughput experiments provide ideal data resources for conducting MR in-

vestigations in conjunction with case-control datasets providing genetic as-

sociations with disease outcomes (such as from CARDIoGRAMplusC4D for

coronary artery disease [7], DIAGRAM for type 2 diabetes [8], or the Interna-

tional Age-related Macular Degeneration Genomics Consortium [IAMDGC]

for age-related macular degeneration [9]). In addition to their untargeted

scope, one specific feature of high-throughput experiments is a distinctive

correlation pattern between the candidate risk factors shaped by latent bio-

logical processes.

Multivariable MR is an extension of standard (univariable) MR that al-

lows multiple risk factors to be modelled at once [10]. Whereas univariable

MR makes the assumption that genetic variants specifically influence a sin-

gle risk factor, multivariable MR makes the assumption that genetic vari-

ants influence a set of multiple measured risk factors and thus accounts for

measured pleiotropy. Our aim is to use genetic variation in a multivariable
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MR paradigm to select which risk factors from a set of related and poten-

tially highly correlated candidate risk factors are causal determinants of an

outcome. Existing methods for multivariable MR are designed for a small

number of risk factors and do not scale to the dimension of high-throughput

experiments. We therefore seek to develop a method for multivariable MR

that can select and prioritize biomarkers from high-throughput experiments

as risk factors for the outcome of interest. In this context we propose a

Bayesian model averaging approach (MR-BMA) that scales to the dimen-

sion of high-throughput experiments and enables risk factor selection from

a large number of candidate risk factors. MR-BMA is formulated on two-

sample summarized genetic data which is publicly available and allows the

sample size to be maximized.

To illustrate our approach, we analyse publicly available summarized data

from a metabolite genome-wide association study (GWAS) on nearly 25 000

participants to rank and prioritise metabolites as potential biomarkers for

age-related macular degeneration. Data are available on genetic associations

with 118 circulating metabolites measured by nuclear magnetic resonance

(NMR) spectroscopy [11] from http://computationalmedicine.fi/data#

NMR_GWAS. This NMR platform provides a detailed characterisation of lipid

subfractions, including 14 size categories of lipoprotein particles ranging from

extra small (XS) high density lipoprotein (HDL) to extra-extra-large (XXL)

very low density lipoprotein (VLDL). For each lipoprotein category, measures

are available of total cholesterol, triglycerides, phospholipids, and cholesterol

esters, and additionally the average diameter of the lipoprotein particles.

Apart from lipoprotein measurements, this metabolite GWAS estimated ge-
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netic associations with amino acids, apolipoproteins, fatty and fluid acids,

ketone bodies, and glycerides. We assess the performance of our proposed

method in a simulation study with scenarios motivated by the metabolite

GWAS and by publicly available summary data on blood cell traits mea-

sured on nearly 175 000 participants [4].

Results

Multivariable Mendelian randomization and risk factor

selection

Multivariable MR is an extension of the standard MR paradigm (Figure 1)

to model not one, but multiple risk factors (Figure 2), thus accounting for

measured pleiotropy. We consider a two-sample framework, where the ge-

netic associations with the outcome (sample 1) are regressed on the genetic

associations with all the risk factors (sample 2) in a multivariable regression

which is implemented in an inverse-variance weighted (IVW) linear regres-

sion. Each genetic variant contributes one data point (or observation) to the

regression model. Weights in this regression model are proportional to the

inverse of the variance of the genetic association with the outcome. This is to

ensure that genetic variants having more precise association estimates receive

more weight in the analysis. The causal effect estimates from multivariable

MR represent the direct causal effects of the risk factors in turn on the out-

come when all the other risk factors in the model are held constant [12, 13]

and Supplementary Figure 1). Including multiple risk factors into a single
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model allows genetic variants to have pleiotropic effects on the risk factors

in the model referred to as “measured pleiotropy” [14].

However, the current implementation of multivariable MR is not designed

to consider a high-dimensional set of risk factors and is not suitable to select

biomarkers from high-throughput experiments.

Figure 2: Directed acyclic graph of instrumental variable assumptions made
in multivariable Mendelian randomization. G = genetic variants, Xj = risk
factor j for j = 1, . . . , d, Y = outcome, U = confounders, θj = causal effect
of risk factor j.

To allow joint analysis of biomarkers from high-throughput experiments

in multivariable MR, we cast risk factor selection as variable selection in the

same weighted linear regression model as in the IVW method. Formulated in

a Bayesian framework (for full details we refer to the Methods section) we use

independence priors and closed-form Bayes factors to evaluate the posterior

probability (PP) of specific models (i.e. one risk factor or a combination of

multiple risk factors). In high-dimensional variable selection, the evidence
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for one particular model can be small because the model space is very large

and many models might have comparable evidence. This is why MR-BMA

uses Bayesian model averaging (BMA) and computes for each risk factor

its marginal inclusion probability (MIP), which is defined as the sum of

the posterior probabilities over all models where the risk factor is present.

MR-BMA reports the model averaged causal effects (MACE ), representing

the direct causal effect of a risk factor on the outcome averaged across these

models. As we show in a simulation study based on real biomarker data, MR-

BMA enables sparse modelling and hence a better and more stable detection

of the true causal risk factors than either the conventional IVW method or

other variable selection methods.

Detection of invalid and influential instruments

Invalid instruments may be detected as outliers with respect to the fit of

the linear model. Outliers may arise for a number of reasons, but they are

likely to arise if a genetic variant has an effect on the outcome that is not

mediated by one or other of the risk factors – an unmeasured pleiotropic

effect. To quantify outliers we use the Q-statistic, which is an established

tool for identifying heterogeneity in meta-analysis [15]. More precisely, to

pinpoint specific genetic variants as outliers we use the contribution q of the

variant to the overall Q-statistic, where q is defined as the weighted squared

difference between the observed and predicted association with the outcome.

Even if there are no outliers, it is advisable to check for influential obser-

vations and re-run the approach omitting that influential variant from the
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analysis. If a particular genetic variant has a strong association with the

outcome, then it may have undue influence on the variable selection, leading

to a model that fits that particular observation well, but other observations

poorly. To quantify influential observations, we suggest to use Cook’s dis-

tance (Cd) [16]. We illustrate the detection of influential points and outliers

in the applied example and provide more details in the Methods.

