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Abstract  
Early cancer detection has potentials to reduce cancer burden. A prior identification of 
the high-risk population of cancer will facilitate cancer early detection. Traditionally, 
cancer predisposition genes such as BRCA1/2 have been used for identifying high-risk 
population of developing breast and ovarian cancers. However, such high-risk genes have 
only a few. Moreover, the complexity of cancer hints multiple genes involved but also 
prevents from identifying such predictors for predicting high-risk subpopulation. 
Therefore, we asked if the germline genomes could be used to identify high-risk cancer 
population. So far, none of such predictive models has been developed. Here, by 
analyzing of the germline genomes of 3,090 cancer patients representing 12 common 
cancer types and 25,701 non-cancer individuals, we discovered significantly differential 
co-mutated gene pairs between cancer and non-cancer groups, and even between cancer 
types. Based on these findings, we developed a network-based algorithm, eTumorRisk, 
which enables to predict individuals’ cancer risk of six genetic-dominant cancers 
including breast, colon, brain, leukemia, ovarian and endometrial cancers with the 
prediction accuracies of 74.1-91.7% and have 1-3 false-negatives out of the validating 
samples (n=14,701). The eTumorRisk which has a very low false-negative rate might be 
useful in screening of general population for identifying high-risk cancer population.  

Introduction 
Cancer is the leading cause of death in the world and the third largest burden in the 
healthcare system. Many cancers have been diagnosed at the middle- or late-stage (i.e., 
advanced cancer) at which time most tumors have spread and become incurable; 
therefore, improvements in overall survival and morbidity have been modest over the 
past few decades [1-5]. Historical data suggest that early detection of cancer is crucial for 
its ultimate control and prevention [6, 7]. Thus, it is envisioned that, besides the 
promotion of lifestyle changes, improving early diagnosis is the best strategy for reducing 
the impact of carcinogenesis. Ideally, screening of a subpopulation who has high-risk of 
developing cancer as early as possible could promote the early detection of cancer 
greatly. It has been reported that besides ‘hereditary’ cancers, many of ‘sporadic’ cancers 
have significant inherited component [8], suggesting the feasibility of identifying high-
risk individuals based on germline genomes. 
Traditionally, high-risk cancer predisposition genes (CPGs) have been used for 
identifying high-risk individuals. For example, Kuchenbaecker et al. reported that a 
woman who has BRCA1/2 mutations in her germline has a cumulative risk of 72%/69% 
(i.e., to the age of 80) of developing breast cancer and 44%/17% of ovarian cancer in her 
lifetime [9]. However, it is worth of noting that most of these BRCA1/2 carriers are 
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involved in the study with family history concern. It was reported that patients with more 
family members having breast or ovarian cancers have higher frequencies of BRCA1/2 
mutations than those with a single case [10]. It suggests that some unknown mechanisms 
promote the occurrence of BRCA1/2 mutations, which could help identify high-risk 
population. Similarly, 45% of the colon cancer cases are believed to be associated with a 
heritable factor, among which only 5-10% are related to the germline mutations in APC 
and DNA mismatch repair genes [11, 12]. To further understand cancer predispositions, 
studies have extended to moderate- and weak-risk CPGs [13-16], and the cumulative 
contributions of multiple germline mutations to cancer have been shown [17-20]. These 
findings suggest it is possible to identify high-risk people, however, so far it has been 
challenging to use germline mutations to predict who could bear cancer risk.  
To meet this challenge, we analyzed 28,791 whole-exomes of germline genomes (3,090 
cancer patients across 12 cancer types and 25,701 non-cancer individuals), and 
surprisingly found that a set of co-mutated gene pairs are preexisting in the germline 
genomes of cancer patients more frequently than in non-cancer germline genomes, and 
vice versa. Furthermore, each cancer type has its specifically co-mutated gene pairs. 
Based on these results, we developed a novel network-based algorithm, eTumorRisk, to 
identify high-risk individuals for cancers based on their germline genomic information. 
We validated the eTumorRisk in 14,701 non-cancer individuals and 1,098 cancer patients 
and showed its ability of identifying high-risk individuals for six genetic-dominant 
cancers (i.e., breast, colon, brain, leukemia, ovarian and endometrial cancers). The 
predictions of the eTumorRisk generated 0.0068% of false-positives in 14,701 non-
cancer individuals. These results highlight that the eTumorRisk could be used for the 
screening of general population for selecting high-risk individuals of the six cancers to 
facilitate the early detection of cancer. 

