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Abstract  

Objectives To evaluate the extent to which childhood and adulthood circumstances and genetics 

contribute to phenotypic aging, using a multi-system-based signature of aging that has been shown 

to capture mortality and morbidity risk. 

Design Prospective population-based cohort study.  

Setting United States (U.S.). 

Participants 2,339 adults (aged 51+ years) from U.S. Health and Retirement Study, who 

participated in the Core Survey, the 2016 Venous Blood Study, the 2015 Life History Mail Survey, 

the Enhanced Face-To-Face interview (2006-2016), and were part of the genetic sample. 

Main outcomes measure Phenotypic Age, a validated aging measure based on a linear 

combination of chronological age and nine multi-system biomarkers. For most analyses, we 

examined “PhenoAgeAccel”, which represents phenotypic aging after accounting for 

chronological age (i.e. whether a person appears older [positive value] or younger [negative value] 

than expected, physiologically).   

Results The Shapley Value Decomposition approach revealed that together all  

11 domains (four childhood and adulthood circumstances domains, five polygenic scores [PGSs] 

domains, demographics, and behaviors domains) accounted for about 30% of variance in 

PhenoAgeAccel. Among the four circumstances domains, adulthood adversity was the largest 

contributor (9%), while adulthood socioeconomic status (SES), childhood adversity, and 

childhood SES accounted for 2.8%, 2.1%, 0.7%, respectively. Collectively, all PGSs contributed 

3.8% of variance in PhenoAgeAccel. Further, six subpopulations/clusters—identified using a 

hierarchical cluster analysis based on childhood and adulthood SES and adversity—showed 

differences in average levels of phenotypic aging. Finally, there was a significant gene-by-
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environment interaction between a previously validated PGS for coronary artery disease and the 

most apparently disadvantaged subpopulation/cluster—suggesting a multiplicative effect of 

adverse environment coupled with genetic risk on phenotypic aging.  

Conclusions Socioenvironmental circumstances during both childhood and adulthood account for 

a sizable proportion of the difference in phenotypic aging among U.S. older adults. The detrimental 

effects may further be exacerbated among persons with a genetic predisposition to coronary artery 

disease.  

 

Keywords: childhood circumstance; adulthood circumstance; phenotypic aging; adversity, 

socioeconomic status, polygenic score, gene environment interaction 
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INTRODUCTION 

Aging is a complex multifactorial process, characterized by increasing dysregulation and loss of 

function across multiple levels and systems.1 Consequently, the aging process is presumed to be a 

major driver in the pathogenesis of many chronic diseases.2 3 While the process of aging is 

universal, individuals are heterogeneous in their rates of aging, which in turn, directly influence 

susceptibility to morbidity and mortality events—faster aging is reflected in earlier incidence of 

disease and death.4-6 Thus, developing behavioral, social, or pharmacological interventions that 

slow the aging process will directly impact population health.  

Aging begins at conception; thus, interventions will be most successful if applied early in 

the life course, prior to the onset of disease and disability.7 However, to be feasible, one needs to 

employ “biomarkers of aging”, which can both identify at-risk individuals who show signs of 

accelerated aging, and evaluate intervention efficacy. Phenotypic Age (PhenoAge) is a multi-

system-based signature of aging that we have developed and validated in large nationally 

representative U.S. samples.8 9 This signature has been shown to better predict all-cause and 

disease-specific mortality than chronological age, even among healthy individuals. PhenoAge is 

meant to capture age-related dysregulation and predict subsequent health declines. While we know 

that differences in this signature translate into variations in morbidity/mortality susceptibility, we 

have yet to disentangle the contribution of potential factors to differential phenotypic aging.   

Previous work has provided strong evidence that traumas and adversities in childhood and 

adulthood influence risk of various outcomes (e.g. disease and mortality) in later life,10-13 

presumably via an acceleration of the aging process.14-17 The cumulative “wear and tear” in 

response to chronic stressors or deprivation experienced over the life course is thought to “get 

under the skin” by contributing to declines in physiological adaptation (i.e. allostatic load) that 
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manifest as vulnerability to disease and death.18 19 Socioeconomic status (SES) is also thought to 

be a powerful driver of health and aging disparities.14 16 20-28 Gaps in wealth and education between 

the “haves” and “have nots”—particularly in the U.S.—have been shown to produce stark 

differences in risk for long-term aging-related outcomes.14 16 28 To capture a more complete picture 

of how various factors coalesce and in turn manifest as health disparities, it is necessary to 

assemble a comprehensive set of circumstances that can be examined concurrently. 