Simulation results

To assess the performance of the proposed method, we perform a simulation

study in three scenarios based on real high-dimensional data. We compare the

performance of the conventional approach (Multivariable IVW regression),

the Lars [17], Lasso, and Elastic Net [18] penalised regression methods devel-

oped for high-dimensional regression models, our novel MR-BMA method,

and the model with the highest posterior probability from the BMA proce-

dure (best model). We seek to evaluate two aspects of the methods: 1) how

well can the methods select the true causal risk factors, and 2) how well can

the methods estimate causal effects. Risk factor selection is evaluated using

the receiver operating characteristic (ROC) curve, where the true positive

rate is plotted against the false positive rate. True positives are defined as

the risk factors in the generation model that have a non-zero causal effect.

Causal estimation is evaluated by calculating the mean squared error (MSE)

of estimates, which is defined as the squared difference between the estimated

causal effect and the true causal effect. The MSE of an estimator decomposes

into the sum of its squared bias and its variance.
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Genetic associations with the risk factors are obtained from three dif-

ferent scenarios. Two scenarios are based on the NMR metabolite GWAS

by [11], where we use as instrumental variables n = 150 independent genetic

variants that were associated with any of three composite lipid measurements

(LDL-cholesterol, triglycerides, or HDL-cholesterol) at a genome-wide level

of significance (p < 5 × 10−8) in a large meta-analysis of the Global Lipids

Genetics Consortium [19] . In Scenario 1, we consider a small set of d = 12

randomly selected risk factors, and in Scenario 2 a larger set of d = 92 risk

factors (Supplementary Figure 2). Scenario 3 is based on publicly available

summary data on d = 33 blood cell traits measured on nearly 175 000 par-

ticipants [4]. Using all genetic variants that were genome-wide significant

for any blood cell trait, we have n = 2667 genetic variants as instrumental

variables. For each scenario, we generate the genetic associations for the

outcome based on four random risk factors having a positive effect in Setting

A and on eight random risk factors, of which four have a positive and four

have a negative effect, in Setting B. Additionally, we vary the proportion of

variance in the outcome explained by the causal risk factors. Each simulation

setting is repeated 1000 times. Full detail of the generation of the simulated

outcomes is given in the Supplementary Methods.

Looking at a small set of d = 12 risk factors in the NMR metabolite data

of which four risk factors are true causal ones (Scenario 1, Setting A), we

see that MR-BMA is dominating all other methods in terms of area under

the ROC curve (see Figure 3 A). Next best methods are Lasso, Elastic Net,

the Bayesian best model, and Lars. The standard IVW method gives the

worst performance. Similar results were obtained when varying the variance
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in the outcome explained by the risk factors (Setting A in Supplementary

Figure 3 and Setting B in Supplementary Figure 4). With respect to the

MSE of estimates (Table 1), MR-BMA has the lowest MSE in almost all

scenarios followed by Elastic Net, Lasso, the Bayesian best model, and then

Lars. Elastic Net has the lowest MSE for R2 = 0.5 in setting B. The highest

MSE is seen for the IVW method, which provides unbiased estimates, as can

be seen in Supplementary Figure 5 and 6, but at the price of a high variance.

When increasing the number of risk factors to d = 92 while keeping the

number of true causal risk factors constant to four (Scenario 2, Setting A),

the standard IVW method fails to distinguish between true causal and false

causal risk factors and provides a ranking of risk factors which is nearly ran-

dom as shown in the ROC curve in Figure 3 B) and Supplementary Figures

7 and 8. Despite being unbiased (see Supplementary Figures 9 and 10), the

variance of the IVW estimates is large and prohibits better performance. In

contrast, Lars, Lasso, Elastic Net, and MR-BMA provide causal estimates

which are biased towards zero, but have much reduced variance compared to

the IVW estimates. The Lasso provides sparse solutions with many of the

causal estimates set to zero. This allows the Lasso and Elastic Net to have

relatively good performance at the beginning of the ROC curve, but their

performance weakens when considering more risk factors. The best perfor-

mance is terms of the ROC characteristics is observed for MR-BMA. In terms

of MSE (Table 1), the dominant role of the variance of the IVW estimate

becomes again apparent as the IVW method has a thousand times larger

MSE than MR-BMA, which has the lowest MSE for all scenarios considered.

In the blood cell trait data (Scenario 3), MR-BMA has again the lowest
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MSE, followed by the regularised regression approaches and the best model in

the Bayesian approach. Despite a large sample size (n = 2667) and compar-

atively low dimension of the risk factor space (d = 33), the IVW approach is

the only unbiased method at the cost of an inferior detection of true positive

risk factors (Supplementary Figures 12 and 13) and a large variance (Supple-

mentary Figures 14 and 15), and consequently a MSE which is in a magnitude

of a hundred larger than other methods designed for high-dimensional data

analysis (Table 1).

Figure 3: A) Receiver Operating Characteristic (ROC) curve for a small
number of risk factors (d = 12) of which four have true positive effects
(Scenario 1, Setting A). B) ROC curve for a large number of risk factors
(d = 92) of which four have true positive effects (Scenario 2, Setting A).
Proportion of variance explained (R2) is set to 0.3.
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Scenario 1: NMR metabolites, d = 12 risk factors
Setting A Setting B

(4 true risk factors, (8 true risk factors,

all risk increasing) risk increasing and decreasing)

R2 0.1 0.3 0.5 0.1 0.3 0.5
IVW 0.6727 0.1675 0.0784 0.5949 0.1619 0.0629
Lars 0.1292 0.0447 0.0298 0.1559 0.0648 0.0372
Lasso 0.0604 0.0289 0.0162 0.1046 0.0503 0.0307
Elastic Net 0.0673 0.0300 0.0162 0.1161 0.0480 0.0287
MR-BMA 0.0340 0.0175 0.0105 0.0534 0.0368 0.0306
Best model 0.0717 0.0320 0.0156 0.0921 0.0514 0.0376

Scenario 2: NMR metabolites, d = 92 risk factors
R2 0.1 0.3 0.5 0.1 0.3 0.5
IVW 22.9516 6.0594 2.6257 23.2495 5.7715 2.4802
Lars 0.0354 0.0367 0.0094 0.0321 0.0212 0.0143
Lasso 0.0064 0.0047 0.0039 0.0105 0.0086 0.0074
Elastic Net 0.0064 0.0044 0.0034 0.0098 0.0078 0.0067
MR-BMA 0.0051 0.0039 0.0032 0.0088 0.0076 0.0063
Best model 0.0114 0.0081 0.0061 0.0150 0.0121 0.0096

Scenario 3: blood cell traits, d = 33 risk factors
R2 0.1 0.3 0.5 0.1 0.3 0.5
IVW 1.6200 0.4272 0.1742 2.3377 0.6399 0.2770
Lars 0.3461 0.1151 0.0482 0.5971 0.1777 0.0960
Lasso 0.0161 0.0067 0.0040 0.0448 0.0315 0.0265
Elastic Net 0.0168 0.0074 0.0044 0.0526 0.0313 0.0270
MR-BMA 0.0066 0.0034 0.0019 0.0307 0.0263 0.0239
Best model 0.0128 0.0051 0.0027 0.0518 0.0348 0.0292