Results 
Significantly differential co-mutated genes are encoded in the germline genomes 
between cancer and non-cancer groups, and even between cancer types  
Although the germline genomes of several thousands of cancer patients have been 
sequenced, the differences between cancer patients’ germline genomes and non-cancer 
individuals’ have been rarely examined. To do so, we compiled the germline genomes of 
3,090 cancer patients representing 12 common cancer types, and of 25,701 non-cancer 
individuals (Table 1). The functionally mutated genes were extracted from each genome 
sequence data (see Methods, all the mutated genes mentioned in the text are functionally 
mutated genes), and the frequencies of the mutated genes were evaluated in each cancer 
type. First, we compared the frequencies of the mutated genes between colon 
adenocarcinoma (COAD) and non-cancer individuals. We found that 518 genes were 
mutated significantly more frequently in COAD than in non-cancer individuals. 
Furthermore, 15,714 co-mutated gene pairs were significantly more frequent in COAD 
than in non-cancer individuals. Similar results were obtained when the analysis was 
extended to other cancer types. These results support a notion that the germline genomes 
of cancer patients have pre-existing mutated gene patterns which could functionally 
interact and contribute to cancer risk. To investigate whether each cancer type has its own 
specific set of co-mutated gene pairs, the comparison analyses between the 12 cancer 
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types were performed in a pair-wise manner. Indeed, each cancer type does have its 
specific set. Taken together, these results suggest that cancer patients’ and non-cancer 
individuals’ germline genomes have distinct co-mutated gene pairs, and furthermore, 
each cancer type has its own specific co-mutated gene pairs. Clearly, these novel findings 
provide a solid foundation for developing a new algorithm for predicting of cancer risk 
based on co-mutated genes in germline genomes.  

Table 1. Datasets and sample sizes 

Sample Abbreviation No. of samples 

Cancer patients   

Bladder urothelial carcinoma BLCA 212 
Breast invasive carcinoma (luminal subtype) BRCA 328 

Colon adenocarcinoma COAD 274 
Glioblastoma multiforme GBM 212 

Head and neck squamous cell carcinoma HNSC 227 
Kidney renal clear cell carcinoma KIRC 203 

Acute myeloid leukemia LAML 120 
Lung adenocarcinoma LUAD 348 

Lung squamous cell carcinoma LUSC 350 
Ovarian serous cystadenocarcinoma OV 244 

Skin cutaneous melanoma SKCM 359 
Uterine corpus endometrial carcinoma UCEC 213 

Non-cancer individuals    
1000 genome project G1K 2,431 

Non-cancer cohort NC 23,270 

Overview of the eTumorRisk algorithm 

The eTumorRisk contains two components (Fig 1). The first component is to build 
network models for discriminating a cancer sample (of a cancer type) from non-cancer 
samples using co-mutated gene pairs in germline genomes. Because cancer types share 
some co-mutated gene pairs in germline genomes, a sample could be predicted to have a 
risk of developing multiple cancer types based on the first component, and therefore the 
second component is to determine which cancer type has the highest chance for the 
sample. Cancer heterogeneity is a major factor for impeding the robustness of predictive 
biomarkers. To address issue, we designed the eTumorRisk by (1) focusing on cancer 
hallmark genes to construct network models of discriminating a cancer type from non-
cancer samples with the consideration of their mutations having higher chance to 
contribute to tumorigenesis than others. By doing so, we could filter the ‘noisy genes’ 
which are not related to tumorigenesis in germlines. (2) using the re-sampling technique 
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to construct random networks and then cluster them into a few network groups and 
randomly select a network as representative for each group. The randomly resampled  

datasets were used to simulate populations, and the similar populations were clustered to 
extract the representative features of the networks. By doing so, we could gain more 
accurate and robust signals for predictions in both components. In addition, we used large 
number of the non-cancer samples for training (n=10,000) and validating (n=14,701) the 
algorithm, because the eTumorRisk was designed to screen the general population and 
the overall cancer incidence is 43.92 out of 10,000 samples per year 
(https://www.cancer.gov/about-cancer/understanding/statistics). By doing so, it might 
control false-positives.  