In addition to socioenvironmental circumstances, genetics contribute to differential 

vulnerability for aging and disease. For example, it has been estimated that about 20-30% of 

lifespan is genetically determined.29 Similarly, twin studies have estimated that fatal coronary heart 

disease is about 40-50% heritable,30-32 while many cancers have heritability estimates around 30-

60%.33 Therefore, accounting for innate differences in genetic susceptibility becomes important 

when estimating the influence of the environment for health and aging traits.34 Moreover, genetics 

may also have the potential to alter an individual’s vulnerability to various environmental 

conditions. For instance, a gene-by-environment interaction (GxE) is defined as "a different effect 

of an environmental exposure on disease risk in persons with different genotypes."35 Under this 

assumption, adverse socioenvironmental exposures—such as low SES and adversity—may be 

more detrimental to a person’s health if s/he is already genetically at-risk of death and/or disease 

outcomes. 

While various factors, including socioenvironmental circumstances and genetics, influence 

health and aging to some extent, their relative contributions to aging and disease risk are uncertain. 

The multitude of factors defining an individual’s specific life circumstances poses challenges for 

modeling their individual and cumulative effects. Another challenge is how to differentiate the 

effects of circumstances in childhood from those in adulthood. From the perspective of health 
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economics, variance in health (i.e. inequality) can be influenced by circumstances throughout the 

life course; yet, there are variations in the level of control (modifiability) a person has over the 

circumstances shown to contribute to health and aging inequalities. For instance, one’s 

demographics, genetics, and childhood SES and experiences of traumas are essentially a lottery, 

yet are all believed to have down-stream consequences for health and aging. This has been referred 

to as Inequality of Opportunity.36 37 Furthermore, it is important to note that an individual’s 

circumstances in adulthood can be strongly influenced/confounded by his/her circumstances as a 

child, or even genetic predisposition for various personality and mental health traits and/or 

educational attainment.38 One key contribution of this research angle is to innovatively discern the 

effect of circumstances beyond one’s control, which should be the priority of public policies that 

aim to alleviate health inequality. The Shapley Value Decomposition approach facilitates 

estimation of the share of health inequality due to circumstances with varying degrees of 

modifiability. By appropriately assigning contributions from sources of health inequality, the 

Shapley Value Decomposition approach estimates the overall and relative importance with 

substantial advantages (see more in supplementary materials appendix 1). 

The present study assembled a comprehensive set of variables assessing childhood and 

adulthood circumstances and genetics using a nationally representative sample of older adults in 

the U.S. By innovatively applying two approaches—Shapley Value Decomposition and 

Hierarchical Clustering—we were able to disentangle the relative and cumulative contributions of 

these various factors to variations in aging and morbidity/mortality risk, as captured using our 

novel PhenoAge measure.  
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METHODS 

Data 

The Health and Retirement Study (HRS) is an ongoing nationally representative, biennial survey 

of older Americans (aged 51+ years), and their spouses, beginning in 1992.39 HRS is funded by 

the National Institute on Aging and carried out by the University of Michigan. In this study, we 

assembled a large array of variables from four data sources (sub-studies) within HRS, including 

the core survey (1996-2016), the newly released 2015 Life History Mail Survey (LHMS), the 

Enhanced Face-To-Face (EFTF) interview (2006-2016), and the 2016 Venous Blood Study (VBS). 

A description of the four data sources can be found in supplementary materials and elsewhere.39 

After restricting to persons who participated in each of these sub-studies, our final analytic sample 

included 2,339 persons (Figure S1). Compared with persons who participated in both the 2015 

LHMS and 2016 VBS but were excluded in this analysis, our analytic sample showed a similar 

sex ratio but were older (69.4 vs 68.3 years), more highly educated (13.9 vs 13.2 year), and more 

likely to be non-Hispanic white (93.9% vs 84.0%).  

 

Participant involvement 

According to the nature of the dataset and the ethical permission, participants were not involved 

in setting the research agenda, nor were they involved in developing plans for the design or 

implementation of this study. There are no plans to directly disseminate the findings of this study 

to participants, but dissemination to the general public and peers will be undertaken by using 

presentations and social media.  