Table 1: Mean squared error (MSE) of the causal effect estimates from the
competing methods on the NMR metabolite and blood cell trait data. We
mark in bold the lowest MSE in each experimental setting.
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Metabolites as risk factors for age-related macular de-

generation

Next we demonstrate how MR-BMA can be used to select metabolites as

causal risk factors for age-related macular degeneration (AMD). AMD is a

painless eye-disease that ultimately leads to the loss of vision. AMD is highly

heritable with an estimated heritability of up to 0.71 for advanced AMD in a

twin study [20]. A GWAS meta-analysis has identified 52 independent com-

mon and rare variants associated with AMD risk at a level of genome-wide

significance [9]. Several of these regions are linked to lipids or lipid-related

biology, such as the CETP, LIPC, and APOE gene regions [21]. Lipid parti-

cles are deposited within drusen in the different layers of Bruch’s membrane

in AMD patients [21]. A recent observational study has highlighted strong

associations between lipid metabolites and AMD risk [22].

This evidence for lipids as potential risk factor for AMD has motivated a

multivariable MR analysis which has shown that HDL cholesterol may be a

putative risk factor for AMD, while there was no evidence of a causal effect for

LDL cholesterol and triglycerides [23]. Here, we extend this analysis to con-

sider not just three lipid measurements, but a wider and more detailed range

of d = 30 metabolite measurements to pinpoint potential causal effects more

specifically. As summary-level data we use d = 30 metabolites as measured

in the metabolite GWAS described earlier [11] for the same lipid-related in-

strumental variants as described previously. All of these metabolites have at

least one genetic variant used as an instrumental variable that is genome-wide

significant and no genetic associations of metabolites are stronger correlated
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than r = 0.985. First, we prioritise and rank risk factors by their marginal

inclusion probability (MIP) from MR-BMA using σ2 = 0.25 as prior variance

and p = 0.1 as prior probability, corresponding to a priori three expected

causal risk factors. Secondly, we perform model diagnostics based on the

best models with posterior probability > 0.02.

When including all genetic variants available in both the NMR and the

AMD summary data (n = 148), the top risk factor with respect to its MIP

(Supplementary Table 1 A) is LDL particle diameter (LDL.D,MIP = 0.526).

All other risk factors have evidence less than MIP < 0.25. In order to check

the model fit, we consider the best individual models (Supplementary Table

1 B) with posterior probability > 0.02. For illustration, we present here

the predicted associations with AMD based on the best model including

LDL.D, and TG content in small HDL (S.HDL.TG) against the observed

associations with AMD. We colour code genetic variants according to their

their q-statistic (Figure 4 A and Supplementary Figure 16 A, Supplementary

Table 2) and Cook’s distance (Figure 4 B and Supplementary Figure 16

B, Supplementary Table 3). First, the q-statistic indicates two variants,

rs492602 in the FUT2 gene region and rs6859 in the APOE gene region, as

outliers in all best models. Second, the genetic variant with the largest Cook’s

distance (Cd = 0.871 to Cd = 1.087) consistently in all models investigated is

rs261342 mapping to the LIPC gene region. This variant has been indicated

previously to have inconsistent associations with AMD compared to other

genetic variants [23,24].

We repeat the analysis without the three influential and/or heterogeneous

variants (n = 145), and report the ten risk factors with the largest marginal
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Figure 4: Diagnostic plot of the predicted associations with AMD based on
the model including LDL.D, and S.HDL.TG (x-axis) against the observed
associations with AMD (y-axis) showing all n = 148 genetic variants. This
is the highest-ranking model when keeping outlying and influential genetic
variants in the analysis. The colour code shows: left) the q-statistic for
outliers and right) Cook’s distance for the influential points. Any genetic
variant with q-value larger than 10 or Cook’s distance larger than the median
of the relevant F -distribution is marked by a label indicating the gene region.

inclusion probability in Table 2 A and the full results in Supplementary Table

4. The top two risk factors are total cholesterol in extra-large HDL parti-

cles (XL.HDL.C, MIP = 0.700) and total cholesterol in large HDL particles

(L.HDL.C, MIP = 0.229). XL.HDL.C and L.HDL.C were strongly corre-

lated (r = 0.80), and models including both have very low evidence. Table 2

B gives the posterior probability of individual models. Supplementary Fig-

ure 17 shows the scatterplots of the genetic associations with each of these

two risk factors individually against the genetic associations with AMD risk.

We select the five individual models with a posterior probability > 0.02 to

inspect the model fit (Supplementary Figures 18 and 19). This time, no ge-

netic variant has a consistently large q-statistic (Supplementary Table 5) or
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Cook’s distance (Supplementary Table 6) . Repeating the analysis without

the largest influential point, rs5880 in the CETP gene region, or the strongest

outlier, rs103294 in the AC245884.7 gene region, did not impact the ranking

of the risk factors. We tested the robustness of the results with respect to

a wide range of prior variance and prior probability parameters; results did

not change substantially (Supplementary Tables 7 and 8).

We also applied Lars, Lasso, and Elastic Net after excluding outliers and

influential points (n = 145). Lars showed the largest regression coefficient for

L.HDL.C including eleven risk factors. Lasso selected four risk factors with

the largest regression coefficient for XL.HDL.C, while Elastic Net selected ten

risk factors with the largest regression coefficient for L.HDL.C. Full results

for the competing methods are given in Supplementary Tables 9 to 12. A

disadvantage of regularised regression approaches is that risk factor selection

is binary; risk factors are either included in the model or set to have a

coefficient zero. The magnitude of regularised regression coefficients does

not rank risk factors according to their strength of evidence for inclusion in

the model.

The detection of influential points in the initial analysis highlights rs26134,

a genetic variant in the LIPC gene region, that had a strong impact on the

analysis. Figure 5 shows the model diagnostics of the highest ranked model

excluding outlying and influential points (XL.HDL.C as the sole risk factor),

with the variant in the LIPC gene region also plotted. This particular vari-

ant exhibits a distinct, potentially pleiotropic, effect. While all other variants

support that XL.HDL.C increases the risk of AMD, this particular variant

has the opposite direction of association with AMD risk as that predicted by
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its association with XL.HDL.C. Further functional and fine-mapping studies

of this region are needed to understand the contrasting association of this

variant with AMD risk.