 
Fig. 1. Prediction of cancer and specific cancer type. Each cancer and G1K (1000 
genomes) functional germline mutation profiles were trained to construct random 
network models. Non-cancer test set was used as a control to select similarity cutoffs for 
prediction of cancer or non-cancer. Cancer candidates were predicted with a cancer type 
by the voting of all the pairs of cancer models. 
The novelties of this algorithm are (1) constructing of germline co-mutated gene 
networks enabling to discriminate a cancer type from non-cancer samples, and between 
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cancer types, (2) focusing on cancer molecular mechanisms (i.e., represented using 
cancer hallmarks) to filter out noise, (3) identifying multiple representative networks, 
each of which could represent a fraction of the samples within a cancer type (i.e., samples 
within a cancer type will be classified into several subgroups due to the heterogeneous 
nature of cancer), (4) controlling of false-positives by using large cohorts for training and 
validating the algorithm. Such large cohorts (n=25,701) have been rarely used for 
developing genome-based algorithms in the past.  
Cancer risk prediction and validation using the eTumorRisk 

As mentioned above, we used 10,000 out of the 24,701 non-cancer samples to determine 
the similarity-cutoff for each cancer-determining predictive model, and then, we used the 
remaining 14,701 non-cancer samples to validate the similarity-cutoffs. Specifically, each 
similarity-cutoff for discriminating each cancer type from the non-cancer group was 
selected by controlling that none of the 10,000 non-cancer individuals was predicted to be 
a cancer sample. As shown in Table 2, none of the 14,701 non-cancer samples used for 
validation was predicted to be a cancer sample for breast invasive carcinoma (luminal 
subtype, BRCA), COAD, glioblastoma multiforme (GBM), acute myeloid leukemia 
(LAML) and ovarian serous cystadenocarcinoma (OV) cancer types. Similarly, 1 out of 
the 14,701 non-cancer samples was predicted to be head and neck squamous cell 
carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC) and uterine corpus 
endometrial carcinoma (UCEC) cancer types based on the similarity cutoffs of their 
predictive models. These results suggest that the cutoffs of the predictive models for the 
cancer types mentioned above have been validated. As for bladder urothelial carcinoma 
(BLCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and skin 
cutaneous melanoma (SKCM), the predictive models have not been established (i.e., the 
condition of selecting similarity-cutoff cannot be satisfied). Of note, BLCA, LUAD, 
LUSC and SKCM are well-known environmental-dominated cancers, whereas GBM, 
BRCA, COAD, LAML, OV and UCEC are genetic-dominated cancers. As shown in 
Table 2, for LAML, OV and BRCA, 75%, 74% and 61% were assigned to the correct 
cancer group, respectively, while for COAD, GBM, KIRC and UCEC, the percentages of 
the predictions reached ~40%. Taken together, we concluded that germline genetic 
variants could distinguish cancer-risk individuals from non-cancer individuals for the 
genetic-dominated cancers but not the environmental-dominated cancers.  

We found that some samples of a cancer type have been predicted to another cancer type 
or multiple cancer types. Overall, 53.1% of the predicted cancer samples were assigned 
into one cancer type, while 46.9% samples were predicted to be multiple cancer types. To 
further improve cancer type predictions, we applied cancer-type predictive models (i.e., 
the second component of the eTumorRisk) to assign the predicted cancer samples with 
one cancer type. Briefly, the pair-wised cancer predictive models were built, and the 
votes for each prediction were counted for deciding its cancer type (Methods). As shown 
in Table 2, the predictions of BRCA, COAD, GBM, LAML, OV, SKCM and UCEC 
cancer samples in the validation set reached higher prediction accuracies (i.e., the fraction 
of the correctly predicted samples of the total predicted samples) and better recall rates 
(i.e., the percentage of cancer patients of a cancer type who are correctly predicted as 
having the cancer). For example, for OV, the prediction accuracy and recall rate were 
91.5% and 58.9%, respectively, while the accuracies and recall rates for COAD, GBM 
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and SKCM were 76.0%-78.6% and 17.2% - 23.2%, respectively. As the eTumorRisk’s 
prediction is based on germline genomic information only, the recall rates of the 
predictions for most of the genetic-dominated cancers could not be very high. However, 
we found that the prediction recall rates for OV and LAML were as high as 58.9% and 
55.6% %, respectively, suggesting that they may have high inheritability and can be 
captured by the eTumorRisk. In addition, we found that the samples of BRCA can be 
mistakenly assigned to UCEC, and vice versa. For example, 21 out of the 64 UCEC 
samples in the validation dataset were predicted to be BRCA samples, while 6 of the 98 
BRCA samples were predicted to be UCEC samples (Supplementary Table 1). These 
results could be explained by the fact that BRCA and UCEC are two cancer types of 
woman-specific organs. When we combined these two cancer types together, the 
prediction accuracy and recall rate reached 80.9% and 44.4%, respectively. Based on 
these results, we suggested that if a woman is predicted to have high risk for either 
BRCA or UCEC, it is better to follow up that person for examining both cancer types. 
For the other cancer type predictions, none samples were predicted as BLCA, all the four 
samples predicted as HNSC were wrong predictions, while low accuracies and recall 
rates for KIRC, LUAD and LUSC (Table 2). 
 Table 2. Cancer and cancer type prediction based on 10,000 non-cancer individuals  
 Cancer 