 

Childhood and adulthood circumstances  
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Since no consensus has been reached regarding the selection and definitions of circumstance 

variables, we considered a comprehensive set of measures based on literature suggesting their 

potential relationship with health- and/or age-related outcomes. All questions and corresponding 

responses/descriptions are provided in Table S1. In brief, we defined four domains of childhood 

and adulthood circumstances: childhood SES, childhood adversity, adulthood SES, and adulthood 

adversity.  

 

Genetic factors  

To further differentiate the effect of circumstances on phenotypic aging due to genetic 

predisposition (i.e., beyond one’s control), we included five domains for genetic factors based on 

previously established polygenic scores (PGSs): anthropometrics, disease/longevity, mental 

health/personality, education/cognition, and smoking (details can be found in supplementary 

materials appendix 1). The saliva samples for genotyping SNPs were collected in the EFTF 

interview from 2006 to 2012, and details on the construction of these PGSs are provided 

elsewhere.40  

 

PhenoAge and phenotypic aging (PhenoAgeAccel) 

PhenoAge was first developed and validated using independent waves from the National Health 

and Nutrition Examination Survey (NHANES).9 In brief, PhenoAge was derived from nine 

biomarker variables, selected out of a possible 42 using an elastic net proportional hazards model 

for mortality. These biomarkers included albumin, creatinine, glucose, (log) C-reactive protein, 

lymphocyte percent, mean cell volume, red cell distribution width, alkaline phosphatase, and white 

blood cell count. Chronological age was also included. The score was calculated as a weighted 
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(coefficients) linear combination of these variables, that was then transformed into units of years 

using two parametric (Gompertz distribution) proportional hazard models—one for the linearly 

combined score for all ten variables and another for chronological age. Thus, PhenoAge represents 

the expected age within the population that corresponds to a person’s estimated hazard of mortality 

as a function of his/her biological profile.8 9  

Next, we calculated a measure of “age acceleration” (i.e., PhenoAgeAccel), defined as the 

residual resulting from a linear model when regressing PhenoAgeAccel on chronological age. 

Therefore, PhenoAgeAccel represents phenotypic aging after accounting for chronological age 

(i.e. whether a person appears older [positive value] or younger [negative value] than expected, 

physiologically).   

 

Statistical Analyses 

More complete details of the analytic plan can be found in the supplementary materials appendix 

1. Briefly, we first used the Shapley Value Decomposition approach with mean logarithmic 

deviation (MLD) method to evaluate the overall and relative contributions of all variables 

including childhood and adulthood circumstances and genetics to PhenoAgeAccel. Compared with 

other decomposition methods, the Shapley Value Decomposition approach has substantial 

advantages, such as being order independent (i.e. the order of circumstances for decomposition 

does not influence the results) and being able to sum components to produce the total value.  

To potentially inform possible intervention strategies, we then assessed the associations of 

childhood and adulthood circumstances with PhenoAge or PhenoAgeAccel using a series of 

analyses including clustering analysis. First, we performed a principal component analysis for the 

four domains (childhood SES, childhood adversity, adulthood SES, and adulthood adversity) that 
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are potentially correlated. Second, based on the first four principal components, selected via a 

series of assessments, we performed a hierarchical clustering analysis (HCA) to categorize 

participants into distinct subpopulations/clusters, representing groups of people with shared life 

experiences. To make it clearer, we calculated a continuous measure (i.e. cluster membership, 

ranging from -1 to 1) for each cluster that denotes how similar a participant’s profile is to the 

characteristics represented by the cluster. This was estimated as the correlation between the 

participant’s scores across the variables used for clustering, and the first principal component when 

only considering persons assigned to the cluster. For instance, someone may have a score of 0.8 

for cluster 1 and -0.6 for cluster 2, suggesting s/he is very similar to the profile representative of 

cluster 1, but not cluster 2. We then related these cluster membership scores to the circumstances 

measures to determine what characteristics define each cluster. Third, we compared the 

PhenoAgeAccel of participants assigned to each subpopulation/cluster. Fourth, we examined the 

association of these subpopulations/clusters with PhenoAge using ordinary least squares (OLS) 

models with adjustment for covariates such as chronological age, sex and ancestry. Finally, we 

examined GxE interactions, by testing whether the PGS (selecting the most significant one) further 

increased differences in PhenoAge between the subpopulations/clusters.  

 

RESULTS 

Sample characteristics are shown in Table S2 and described in supplementary materials.  