Figure 5: Diagnostic plot of the predicted associations with AMD based on
the model including XL.HDL.C (x-axis) against the observed associations
with AMD (y-axis) showing all n = 148 genetic variants, where the colour
code shows Cook’s distance for the genetic variants. This is the highest-
ranking model on omission of outlying and influential genetic variants from
the analysis. Note rs26134 in the LIPC gene region which has an anoma-
lous direction of association with AMD risk in contrast to all other genetic
variants.

These results confirm previous studies [23,24] that identified HDL choles-

terol as a putative risk factor for AMD and draw the attention to extra-large

and large HDL particles. A recent observational study [22] supports our find-

ing that extra-large HDL particles have an important role in the pathogenesis
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of AMD.

As a further sensitivity analysis (detailed results not shown), we repeat

this analysis with a different selection of instrumental variables using n = 56

independent genetic variants that were genome-wide hits for any metabolite

measurement in this dataset [11]. Cholesterol content in large HDL particles

is still selected with high posterior probability for this choice of variants

underlining that the evidence for an effect of large HDL particles is not

sensitive to the specific selection of lipid-related genetic variants.

Discussion

We here introduce a novel approach for multivariable MR, MR-BMA, which

scales to the analysis of high-throughput experiments. This model averaging

procedure prioritises and selects causal risk factors in a Bayesian framework

from a high-dimensional set of related candidate risk factors. Our approach

is especially suited for sparse settings, i.e. when the proportion of true causal

risk factors compared to all risk factors considered is small. As is common

for statistical techniques for variable selection, MR-BMA does not provide

unbiased estimates. However, as shown in the simulation study, causal esti-

mates from MR-BMA have reduced variance and thus MR-BMA improves

over unbiased approaches, like the IVW method, in terms of mean squared

error and detection of true risk factors. The primary aim of this work is to

detect causal risk factors rather than to unbiasedly estimate the magnitude

of their causal effects.

We demonstrated the approach with application to a dataset of NMR
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metabolites, which included predominantly lipid measurements, using vari-

ants associated with lipids as instrumental variables. Previous MR analy-

sis [23,24] including three lipid measurements from the Global Lipids Genet-

ics Consortium [19] have identified HDL cholesterol as potential risk factor

for AMD. Our new approach to multivariable MR refined this analysis and

confirmed HDL cholesterol as a potential causal risk factor for AMD, further

pinpointing that large or extra-large HDL particles are likely to be driving

disease risk. Other areas of application where this method could be used in-

clude imaging measurements of the heart and coronary artery disease, body

composition measures and type 2 diabetes, or blood cell traits and atheroscle-

rosis. As multivariable MR accounts for measured pleiotropy, this approach

facilitates the selection of suitable genetic variants for causal analyses. In

each case, it is likely that genetic predictors of the set of risk factors can

be found, even though finding specific predictors of, for example, particular

heart measurements from cardiac imaging, may be difficult given widespread

pleiotropy [25]. This approach allows a more agnostic and hypothesis-free

approach to causal inference, allowing the data to identify the causal risk

factors.

Multivariable MR estimates the direct effect of a risk factor on the out-

come and not the total effect as estimated in standard univariable MR. This

is in analogy with multivariable regression where the regression coefficients

represent the association of each variable with the outcome when all others

are held constant. Having said this, the main goal of our approach is risk

factor selection, and not the precise estimation of causal effects, since the

variable selection procedure shrinks estimates towards the null. If there are
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mediating effects between the risk factors, then this approach will identify

the risk factor most proximal to and has the most direct effect on an outcome.

For example, if the risk factors included would form a signalling cascade then

our approach would identify the downstream risk factor in the cascade with

the direct effect on the outcome and not the upstream risk factors in the

beginning of the cascade. Hence, a risk factor may be a cause of the out-

come, but if its causal effect is mediated via another risk factor included in

the analysis, then it will not be selected in the multivariable MR approach.

Our approach is formulated in a Bayesian framework. Particular care

needs to be taken when choosing the hyper-parameter for the prior probabil-

ity which relates to the a priori expected number of causal risk factors. In

the applied example the results were robust to a wide range of prior speci-

fications for the parameter as seen in Supplementary Table 7. Additionally,

the prior variance of the causal parameters needs to be specified and tested

for robustness as we show in the Supplementary Table 8.

When genetic variants are weak predictors for the risk factors, this can

introduce weak instrument bias. In univariable two-sample MR, any bias

due to weak instruments is towards the null and does not lead to inflated

type 1 error rates [26]. However, in multivariable MR, weak instrument bias

can be in any direction (Methods), although bias will tend to zero as the

sample size increases. Selection of risk factors is only possible if there are

genetic variants that are predictors of these risk factors. Consequently, we

need to be cautious about the interpretation of null findings, particularly

in our example for non-lipid risk factors, as these might be deprioritised

in terms of statistical power by our choice of genetic variants. One of the
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biggest challenges of multivariable MR is the design of a meaningful study,

in particular the choice of both, the genetic variants and the risk factors.

The design of the study is important for the interpretation of the risk factors

prioritised: The ranking of risk factors is conditional on the genetic variants

used. For instance, in our applied example we find evidence for extra large

and large HDL cholesterol concentration given that we used lipid-related

genetic variants as instrumental variables. We recommend to include only

risk factors which have at least one, and ideally multiple genetic variants

that act as strong instruments. Caution is needed for the interpretation of

null findings, particularly in our example for non-lipid risk factors, as these

might be deprioritised in terms of statistical power by our choice of genetic

variants.

A further requirement for multivariable MR is that the genetic variants

can distinguish between risk factors [13]. We recommend to check the corre-

lation structure between genetic associations for the selected genetic variants

and to include no pair of risk factors which is extremely strongly correlated.

In the applied example, we included only risk factors with an absolute cor-

relation less than 0.99. As we were not able to include more than three

measurements for each lipoprotein category (cholesterol content, triglyceride

content, diameter), care should be taken not to overinterpret findings in terms

of the specific measurements included in the analysis rather than those cor-

related measures that were excluded from the analysis (such as phospholipid

and cholesterol ester content).

Another assumption of multivariable MR is that there is no unmeasured

horizontal pleiotropy. This means that the variants do not influence the
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outcome except via the measured risk factors. The assumption of no hor-

izontal pleiotropy is a common and untestable assumption in MR. It is an

active area of research to robustify MR against violations of this assumption.