prediction 
   Cancer type 

prediction 
  

Cancer Non-cancer 
samples 
(n=14,701) 

Cancer 
sample 
(n=1,098) 

 Power 
for 
cancer 

No. of 
sample in the 
1,098 
samples 

Accuracy Power 

BLCA - -   6 (9%)b 64 - 0% 
BRCA 0a 74a  60 (61%) 98 53.1% 43.9% 
COAD 0 21  30 (37%) 82 76% 23.2% 
GBM 0 39  26 (41%) 64 78.6% 17.2% 
HNSC 1 21  9 (13%) 68 0% 0% 
KIRC 1 51  27 (44%) 61 25% 1.6% 
LAML 0 90  27 (75%) 36 71.4% 55.6% 
LUAD - -  13 (13%) 104 16.7% 0.9% 
LUSC - -  14 (13%) 105 40% 3.8% 
OV 0 84  54 (74%) 73 91.5% 58.9% 
SKCM - -  26 (24%) 108 76.7% 21.3% 
UCEC 1 110  24 (38%) 64 25% 3.1% 
aThe number of samples predicated as cancer by each cancer-predictive model. For 
BRCA, OV and UCEC, only female patients predicted as cancer were considered. bThe 
number of cancer samples predicted correctly as cancer by all the eight cancer-predictive 
models and the corresponding proportion in each cancer type shown in the parentheses. “-
” represents not applicable because the false-positive control cannot be satisfied. 
The reliability and applicability of the eTumorRisk were shown above. Therefore, we 
further evaluated the performance of eTumorRisk based on all the 24,701 non-cancer 
samples on that none of them are predicted wrongly, while only female non-cancer 
samples (8,169) were used for female-related cancer types (BRCA, OV and UCEC). The 
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powers for cancer predictions decreased a little and the accuracies remained similar levels 
for six genetic-dominant cancers and for most of the other cancer types (Table 3). 
Specifically, the accuracy of the COAD predictions increased from 0.76 to 0.86 because 
the three wrongly assigned samples were not identified as cancer by the first component 
of eTumorRisk (Supplementary Table 1 and 2), while the recall rate was sustained as 
23.2%, suggesting the stability of COAD prediction by eTumorRisk. Similar result was 
for LAML, while the power decreased only ~3% for GBM and SKCM. The accuracy and 
power for the united BRCA and UCEC predictions were 79.1% and 33% (Supplementary 
Table 2), showing stable accuracy after involving more female non-cancer samples. 
Table 3. Cancer and cancer type prediction based on 24,701 non-cancer samples  
Cancer  No. of sample in 

the 1,098 samples 
Cancer prediction  Cancer type 

prediction 
   

   Power for cancer  Accuracy Power   
BLCA  64 5 (8%)  - 0%   
BRCAa  98 45 (46%)  53.1% 34.7%   
COAD  82 27 (33%)  86.4% 23.2%   
GBM  64 26 (41%)  75% 14.1%   
HNSC  68 4 (6%)  0% 0%   
KIRC  61 20 (33%)  0% 0%   
LAML  36 27 (75%)  74.1% 55.6%   
LUAD  104 10 (10%)  0% 0%   
LUSC  105 11 (10%)  42.9% 2.9%   
OVa  73 55 (75%)  91.7% 60.3%   
SKCM  108 21 (19%)  76% 17.6%   
UCECa  64 18 (28%)  33% 1.6%   
a For BRCA, OV and UCEC, only female cancer and non-cancer patients were 
considered. 