 

The contribution of childhood and adulthood circumstances and genetics to phenotypic 

aging 
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Figure 1 presents the results from the Shapley Value Decomposition approach, depicting the 

proportions of the variance explained by all 11 domains. Collectively, the factors evaluated 

accounted for about 30% of the variance in PhenoAgeAccel. Among the four childhood and 

adulthood circumstances domains, adulthood adversity was the largest contributor (9%), while 

adulthood SES, childhood adversity, and childhood SES accounted for 2.8%, 2.1%, 0.7%, 

respectively. All five domains of PGSs contributed 3.8% of variance in PhenoAgeAccel. 

 

Profiles of childhood and adulthood circumstances and their relation to phenotypic aging 

Using HCA, we identified six distinct subpopulations/clusters characterized by shared childhood 

and adulthood circumstances (Figure S2, top colored row). Figure 2A suggests that those assigned 

to the red cluster are characterized by having lower levels of education, having poor financial 

situations during childhood and adulthood, having lower educated parents, and living in 

neighborhoods with severe physical disorder. Conversely, the green cluster includes participants 

who had high adult SES, moderately high childhood SES, and who lived in neighborhoods with 

very low levels of physical disorder. The turquoise cluster includes participants with the highest 

SES in childhood and adulthood, but whose neighborhoods were slightly more disordered than 

those in the green cluster. Those in the yellow cluster are mainly characterized by having had 

higher levels of chronic stress, while those in the orange cluster had low SES in childhood and 

high levels of childhood trauma. Finally, the blue cluster represent participants with moderate SES 

in childhood, and very low levels of chronic stress. Figure S3 shows the correlation among the six 

clusters. Inverse relationship was observed between the green and red clusters—suggesting that 

participants assigned to them have opposite life experiences/circumstances. Similarly, the 
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turquoise and orange appeared to represent opposite experiences, as did the yellow and the blue 

clusters.  

Bivariate differences in PhenoAgeAccel between the six clusters are presented in Figure 

2B. On average, the three clusters that appear to represent “disadvantaged” childhood and 

adulthood circumstances (i.e. red, yellow, and orange) exhibited higher phenotypic aging. 

Participants assigned to the red or yellow clusters were about 1.75 years older phenotypically than 

expected based on their chronological ages, while those in the orange cluster were about 0.3 years 

older than expected. Conversely, “advantaged” subpopulations/clusters, such as those in the green 

or the turquoise cluster had PhenoAge that were about two years younger than expected, while 

those in the blue cluster were a little over one year younger than expected.  

 

Gene-by-environmental interactions 

Because PGS for coronary artery disease (CAD-PGS) accounted for the highest proportion of 

variance in PhenoAge (Figure S4), we tested the interaction between the six clusters and the CAD-

PGS using OLS models. Significant main effects were found for both the circumstances clusters 

and PGS (Table 1). For instance, in a fully adjusted main-effect model, those assigned to the red 

cluster had PhenoAge that were more than 3.5 years older than those assigned to the green cluster 

(=3.63, P=7.7E-9). Additionally, every one standard deviation increase in PGS was associated 

with a 0.44 year increase in PhenoAge (=0.44, P=1.4E-2). In a subsequent interaction model, we 

observed a significant interaction between CAD-PGS and the red (relative to the green) cluster 

(=1.50, P=1.9E-2). As illustrated in Figure 3, a higher CAD-PGS increased the difference in 

PhenoAge between those in the red versus the green cluster in a multiplicative manner, such that 

being in the red cluster versus the green cluster was associated with only a 0.6 year increase in 
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PhenoAge for those with a PGS that was 2 standard deviations below the mean. However, among 

those with a PGS that was 2 standard deviations above the mean, being in the red cluster versus 

the green cluster was associated with a 6.6 years increase in PhenoAge. 

 

Discussion  

Using data from a nationally representative study of older adults in the U.S., we showed that 

childhood and adulthood circumstances and genetic factors were associated with differences in a 

clinically-based signature of aging. The Shapley Value Decomposition approach revealed that the 

factors evaluated collectively accounted for under one-third of the variance in phenotypic aging. 

Furthermore, based on childhood and adulthood circumstances, we were able to group participants 

into subpopulations/clusters, which exhibited substantially different levels of phenotypic aging. 

Taken together, these results may inform potential interventions to reduce the health inequalities 

experienced throughout the life course. While causality needs to be formally evaluated, results 

from the current study highlight the socioenvironmental factors that potentially have the largest 

influence over levels of phenotypic aging. As such, targeting these factors may lead to 

improvements in health and diminish disparities.  

