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24 Abstract

25 Influenza is a major cause of morbidity and mortality worldwide. However, vaccine 

26 effectiveness has been low to moderate in recent years and vaccine coverage remains low, 

27 especially in low- and middle-income countries. Supplementary methods of prevention should be 

28 explored to reduce the high burden of influenza.

29 A potential target is the respiratory tract microbiome, complex microbial communities 

30 which envelop the respiratory epithelium and play an important role in shaping host immunity. 

31 Using a household transmission study, we examined whether the nose/throat microbiota was 

32 associated with influenza susceptibility among participants exposed to influenza virus in the 

33 household. Further, we characterized changes in the nose/throat microbiota to explore whether 

34 community stability was influenced by influenza virus infection.

35 Using a generalized linear mixed effects model, we found a bacterial community type 

36 associated with decreased susceptibility to influenza. The community type was rare and transitory 

37 among young children but a prevalent and stable community type among adults. Using boosting 

38 and linear mixed effects models, we found associations between the nose/throat microbiota and 

39 influenza also existed at the taxa level, specifically with the relative abundance of Alloprevotella, 

40 Prevotella, and Bacteroides oligotypes.

41 We found high rates of change in the bacterial community among both secondary cases 

42 and household contacts who were not infected during follow up. Preliminary results suggest short-

43 term changes in the bacterial community structure may differ between the two groups, but further 

44 work is needed to validate our observations. 

45 Lastly, age was strongly associated with susceptibility to influenza and the nose/throat 

46 bacterial community structure. Although additional studies are needed to determine causality, our 
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47 results suggest the nose/throat microbiome may be a potential target for reducing the burden of 

48 influenza.

49

50 Author summary

51 Microbiome research has transformed our understanding of microbes and human health. 

52 Resident bacteria can protect the host from pathogens by shaping immunological responses. These 

53 new insights suggest the microbiome could be a target for preventing influenza virus infection, a 

54 major cause of illness and death worldwide. In this study, we explored the relationship between 

55 the nose/throat microbiota and influenza virus in Nicaraguan households. 

56 Household members were enrolled immediately after one member was diagnosed with 

57 influenza virus infection. This study design allowed us to identify associations between the 

58 microbiota and influenza susceptibility. We also explored whether influenza virus infection altered 

59 the bacterial community structure and found short-term changes were common among both 

60 secondary cases and household members who remained influenza negative during follow up. 

61 Lastly, we found age played major roles in both influenza susceptibility and in short-terms changes 

62 in the microbiota. Although much work is needed to determine causal relationships, our findings 

63 suggest strategies that appropriately modify the microbiome might be useful in preventing 

64 influenza virus infections.

65

66 Introduction

67 Influenza is a major contributor of human illness and death worldwide, estimated to cause 

68 3-5 million cases of severe illness [1] and 400,000 deaths during interpandemic years [2]. 

69 Vaccination is the best available means of influenza prevention. However, vaccine effectiveness 
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70 has been low to moderate in recent years [3,4] and vaccine coverage remains low, especially in 

71 low- and middle-income countries [5]. With increasing support for a role of the microbiome in 

72 shaping host immunity [6–8], exploring whether these effects extend to influenza risk could 

73 contribute to supplementary methods of prevention.

74 We hypothesized that the nose/throat microbiome is an unrecognized factor associated with 

75 susceptibility to influenza virus. Murine and human studies support this assertion. Compared to 

76 controls, mice treated with oral antibiotics exhibited enhanced degeneration of the bronchiole 

77 epithelial layer and increased risk of death following intranasal infection with influenza virus [7]. 

78 In two separate randomized controlled trials, newborns fed prebiotics and probiotics had 

79 significantly lower incidence of respiratory tract infections compared to placebo [9,10]. These 

80 studies suggest the manipulation of the microbiome, either through disruption or supplementation, 

81 can alter risk of respiratory tract infections.

82 The epithelial cells of the upper and lower respiratory tracts are the primary targets for 

83 influenza virus infection and replication [11]. However, these cells are enveloped by complex 

84 bacterial communities that may directly or indirectly interact with influenza virus to mediate risk 

85 of infection. Commensal bacteria may prevent infection by regulating innate and adaptive host 

86 immune responses [6,7]. In addition, this immune response might stimulate changes in the 

87 microbiome [12–14]. In a human experimental trial, young adults given intranasal administration 

88 of live attenuated influenza vaccine were characterized by increased taxa richness relative to the 

89 control group [15]. 

90 Further, influenza-related changes in the bacterial community structure might explain the 

91 enhanced risk of bacterial pneumonia and otitis media following influenza virus infection [16–19]. 

92 The most commonly detected causative organisms of bacterial pneumonia and otitis media 
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93 increase in abundance in the upper respiratory tract following respiratory virus infection [20,21]. 

94 We previously showed that adults in the US with influenza virus infection expressed increased 

95 nose/throat carriage of Streptococcus pneumoniae and Staphylococcus aureus [20]. Similarly, 

96 other studies have observed an increase in pneumococcal density following rhinovirus infection 

97 [21] and changes in the microbiota during rhinovirus and respiratory syncytial virus infections 

98 [22]. Increased carriage elevates risk of invasive disease [23,24], potentially through more frequent 

99 microaspiration into the lung or migration to the middle ear [25]. However, an association between 

100 the nose/throat microbiome and influenza risk has not been demonstrated in human populations.

101 In this study, we used data from a longitudinal household transmission study of influenza 

102 to assess the relationship between the nose/throat microbiota and susceptibility to influenza virus 

103 infection and to determine whether influenza virus infection alters the bacterial community 

104 structure using an untargeted 16S rRNA taxonomic screen (Fig 1).