Discussion 
In this study, we conducted the analysis of mutated genes of 3,090 cancer patients’ 
germline genomes and 25,701 non-cancer individuals’ genomes. We showed that distinct 
co-mutated gene pairs have been encoded in the germline genomes of the cancer patients 
from distinct cancer types by comparing the co-occurrence between a cancer and non-
cancer groups and cancer types. These results support our previous hypothesis that pre-
existing germline mutations could determine cancer risk and evolutionarily select 
biological pathways of tumors [21]. Based on these results, we developed the 
eTumorRisk to predict cancer risk of 12 cancer types using germline genomic 
information. Based on the predictions in ~14,701 non-cancer samples and 1,098 cancer 
samples, eTumorRisk achieved prediction accuracies of >74% for COAD, GBM, LAML, 
and SKCM. Based on the predictions in 8,169 female non-cancer samples and 235 OV, 
BRCA and UCEC samples, eTumorRisk achieved prediction accuracies of 0.92 and 0.79 
for OV and the combination of BRCA and UCEC, respectively. However, eTumorRisk 
didn’t achieve good prediction performances in other cancer types of the 12 cancer types 
examined. Because eTumorRisk is a prediction tool based on purely germline genomics, 
which could be not suitable for predicting the risk of the cancer types which are induced 
predominantly by environmental and lifestyle factors. For example, lung and bladder 
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cancers are well-known cancers which are induced by tobacco smoking (i.e., >85% of 
lung cancer patients are tobacco smokers). It is worth of noting that SKCM is believed to 
be environment-dominant cancer, however, there is a part of SKCM can be predicted by 
the non-SKCM predictive models in the first component and the second component of 
the eTumorRisk. It suggests that there are multiple subtypes existing in SKCM. Some 
studies have shown the predisposition of SKCM [22, 23]. On the other hand, eTumorRisk 
is developed for predicting the risk of the cancer types which are genetics-dominant such 
as BRCA, COAD, GBM, KIRC, LAML, OV and UCEC.   

It has been proposed that early detection of cancer patients could save millions of lives 
for cancer patients. Therefore, with the advance of genome technology, cancer early 
detection has become an active area of research in the past few years. The advantages of 
cancer risk diagnosis will facilitate cancer early detection by identifying a high-risk 
subpopulation and monitoring their cancer development. In addition, prevention 
strategies could be applied to the high-risk population. For example, bilateral 
prophylactic mastectomy can reduce the risk of developing breast cancer by > 95% in 
women with BRCA1/2 mutations and by up to 90% in women who have a strong family 
history ([24, 25] and https://www.cancer.gov/types/breast/risk-reducing-surgery-fact-
sheet). Drug tamoxifen is shown to prevent the development of breast cancer in healthy 
women who are determined at increased risk of developing breast cancer [26]; 
anastrozole and metformin are also to help prevent cancer development [27-29]. Besides, 
the inflammatory process is shown to be one of the predisposing conditions for the 
initiation and development of tumor [30]. The extrinsic inflammation can be caused by 
autoimmune diseases, obesity, smoking, asbestos exposure and alcohol, while the 
intrinsic inflammation can be triggered by mutations [30]. Both inflammation can induce 
immune suppression, and thereby promote the initiation and progression of tumor. It has 
been proven that lifestyle modifications and the anti-inflammatory drugs (e.g. aspirin) 
can significantly reduce cancer risk [30, 31]. We believe these will help alleviate the 
development of cancer, and even possibly avoid cancer occurrence. 

 