 Results from both the Shapley Value Decomposition approach and HCA draw attention to 

adversity in adulthood as a potential driver of differences in phenotypic aging and subsequent 

health disparities. More specifically, persons with higher levels of neighborhood physical disorder 

or high chronic stress—which were the most evident defining characteristics of the red and the 

yellow subpopulations/clusters—appear to phenotypically age faster than their peers. Our study 

extends results from earlier studies reporting that persons living in neighborhoods characterized 

by poor environments (e.g., lower aesthetic quality, and safety) exhibited accelerated cellular 
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aging, proxied by shorter telomere length.41 42 Poor neighborhood environments may induce stress, 

predispose one to stressful life events, or shape exposure and vulnerability to stress.43 To date, 

both human and animal research have documented the negative effects of stress on health and 

aging.44 45  For instance, the literature on “allostatic load” postulates that stressful life experiences 

“get under the skin” and contribute to multi-system dysregulation. However, by considering 

multiple potential stressors simultaneously using advanced statistical approaches, we were able to 

assess their relative contributions. Our results suggest that preventing or reducing these adversities 

(e.g. through improvements in neighborhood safety and increasing affordability of housing) should 

be prioritized in efforts to improve population health, particularly in the face of rapid population 

aging in the U.S. and worldwide.  

Similarly, our results add further evidence to substantiate the link between adult SES and 

aging. Education is thought to act as a robust indicator of SES, contributing to social gradients. In 

this study, the most defining shared attribute across the three advantaged subpopulation/clusters 

(i.e. green, turquoise, and blue) was higher levels of education. This is in stark contrast to the three 

disadvantaged clusters—all of which were characterized by low education. Chronic 

socioeconomic deprivation associated with low education is thought to provoke a number of 

adverse biological responses, including a gene expression profile called the conserved 

transcriptional response to adversity (CTRA), characterized by increased proinflammatory, 

signaling, and downregulation of antiviral type I interferon and antibody related genes.46 Over time, 

this transcriptional profile is thought to increase susceptibility to a number of age-related 

conditions, potentially via acceleration of the biological aging process.  

As with adult SES, a large number of studies have highlighted the influence of childhood 

circumstances (e.g., SES and adversity).10-17 For instance, the “long arm of childhood” theory 
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posits that childhood social and economic conditions get embedded within one’s biology and have 

far reaching implications for one’s health as s/he ages47  However, it is important to account for 

the fact that individuals who experience disadvantages in childhood are more likely to go on to 

experience adverse circumstances in adulthood, which could lead to overestimates of the effect of 

childhood circumstances in traditional regression analysis. In this study, we applied the Shapley 

Value Decomposition approach to appropriately decompose contributions of childhood and 

adulthood circumstances, providing relatively accurate estimates. We observed the influence of 

childhood SES and adversity on phenotypic aging, suggesting that adversity in childhood may 

influence aging beyond predisposing a person to adversity in adulthood.   

While our results highlight the influence of SES and adversity on phenotypic aging, the 

detrimental effects were not consistent across individuals. Our results suggest a moderating effect 

of genetic predisposition, such that individuals who have an innate susceptibility to diseases, such 

as CAD, may suffer even more from experiences of chronic stress and adversity. We showed that 

for participants with low genetic risk for CAD, the differences in PhenoAge between those in the 

most adverse socioeconomic environments (red cluster) and those in the most advantageous (green 

cluster), were minimal—perhaps only ½  year. However, among individuals with high genetic risk, 

we observed a more than 6.5 year difference in PhenoAge between these two socioeconomic 

groups. This is noteworthy, given that we have previously shown that every 1-year increase in a 

person’s PhenoAge, relative to his/her chronological age, is associated with a 9% increased risk of 

dying.8 Based on these findings, it may be beneficial to target interventions and policies towards 

disproportionally at-risk individuals.   

Despite the availability of a comprehensive set of circumstances variables and the 

innovative application of the Shapley Value Decomposition approach, the results should be 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2018. ; https://doi.org/10.1101/384040doi: bioRxiv preprint 

https://doi.org/10.1101/384040
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

interpreted with caution. First, the efforts to assemble a comprehensive set of circumstances 

from several sub-studies reduced sample size and potentially altered the population structure. 