Some of these robust methods for MR make a specific assumption about

the behaviour of pleiotropic variants, such as MR-Egger [27], which assumes

pleiotropic effects are uncorrelated from the genetic associations with the risk

factor – the InSIDE assumption. Other methods exclude outlying variants as

they are potentially pleiotropic such as MR-PRESSO [28]. In multivariable

MR, pleiotropic variants can be detected as outliers to the model fit. Here

we quantify outliers using the q-statistic. Outlier detection in standard uni-

variable MR can be performed by model averaging where different subsets

of instruments are considered [29, 30], assuming that a majority of instru-

ments is valid, but without prior knowledge which are the valid instruments.

In multivariable MR, ideally one would like to perform model selection and

outlier detection simultaneously. Additionally, we search for genetic variants

that are influential points. While these may not necessary be pleiotropic,

we suggest removing such variants as a sensitivity analysis to judge whether

the overall findings from the approach are dominated by a single variant.

Findings are likely to be more reliable when they are evidenced by multiple

genetic variants.

In conclusion, we introduce here MR-BMA, the first approach to perform

risk factor selection in multivariable MR, which can identify causal risk fac-

tors from a high-throughput experiment. MR-BMA can be used to determine

which out of a set of related risk factors with common genetic predictors are

the causal drivers of disease risk.
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Methods

Methods is available online. The Supplementary Information includes Sup-

plementary Note S1 that describes the derivation of the Bayes Factors and

one Supplementary Material providing Supplementary Tables and Figures to

support the simulation study and application.

Web resources

MR-BMA and publicly available summary data on AMD and NMR metabo-

lites as presented in the applied example is public on https://github.com/

verena-zuber/demo_AMD. We provide R-code and documentation to repro-

duce the results and figures of the applied example.
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A) Model averaging
Risk factor Marginal inclusion Model-averaged

probability (MIP) causal estimate θ̂MACE

1 XL.HDL.C 0.700 0.344
2 L.HDL.C 0.229 0.087
3 HDL.D 0.087 0.022
4 XS.VLDL.TG 0.082 -0.019
5 LDL.D 0.074 -0.018
6 IDL.TG 0.066 -0.012
7 XXL.VLDL.TG 0.063 0.018
8 S.VLDL.TG 0.062 -0.014
9 Serum.TG 0.061 -0.014
10 Serum.C 0.054 -0.011

B) Individual models
Risk factor(s) Posterior Model-specific

probability (PP) causal estimates θ̂γ
1 XL.HDL.C 0.156 0.509
2 L.HDL.C 0.078 0.384
3 XL.HDL.C,XS.VLDL.TG 0.026 0.457,-0.181
4 IDL.TG,XL.HDL.C 0.025 -0.179,0.495
5 HDL.D 0.023 0.359
6 Serum.C,XL.HDL.C 0.019 -0.183,0.573
7 S.VLDL.TG,XL.HDL.C 0.015 -0.172,0.443
8 S.VLDL.C,XL.HDL.C 0.014 -0.164,0.477
9 Serum.TG,XL.HDL.C 0.014 -0.169,0.465
10 S.HDL.TG,XL.HDL.C 0.013 -0.18,0.415

Table 2: Ranking of risk factors for age-related macular degeneration (AMD)
after exclusion of outlying and influential variants (n = 145): A) according
to their marginal inclusion probability (MIP ) and B) the best ten individual
models according to their posterior probability (PP ). Results are given after
excluding the APOE, FUTC, and LIPC regions. θ̂MACE is the model averaged
causal effect of a risk factor and θ̂γ is the causal effect estimate for a specific
model. Abbreviations: HDL.D = HDL diameter, IDL.TG = Triglycerides in
IDL, L.HDL.C = Total cholesterol in large HDL, LDL.D = LDL diameter,
Serum.C = Serum total cholesterol, Serum.TG = Serum total triglycerides,
S.VLDL.C =Total cholesterol in small VLDL, S.VLDL.TG = Triglycerides in
small VLDL, XS.VLDL.TG = Triglycerides in very small VLDL, XL.HDL.C
= Total cholesterol in very large HDL
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Methods

Mendelian Randomization data input: Summarized data

set-up

One of the key features of Mendelian Randomization (MR) is that the ap-

proach can be performed using summarised data on genetic associations –

beta-coefficients and their standard errors from univariate regression anal-

yses. No access to individual-level genotype data is needed. Additionally,

these association estimates can be derived from different samples. In two-

sample MR, the genetic associations with the risk factor are derived from

one sample and the genetic associations with the outcome from another sam-

ple [1]. The use of summarised data in two-sample MR allows the sample

size to be maximised by integrating data from large meta-analyses including

hundreds of thousands of participants.

We assume the context of two-sample MR with summarized data [2]. For

each genetic variant i = 1, . . . , n and each risk factor j = 1, . . . , d, we take the

beta-coefficient β?Xij
and standard error se(β?Xij

) from a univariable regression

in which the risk factor Xj is regressed on the genetic variant Gi in sample

one, and beta-coefficient β?Yi and standard error se(β?Yi) from a univariable

regression in which the outcome Y is regressed on the genetic variant Gi

in sample two. For simplicity of notation, although the beta-coefficients

are estimates, we omit the conventional “hat” notation and treat the beta-

coefficients as observed data points. When considering multiple risk factors,

we construct a matrix of beta-coefficients β?X of dimension n× d, where d is
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the number of risk factors and n is the number of genetic variants.

We assume that the genetic effects on risk factors and on the outcome

are linear and homogeneous across the population, and identical between

the two samples [3]. Furthermore, we assume that the n genetic variants

selected as instrumental variables are independent, an assumption common

in MR studies. This is usually achieved by including only the lead genetic

variant from each gene region in the analysis. Finally, we assume that genetic

association estimates are derived from two distinct samples with no overlap

between the samples. These assumptions can all be relaxed to some extent if

the goal is causal inference rather than causal estimation; see [4] for details.