Materials and Methods 
Sequencing data pre-processing and variant calling 

Twelve cancer types from The Cancer Genome Atlas (TCGA) project [32] were analyzed 
in this study (Table 1). The whole-exome sequencing data were downloaded from the 
data portal, and processed as described previously [21]. Briefly, low quality reads were 
filtered by the picard-tools, and duplicates were also marked up by the same tool 
(http://broadinstitute.github.io/picard). Reads with low mapping quality (<=60) were 
filtered by BamTools [33]. Local realignment around indels and base recalibration were 
done by the GATK tool [34]. Variant calling was done by Varscan 2 [35]. 
The non-cancer samples were from a collected cohort including samples of the 1000 
Genome project [36]. All samples of the 1000 Genome project were downloaded, pre-
processed with the procedure shown above and the variant calling was also done by 
Varscan 2. For the other samples, the variant matrices were downloaded from the 
resources.  
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Germline mutation extraction and functional annotation 
Germline mutations were defined reliably by controlling variant allele frequency (VAF) 
no less than 90% for a homozygous mutation and between 45% and 55% for a 
heterozygous mutation in normal (blood) samples. The functional annotation of germline 
mutations was evaluated on the effect of sequence changes on proteins using Sorting 
Intolerant From Tolerant (SIFT), PolyPhen [37] and MutationTaster2 [38]. A mutation is 
defined as functional if one of the three algorithms predicts it as function-related. Next, 
these functional germline mutations were summarized on gene level. 

Training, test, and reference sets 
The training sets included 12 cancer types and healthy people from the 1000 Genome 
project (G1K). For cancers, 70% samples randomly sampling from the whole set were 
used as the training set and the left 30% were as the test set. For non-cancer group, the 
randomly sampled 1000 samples from the 1000 genome project were used as the training 
set. The remaining 1,431 samples of G1K and the other non-cancer cohorts were 
remained as a reference set to select similarity score (see below) for determining cancer 
or non-cancer group for the cancer test sets (see details in Results). 

Cancer hallmark-associated genes and protein-protein interaction (PPI) network  
The cancer hallmark-associated genes were collected through Gene Ontology (GO) 
annotation [39] based on cancer hallmarks [40], and two publications about cancer genes 
[41, 42]. To incorporate more related genes, the annotated gene list was extended by 
including genes having at least three links to cancer hallmark-associated genes on the PPI 
network which is composed of 12,612 genes and 175,696 edges. 

Selection of differentially mutated genes, differential co-occurrences and generation 
of mutation network templates 

Differentially mutated genes (DMG) were selected by evaluating the mutation frequency 
differences of the preselected cancer hallmark-associated genes between cancer and non-
cancer groups based on their z-score transformation (P<0.05). Then, the differential co-
occurrences among the selected DMGs between cancer and non-cancer groups were 
identified based on 1000 random experiments in each group by randomly shuffling 
samples for each gene (P<0.05). The selected significant co-mutations generated the 
mutation network templates for cancer and non-cancer groups or between cancer types. 
We proposed to use the bilateral networks produced by comparing cancer to the non-
cancer group, or one cancer type to another, and vice versa, to develop the eTumorRisk. 
We tended to build the bilateral template networks which include all possible truly 
discriminative co-mutated gene pairs given by the maximization of the sample size (i.e., 
all the training samples). The significant co-mutations in the cancer network template 
have higher frequency than their counterparts in the normal network template, and vice 
versa. The same methods were applied to identify DMGs between each pair of cancer 
types, and thereby build the mutation network templates. 
Heterogeneous mutation network models  

To deal with the cancer heterogeneity, a model panel was generated to capture the 
heterogeneity by two steps. First, a sufficiently large number of random datasets (e.g. 
2500) were sampled from the training set by 50% to get sub-population mutation network 
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models for each pair of comparison (i.e. each cancer against the non-cancer group, or 
between cancer types). Then, the models were mapped to the corresponding network 
templates (i.e. cancer or non-cancer), and the links which have high mutation frequency 
(e.g. 1%) and frequency ratio between the comparison (e.g. 2) were retained to generate 
the final network model for achieving high efficiency. The clustering of these sub-
population network models was done for capturing the diversity within each group 
(cluster R package). The number of clusters was selected based on a silhouette evaluation 
upon 1000 possible classifications (i.e. 1, 2, …, 1000 clusters). For example, there were 
56 network subgroups classified for the random networks of the COAD group, while 50 
subgroups selected for the non-cancer group. Thereafter, a representative sub-population 
network model was randomly selected from each cluster and used for the subsequent 
analysis. Summarily, two sets of representative sub-population network models were 
generated for the pair of comparison. To save computing time in the process of clustering 
the large sub-population networks, each network (i.e. a matrix) was first shrunk by 
grouping the adjacent ten genes as a sub-network and then assigning it with the counting 
value of the links in this sub-network.  