For instance, a sizable proportion of persons who attended the 2016 VBS were excluded due to 

missing data on childhood adversity, collected through the 2015 LHMS. As a result, we 

observed slight differences in relevant characteristics of our analytic sample compared with 

those excluded in the analyses. This issue was partially offset by using dummy variables for 

missingness in order to retain participants, and/or considering other versions of survey weights 

in the sensitivity analyses—all of which produced findings consistent with those presented. 

Second, information on the specific timing of childhood and adulthood circumstances was not 

available. Previous studies have suggested that the earlier the adversity developed, the greater 

the negative effect on health in later life.48 Third, the five variables for major events in 

adulthood adversity domain were asked “before age 50”; therefore, we cannot rule out that they 

occurred in childhood. Fourth, most of these circumstances were based on self-reports, leading 

to possible recall biases, particularly as it relates to reporting of childhood experiences. In future 

research, it will be important to examine the associations between childhood adversity/SES and 

measures such as PhenoAge, to determine when individuals diverge in their aging rates. 

Similarly, longitudinal analyses that can test actual rate of change are also needed.  

 

Conclusions  

In a national-representative sample of U.S. older adults, we demonstrated that socioenvironmental 

circumstances during both childhood and adulthood account for a sizable proportion of the 

difference in phenotypic aging. Furthermore, we provided evidence of a GxE interaction, 

suggesting that experiencing adverse circumstances may be more detrimental to individuals with 
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a genetic predisposition to poorer health—in this case, increased risk of CAD.  These findings may 

inform policy for allocating resources to promote healthy aging, and eventually ameliorate health 

disparities. 
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Table 1. PhenoAge Associations with CAD-PGS and Childhood and Adulthood 

Circumstances. 

 Model 1 Model 2 

 Coef. (SE) P Value Coef. (SE) P Value 

Six clusters for childhood and  

adulthood circumstances 

    Green Ref.  Ref.  

    Turquoise 0.83 (0.58) 0.151 0.84 (0.58) 0.146 

    Blue -0.02 (0.61) 0.967 -0.01 (0.61) 0.983 

    Orange 1.94 (0.66) 0.003 1.96 (0.66) 0.003 

    Yellow 3.46 (0.61) 1.6E-8 3.50 (0.61) 1.3E-8 

    Red 3.63 (0.63) 7.7E-9 3.64 (0.63) 7.0E-9 

CAD-PGS 0.44 (0.18) 0.014 -0.09 (0.40) 0.822 

Gene-by-environmental interactions     

CAD-PGS*Green   Ref.  

CAD-PGS*Turquoise   0.44 (0.56) 0.430 

CAD-PGS*Blue   0.54 (0.58) 0.354 

CAD-PGS*Orange   0.66 (0.66) 0.318 

CAD-PGS*Yellow   0.41 (0.60) 0.497 

CAD-PGS*Red   1.49 (0.64) 0.019 

CAD-PGS, polygenic score for coronary artery disease. SE, standard error.  

Model 1 adjusted for chronological age, sex, ancestry, proportion of experiencing obesity, and 

smoking. Model 2 additionally added the CAD-PGS*clusters interaction term.  
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Legends 

 

Fig 1. The contribution of all 11 domains to PhenoAgeAccel.  

SES, socioeconomic status; PGS, polygenic score. The 11 domains include four childhood and 

adulthood circumstances domains, five PGSs domains, demographics, and behaviors domains. 

Overall, the 11 domains contributed 29.2% (standard error = 0.003) of variance in 

PhenoAgeAccel.  

 

Fig 2. A) Cluster membership-traits correlations and p-values; B) PhenoAgeAccel across six 

clusters. In A), to determine what each subpopulation/cluster represents, we calculated a 

continuous measure (cluster membership) for each cluster (between -1 and 1) that denotes how 

strongly a person belongs to that given cluster—for instance, someone may have a score of 0.8 for 

the green cluster and -0.6 for the red cluster, suggesting he/she is very similar to the profile 

representative of the green cluster, but not the red cluster. Each cell reports the correlation (and p-

value) resulting from correlating cluster membership (rows) to traits (columns, including 

PhenoAgeAccel and summarized measures of several circumstances). The table is color-coded by 

correlation according to the color legend. 

 

Fig 3. The significant interaction between CAD-PGS and the red (relative to the green) 

cluster for PhenoAge. CAD-PGS, polygenic score for coronary artery disease. This figure is 

based on an OLS model with adjustment for chronological age, sex, ancestry, obesity, and 

smoking, and the CAD-PGS*clusters interaction term.  
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