Multivariable Mendelian randomization and the linear

model

Multivariable MR is an extension of the standard MR paradigm (Figure 1) to

model not one, but multiple risk factors as illustrated in Figure 2. Univariable

MR can be cast as a weighted linear regression model in which the genetic

associations with the outcome β?Yi are regressed on the genetic associations

with the risk factor β?Xi
[5]

β?Yi = θβ?Xi
+ εi, εi ∼ N (0, se(β?Yi)

2). (1)

In multivariable MR, the genetic associations with the outcome are re-

gressed on the genetic associations with all the risk factors [6]

β?Yi = θ1β
?
Xi1

+ θ2β
?
Xi2

+ . . .+ θdβ
?
Xid

+ εi, εi ∼ N (0, se(β?Yi)
2). (2)
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Weights in these regression models are proportional to inverse of the vari-

ance of the genetic association with the outcome (se(β?Yi)
−2). This is to ensure

that genetic variants having more precise association estimates receive more

weight in the analysis. The same weighting can also be achieved by standard-

ising the association estimates, by dividing β?Yi and β?Xi
by se(β?Yi). In the fol-

lowing derivations, we assume that βY = β?Yi/ se(β?Yi) and βXi
= β?Xi

/ se(β?Yi)

are standardised, so that the variances of the εi terms are all 1. To account for

heterogeneity in the regression equation, we can use a multiplicative random

effects model, which increases the variance of the error terms by a multi-

plicative factor [7]. Our parameter of interest is the vector of regression

coefficients θ = {θ1, ..., θd}. These are the direct causal effects of the risk

factors in turn on the outcome when all the other risk factors in the model

are held constant [8]. In contrast, univariable Mendelian randomization us-

ing genetic variants that are instrumental variables for the specific risk factor

of interest estimates the total effect of the risk factor on the outcome. The

direct effect will differ from the total effect if the effect of the risk factor is

mediated via another risk factor included in the model [9]. We illustrate the

difference between the direct and total effect using directed acyclic graphs in

Supplementary Figure 1. In some cases (such as to identify the proximal risk

factor to the outcome), the direct effect is of interest; in other cases (such

as to evaluate the potential impact of intervening on a risk factor), it is the

total effect that is truly of interest [8].
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Choosing genetic variants as instruments

In multivariable MR, a genetic variant is a valid instrumental variable if the

following criteria hold:

• IV1 Relevance: The variant is associated with at least one of the risk

factors.

• IV2 Exchangeability: The variant is independent of all confounders of

each of the risk factor–outcome associations.

• IV3 Exclusion restriction: The variant is independent of the outcome

conditional on the risk factors and confounders.

One of the main differences of multivariable MR compared to univariable

MR is the relaxation of the exclusion restriction condition. In contrast to

univariable MR, multivariable MR allows for measured pleiotropy [10] via any

of the observed risk factors. Hence the instrumental variable assumptions are

more likely to be satisfied for multivariable MR than for univariable MR for

a given choice of genetic variants.

It is not necessary for every genetic variant to be associated with all the

risk factors, although if no genetic variants are associated with a particular

risk factor, then the causal effect of that risk factor cannot be identified. This

would also occur if the genetic associations with two risk factors were exactly

proportional. For precise identification of causal risk factors, it is necessary

to have some variants that are more strongly associated with particular risk

factors than others [9]. More precisely a risk factor can be included into the

analysis if the following criteria (RF1-RF2) hold:
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• RF1 Relevance: The risk factor needs to be strongly instrumented by

at least one genetic variant included as instrumental variable.

• RF2 No multi-collinearity: The genetic associations of any risk factor

included cannot be linearly explained by the genetic associations of

any other risk factor or by the combination of genetic associations of

multiple other risk factors included in the analysis.

We initially assume that all genetic variants are valid instruments. There

is an emerging literature [11, 12] on how to perform robust MR analysis in

the presence of invalid instruments; similar extensions can be adapted for

multivariable MR [10].

Risk factor selection as variable selection in the linear

model

We consider the situation in which we have a set of genetic variants that are

instrumental variables for a set of risk factors, and we want to select which

of those risk factors are causes of the outcome. Our implicit prior belief is

that not all of the risk factors are causally related to the outcome and that

the set of true causal risk factors is sparse. We formulate the selection of

risk factors in two-sample multivariable MR as a variable selection task in

the linear regression framework. In order to model the correlation between

risk factors we base our likelihood on a Gaussian distribution

βY | βX,θ, τ ∼ N(βXθ,
1

τ
). (3)
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Following the D2 prior specifications as introduced in [13], we use the fol-

lowing conjugate priors for the causal effects θ, the residual error ε, and the

precision τ

θ ∼ N(0,ν/τ)

ε ∼ N(0,
1

τ
)

τ ∼ Γ(κ/2, λ/2), (4)

where ν = diag(σ2) is the diagonal variance matrix of the causal effects

(independence prior), and the precision τ is assumed to follow a Gamma dis-

tribution with hyperparameters κ as the shape and λ as the scale parameter.

Next, we introduce a binary indicator γ of length d that indicates which risk

factors are selected and which ones are not

γj =


1, if the jth risk factor is selected,

0 otherwise.

(5)

The indicator γ encodes a specific regression model Mγ that includes the

risk factors as indicated in γ. A model Mγ can include one or a combination

of multiple risk factors. To evaluate the evidence of a specific model Mγ , we

calculate the Bayes factor for model Mγ against the null model that does not

include an intercept or any risk factor. The Bayes factor BF (Mγ) has the

following closed form representation

BF (Mγ) =
|Ω|1/2

|νγ |1/2

(
βtY βY −ΘtΩ−1Θ

βtY βY

)−n/2
, (6)
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where Θ = ΩβXγ

tβY is the causal effect estimate and Ω = (ν−1γ +βXγ

tβXγ )−1

is the inverse of the shrinkage covariance between the genetic associations of

the risk factors. For a detailed derivation of the Bayes factor we refer to the

Supplementary Note S1.

Prior specification

Another important aspect is the prior for the model size k, which we model

using a Binomial distribution

Pr(K = k) =

(
d

k

)
pk(1− p)d−k. (7)

This requires choosing the probability p of including a risk factor in the

model according to prior assumptions regarding the sparsity of the results.

We recommend to select p according to the expected a priori model size,

which is p× d. Currently, all risk factors are assumed to have the same prior

probability, and thus the probability of all models of the same size k is equal.

The prior of a specific model Mγ of size k is defined as

p(Mγ) =

(
d

k

)−1
Pr(K = k) = pk(1− p)d−k. (8)

The second important aspect is the prior for the variance of the risk

factors ν = diag(σ2), where we assume that all risk factors have the same

prior variance σ2. Large values of σ2 would favour strong causal effects of

the risk factors on the outcome. Following [13] we initially set σ2 = 0.25, but

sensitivity of the results with respect to this prior should be investigated. The
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parameter can be specified in the implementation of MR-BMA. In the applied

example we perform a sensitivity analysis for this important parameter.