Prediction of cancer or non-cancer group 
For a sample, its similarity to each representative sub-population network model was 
evaluated by the Jaccard index between its mutation network and the network model (the 
number of overlapped links divided by the number of union of links). Then, the Jaccard 
scores were clustered using PAM (Partitioning Around Medoids, pamr R package) 
combined with Silhouette index within groups (e.g. cancer and non-cancer). The 
clustering was controlled to a certain number of clusters (e.g. no larger than 10) for the 
balance of reflecting the diversity of heterogeneity and achieving robustness. After 
classification, the average Jaccard score was calculated for each cluster and then the 
maximum Jaccard score was used. The operation of the clustering is for promoting 
robustness and the use of maximum score is for identifying the most possible network 
model that the sample could be. Then, the ratio of Jaccard scores between cancer and 
non-cancer groups or vice versa was calculated as the similarity score to cancer or non-
cancer group. 

To assign a sample to cancer or non-cancer group, a similarity cutoff was selected based 
on the predictions of the non-cancer dataset. First, 10,000 samples of the non-cancer 
dataset were used to get a similarity cutoff which make none of them predicted as cancer. 
The large training set is used to control false-positives. Then, it was tested on the 
remaining 14,701 non-cancer samples. Finally, the similarity score was used to predict 
cancer or non-cancer for the cancer test dataset.  

Prediction of cancer type 
Similar procedure for assigning a sample to cancer and non-cancer group (shown above) 
was applied to discriminate cancer types for samples predicted into cancer group. But, the 
ratio cutoffs for a pair of cancer types were selected using OptimalCutpoints R package 
based on the training set [43]. A sample is screened by the network models of all pair-
wised cancer types. The prediction scores were summarized for each possible cancer type 
and ranked for the final decision (Fig. 1). 
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Supplementary Tables: 
Supplementary Table 1. Distribution of predicted cancer samples based on 10,000 
non-cancer individuals 

Cancer No. of 
samples 
predicteda  

BLCA BRCA COAD GBM HNSC KIRC LAML LUAD LUSC OV SKCM UCEC 

BLCA 0 0 0 0 0 0 0 0 0 0 0 0 0 
BRCA 81 0 43 3 0 0 13 0 0 0 1 0 21 
COAD 25 0 2 19 0 0 0 0 4 0 0 0 0 
GBM 14 0 0 0 11 0 0 1 0 1 1 0 0 
HNSC 2 0 0 0 0 0 0 0 2 0 0 0 0 
KIRC 4 0 0 0 0 0 1 0 0 1 1 1 0 
LAML 28 0 0 0 5 0 0 20 0 0 3 0 0 
LUAD 6 4 0 0 0 0 0 0 1 1 0 0 0 
LUSC 10 1 0 0 0 2 1 0 2 4 0 0 0 
OV 47 0 0 0 2 0 0 2 0 0 43 0 0 
SKCM 30 0 0 0 0 2 0 0 1 4 0 23 0 
UCEC 8 0 6 0 0 0 0 0 0 0 0 0 2 

a The number of samples predicted as a cancer type. b The number of samples belonging 
to each cancer type (listed as columns) in the predicted samples for the given cancer type. 

Supplementary Table 2. Distribution of predicted cancer samples based on 24,701 
non-cancer individuals 

Cancer No. of 
samples 
predicteda  

BLCA BRCA COAD GBM HNSC KIRC LAML LUAD LUSC OV SKCM UCEC 

BLCA 0 0 0 0 0 0 0 0 0 0 0 0 0 
BRCA 64 0 34 3 0 0 10 0 0 0 1 0 16 
COAD 22 0 1 19 0 0 0 0 2 0 0 0 0 
GBM 12 0 0 0 9 0 0 1 0 1 1 0 0 
HNSC 1 0 0 0 0 0 0 0 1 0 0 0 0 
KIRC 2 0 0 0 0 0 0 0 0 1 1 0 0 
LAML 27 0 0 0 4 0 0 20 0 0 3 0 0 
LUAD 3 3 0 0 0 0 0 0 0 0 0 0 0 
LUSC 7 1 0 0 0 2 0 0 1 3 0 0 0 
OV 48 0 0 0 2 0 0 2 0 0 44 0 0 
SKCM 25 0 0 0 0 1 0 0 1 4 0 19 0 
UCEC 3 0 2 0 0 0 0 0 0 0 0 0 1 

a The number of samples predicted as a cancer type. b The number of samples belonging 
to each cancer type (listed as columns) in the predicted samples for the given cancer type. 
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