Posterior calculation and marginal inclusion probability

of a risk factor

Let Γ be the space of all possible combinations of risk factors. The posterior

probability (PP) of a model Mγ can be expressed by the prior probability

(8) and the Bayes factor (6) of model Mγ is

PP (Mγ | βY ,βX) =
p(Mγ)BF (Mγ)∑
γ∈Γ p(Mγ)BF (Mγ)

. (9)

In high-dimensional variable selection, the evidence for one particular

model can be small because the model space is very large and many models

might have comparable evidence. This is why MR-BMA uses Bayesian model

averaging (BMA) and computes for each risk factor j its marginal inclusion

probability (MIP), which is defined as the sum of the posterior probabilities

over all models where the risk factor is present

MIP (j = 1 | βY ,βX) =

∑
γ∈Γ I(γj = 1)p(Mγ)BF (Mγ)∑

γ∈Γ p(Mγ)BF (Mγ)
, (10)

where I(γj = 1) equals 1 if risk factor j is part of the model and 0 otherwise.

An exhaustive evaluation of all possible combinations of risk factors is

computationally prohibitive already for a moderate number of risk factors

(d > 20). To alleviate this issue we have implemented a shotgun stochastic

search algorithm [14] that evaluates all combinations of risk factors with a
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non-negligible contribution to the calibration factor
∑

γ∈Γ p(Mγ)BF (Mγ) in

equation (9). This algorithm is based on the assumption that the majority

of combinations of risk factors have a posterior probability close to zero and

do not need to be considered when computing the calibration factor in the

denominator of equations (9) and (10).

Causal estimation

We derive the estimates for the causal effects θ̂γ of model Mγ as

θ̂γ = ΩβXγ

tβY = (ν−1γ + βXγ

tβXγ )−1βXγ

tβY , (11)

which is closely related to the regression coefficient in Ridge regression.

Adding the diagonal matrix ν−1γ stabilises the inversion and makes the es-

timate more robust to strong correlation among risk factors. There can be

strong correlation between candidate risk factors as seen in the genetic cor-

relation matrices in the applied examples as illustrated in Supplementary

Figure 2 and 11, which makes it important to stabilise the causal estimate.

The model-averaged causal estimate (MACE) for risk factor j from the

MR-BMA approach is

θ̂MACE(j) =
∑
γ∈Γ

I(γj = 1)PP (Mγ | βY ,βX)θ̂γ . (12)

MR-BMA ranks and prioritises risk factors according to their marginal

inclusion probability and estimates the MACE as defined in equation (12).

As an alternative approach, we also consider selecting the ‘best model’ based
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on the individual model posterior probabilities as defined in equation (9).

Detection of invalid and influential instruments

Invalid instruments may be detected as outliers with respect to the fit of a

specific linear model Mγ . We recommend to check the best individual models

for outliers by visual inspection of the scatterplot of the predicted associations

based on Mγ with the outcome β̂Y = βXγ θ̂γ against the actual observed βY .

If a genetic variant is detected consistently as an outlier in several of the top

models, it may be advisable to explore the analyses excluding that outlying

variant from the analysis. To quantify outliers we use the Q-statistic, which

is an established tool for identifying heterogeneity in meta-analysis [15]. It

is defined as the sum of the residual vector q, which is the squared difference

between the observed and predicted association with the outcome

Q =
∑
i

qi =
∑
i

(βYi − β̂Yi)2. (13)

We note that equation 13 is defined on the weighted coefficients βYi . When

considering the unweighted coefficients β?Yi the Q-statistic [9] is defined as

Q =
∑
i

qi =
∑
i

1

se(β?Yi)
2
(β?Yi − β̂

?
Yi

)2, (14)

with first order weighting equal to 1
se(β?

Yi
)2

[16].

The individual element qi measures the heterogeneity of genetic variant i

for a particular model Mγ . We refer to qi as the q-statistic, and use this to

evaluate if specific genetic variants are outliers to the model fit.
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Even if there are no outliers, it is advisable to check for influential obser-

vations and re-run the approach omitting a particular influential variant from

the analysis. If a particular genetic variant has a strong association with the

outcome, then it may have undue influence on the variable selection, leading

to a model that fits that particular observation well, but other observations

poorly. To quantify influential observations for a particular model Mγ we

suggest to use Cook’s distance [17]

Cdi =
qi
s2d

hi
(1− hi)2

, (15)

where hi is the ith diagonal element of the hat matrix H = βXγ (ν−1γ +

βXγ

tβXγ )−1βXγ

t, and s2 = 1
n−dε

tε is the mean squared error of the regression

model. Following [18], we recommend to use the median of a central F -

distribution with d and n− d degrees of freedom as a threshold, and remove

variants that have a Cook’s distance which exceeds this value.

Impact of weak instrument bias

In the following presentation, we consider two risk factors with observed

genetic associations βX1 and βX2 , which are a sum of the true genetic as-

sociations β†X1
and β†X2

and an additional error term ε1 and ε2 respectively,

i.e.

βX1 = β†X1
+ ε1

βX2 = β†X2
+ ε2.
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From this we define λ1 = var(ε1)

var(β†
X1

)
as the ratio of the uncertainty in the

estimates of the genetic associations (var(ε1)) over the variability of the true

genetic associations var(β†X1
), and we define λ2 similarly. Further let ρ be

the correlation between βX1 and βX2 , and let θ1 and θ2 be the true direct

effect of X1 on Y and X2 on Y , respectively. Following the measurement

error literature [19], we derive the induced bias of the IVW estimates of the

true causal effects θ1 and θ2, respectively, as

θ̂1 = θ1 −
θ1λ1 − ρθ2λ2

1− ρ

θ̂2 = θ2 −
θ2λ2 − ρθ1λ1

1− ρ
,

where θ̂1 and θ̂2 are the expected values of the effects for the mismeasured

genetic association estimates. Looking closer at λ, the variability across

variants of the true genetic associations, var(β†X), is related to instrument

strength. Thus the induced bias will be smaller the stronger the instruments.

At the same time the uncertainty of the genetic association estimates, var(ε),

decreases when increasing the sample size. If the genetic associations with

the risk factors are estimated with different degrees of uncertainty, then bias

could be more considerable. Analogous to differential measurement error,

risk factors with more precisely estimated genetic associations would be pri-

oritized in the regression model. In our application, all risk factors are mea-

sured on the same high-throughput platform and on the same sample size,

thus reducing the impact of weak instrument bias to influence the ranking of

risk factors.
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Simulation study

To evaluate the performance of MR-BMA, we perform a simulation study

taking genetic associations with risk factors from two real datasets, the first

one based on genetic associations with NMR metabolites [20] and secondly

on genetic associations with blood cell traits [21]. Further information on

the data sets and pre-processing is given in the next sections. We simulate

genetic associations with the outcome βY based on a subset of risk factors

selected at random, which we refer to as the ‘true’ risk factors. We investigate

three different scenarios and six sets of parameter values per scenario:

• Size of the data set: small (d = 12 NMR metabolites selected at ran-

dom), large (d = 92 all NMR metabolites available), and moderate

(d = 33 all blood cell traits available) number of risk factors included.

• Number of true risk factors: Setting A) four risk factors have an effect

of θ = 0.3, the other risk factors have no effect. Setting B) four risk

factors have an effect of θ = 0.3, and another four risk factors have an

effect of θ = −0.3, the other risk factors have no effect.

• Proportion of variance in the outcome explained by the risk factors:

R2 = 0.1, 0.3, 0.5 which defines the variance of the error.

We compare six different analysis methods:

• Multivariable inverse variance weighted (IVW) regression (equation 2)

[6]

• Least-angle regression (Lars) as L1 regularised regression [22]
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• Lasso as L1 regularised regression [23]

• Elastic Net as L1 and L2 regularised regression [23]

• MR-BMA using marginal inclusion probabilities

• Bayesian best model selection using posterior probabilities of individual

models

Both Lars [22] and Lasso are versions of L1 regularised linear regression, and

Elastic Net is a mixture of a L1 and L2 regularised linear regression, all of

which have been devised for variable selection in high-dimensional data. We

use here the Lars implementation [22] and for Lasso and Elastic Net we use

the glmnet [23] implementation. For all regularised regression methods, we

use cross-validation (CV) to tune the regularisation parameter to achieve the

minimum cross-validation MSE. For the small risk factor space including 12

NMR metabolites, the MR-BMA approach is performed using an exhaustive

search of all possible models with prior probability of a risk factor to be

included set to p = 0.5, while for the moderate and large risk factor space

of d = 33 blood cell traits and d = 92 NMR metabolites we employ the

stochastic search with 10,000 iterations and p = 0.1. This reflects an expected

a priori model size of six for the small risk factor space and around three

for the blood cell traits and nine for the high-dimensional NMR metabolite

setting. The prior variance σ2 is fixed to 0.25.

Data pre-processing for NMR metabolites for simulation

The first data resource used for the simulation and application is publicly-

available summarized data on genetic associations with risk factors derived
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from a NMR metabolite GWAS [20] from http://computationalmedicine.

fi/data#NMR_GWAS. All of the metabolites were inverse rank-based normal

transformed, so the association estimates are all in standard deviation units.

In order to avoid selection bias, we choose genetic variants based on an

external data-set. As the majority of the metabolite measures relates to

lipids, we take n = 150 independent genetic variants that are associated with

any of three composite lipid measurements (LDL-cholesterol, triglycerides,

or HDL-cholesterol) at a genome-wide level of significance (p < 5 × 10−8)

in a large meta-analysis of the Global Lipids Genetics Consortium [24]. We

extract beta-coefficients and standard errors of genetic associations for the

150 genetic variants and the 118 available metabolites. Next, we compute

the genetic correlation structure between metabolites based on the n = 150

instrumental variables and exclude at random one of each pair of metabolites

that are in stronger correlation than |r| > 0.99. For the simulation study

each risk factor is scaled to have unit variance so all risk factors have an equal

prior chance of being selected. Our final data-set βX for the simulation study

comprises associations of d = 92 metabolites measured on n = 150 genetic

variants. This allows us to investigate risk factor selection for a realistic

genetic correlation structure between metabolites (Supplementary Figure 2)

and distribution of the regression coefficients.

Data pre-processing for blood cell traits for simulation

As a secondary data resource, we use publicly available summary data from

the GWAS catalog https://www.ebi.ac.uk/gwas/ on 36 blood cell traits

measured on nearly 175 000 participants [21]. Using all genetic variants that
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were genome-wide significant for any blood cell trait we have n = 2667

genetic variants as instrumental variables. There were eight pairs of blood

cell traits with genetic correlation > 0.99. After removing three composite

traits (sum of eutrophil and eosinophil counts, granulocyte count, and sum

of basophil and neutrophil counts) from further analysis, there was no pair

of blood cell traits with greater genetic correlation than 0.99. The respective

correlation matrix is shown in Supplementary Figure 11. The final dataset

used for the simulation consists of d = 33 blood cell traits as potential risk

factors measured on n = 2667 genetic variants (pruned at r2 < 0.8). For the

simulation study each risk factor is scaled to have unit variance so all risk

factors have an equal prior chance of being selected. We consider all d = 33

risk factors jointly for the simulation and consequently the simulation study

has a realistic correlation structure between genetic associations of various

blood cell traits (Supplementary Figure 11) and a realistic distribution of

regression coefficients.

Data pre-processing and analysis for applied example of

age-related macular degeneration

In the applied example we demonstrate how MR-BMA can be used to se-

lect metabolites as causal risk factors for age-related macular degeneration

(AMD). As risk factors we consider a range of circulating metabolites mea-

sured by NMR spectroscopy [20]. We use the same lipid-related genetic

variants as in the simulation study. We restrict the risk factor space to

include only lipoprotein measurements on total cholesterol content, triglyc-
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eride content, and particle diameter. For the various fatty acid measure-

ments, we only included total fatty acids. Other lipid characteristics were

highly correlated with the selected lipid measurements and including all of

the lipid measurements would introduce multi-collinearity (RF2). As a next

step we excluded all metabolite measures that did not have a single ge-

netic variant that is genome-wide significant to meet the relevance criterion

RF1. None of the remaining d = 30 metabolite measures have correlations

in their genetic associations of |r| > 0.985 (Supplementary Figure 2). Ge-

netic associations with the outcome are taken from the latest GWAS meta-

analysis on AMD [25] including 16, 144 patients and 17, 832 controls which

is available from http://csg.sph.umich.edu/abecasis/public/amd2015/.

To synchronise the genetic data on the metabolite risk factors and the AMD

outcome, we match the effect alleles and we remove two genetic variants miss-

ing in the AMD data, so that the overall analysis includes n = 148 variants.

Finally, we use the Ensembl Variant Effect Predictor [26] to annotate the

genetic variants to the gene that is most likely affected.

We run MR-BMA including all n = 148 available genetic variants on the

d = 30 metabolite associations using p = 0.1 as prior probability, σ2 = 0.25

as prior variance, a maximum model size of 12 risk factors, and with 100,000

iterations in the shotgun stochastic search. To check the impact of the prior

choice we first vary the prior probability (Supplementary Table 7) of selecting

a risk factor from p = 0.01 to p = 0.3 reflecting 0.49 to 14.7 expected causal

risk factors. This choice alters the posterior probabilities of various individual

models, but the overall marginal inclusion probabilities of the risk factors are

relatively stable. Finally, we vary the prior variance σ2 from 0.01 to 0.49,
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which does not change the ranking (Supplementary Table 8).
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