105

106 Results

107 Study population

108 A total of 717 participants from 144 households were enrolled in the Nicaraguan 

109 Household Transmission Study during 2012-2014. During this period, 3,101 nose/throat samples 

110 were collected over 5 home visits (mean: 4.3 samples per person; interquartile range (IQR): 4-5). 

111 Analysis was restricted to 537 household contacts who were negative for influenza virus by real-

112 time reverse transcription polymerase chain reaction (RT-PCR) at time of enrollment. 

113 Sixty-one household contacts were children ≤5 years of age (median: 2 years; IQR: 1-4), 

114 163 were children 6-17 years of age (median: 10 years; IQR: 8-14), and 313 were adults (median: 

115 33 years; IQR: 24-43) (Table 1). Fifty-one percent of all household contacts were exposed to at 
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116 least one tobacco smoker in the household and 29% resided in crowded households (on average, 

117 >3 persons per bedroom). Household contacts were rarely vaccinated against influenza (5%) and 

118 very few used antibiotics (<1% two weeks prior to enrollment and <1% during follow up) or 

119 oseltamivir (6% during follow up). 

120

121 Table 1. Characteristics of 537 household contacts of influenza cases from 144 households, 

122 Managua, Nicaragua, 2012-2014, by community type* at enrollment.

Characteristic All 
(n=537†)

Community 
Type 1
(n=132)

Community 
Type 2
(n=125)

Community 
Type 3
(n=122)

Community 
Type 4
(n=85)

Community 
Type 5
(n=59)

No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)
Age (years)
     0-5 61 (11) 9 (7) 15 (12) 4 (3) 3 (4) 26 (44)
     6-17 163 (30) 51 (39) 41 (33) 38 (31) 19 (22) 9 (15)
     ≥18 313 (58) 72 (55) 69 (55) 80 (66) 63 (74) 24 (41)
Female 347 (65) 86 (65) 88 (70) 87 (71) 45 (53) 35 (59)
Influenza 
infection

71 (13) 21 (16) 20 (16) 15 (12) 5 (6) 6 (10)

Influenza 
vaccination‡

27 (5) 8 (6) 6 (5) 8 (7) 2 (3) 3 (5)

Smoker in 
household

245 (51) 54 (46) 58 (52) 56 (51) 44 (59) 28 (50)

>3 persons per 
bedroom in the 
household

156 (29) 40 (30) 35 (28) 36 (30) 22 (26) 19 (32)

Antibiotic use
<2 weeks prior

1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (2)

Antibiotic use 
during follow up

4 (1) 2 (2) 0 (0) 1 (1) 0 (0) 1 (2)

Oseltamivir use 
during follow up

33 (6) 4 (3) 14 (11) 6 (5) 3 (4) 5 (8)

123 *Community types were defined using Dirichlet multinomial mixture method (see Methods).

124 †Includes 10 household contacts with undefined community type at time of enrollment

125 ‡Prior to enrollment and in same year as index case

126

127 After the enrollment of an index case, households were followed for up to 13 days through 

128 5 home visits conducted at 2-3 day intervals. Seventy-one secondary cases from 48 households 

129 were identified by RT-PCR during follow up. Fourteen out of the 48 households had more than 

130 one secondary case (29%), suggesting clustering of cases by household. Most secondary cases 
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131 were older children and young adults (median: 13.0 years; IQR: 6, 23) and had at least one 

132 symptom of an acute respiratory infection during follow up (79%) (S1 Table).

133

134 Bacterial community types

135 We conducted 16S (V4) rRNA sequencing on a pair of samples from each study 

136 participant: 712 samples collected at enrollment and 698 samples collected at the last available 

137 home visit. The median time between samples was 9 days (IQR: 9-10 days). After quality filtering, 

138 microbiota data was available for 710 samples collected at enrollment and 695 samples collected 

139 at the last available home visit.

140 Dirichlet multinomial mixture modeling [26], an unsupervised clustering method, was used 

141 to assign nose/throat samples to 5 bacterial community types (S1 Fig: model fit by Dirichlet 

142 components; S2 Fig: PCoA plot by community type). Ninety-eight percent of all sequenced 

143 samples were assigned to a community type, after applying a ≥80% posterior probability threshold. 

144 Permutational multivariate analysis of variance (PERMANOVA) indicated community types 

145 differed significantly from one another (Bray-Curtis dissimilarity, p=0.001, R2=0.21). Relatively 

146 few oligotypes explained clustering of the single-community type model for the five-community 

147 type model, as 50% of the difference between models was attributed to 15 of the 230 total 

148 oligotypes. The relative abundances of these 15 oligotypes are depicted in Fig 2. The relative 

149 abundances of all 230 oligotypes are available in S2 Table. 

150 The prevalence of community types among household contacts differed significantly by 

151 age. Most notably, community type 4 was rare among young children and became more prevalent 

152 with age (at enrollment; 0-5 years: 5%, 6-17 year: 12%, adults: 20%; χ2-test, p=0.004) (Table 1). 

153 We observed similar results after restricting our analysis to household contacts who remained 
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154 influenza negative during follow up (at enrollment; 0-5 years: 7%, 6-17 years: 12%, adults: 21%; 

155 χ2 test, p=0.011) (S3 Table). Young children were primarily colonized by community type 5, 

156 which was less common among older age groups (at enrollment 0-5 years: 43%, 6-17 years: 6%, 

157 adults: 8%; χ2-test, p<0.001) (Table 1). These results indicate age is strongly associated with the 

158 nose/throat bacterial community structure.

159

160 Bacterial community type associated with lower susceptibility to influenza virus infection 

161 To investigate the relationship between bacterial community types and influenza 

162 susceptibility, we first estimated secondary attack rates by community type. Secondary attack rates 

163 were calculated as: the number of secondary cases identified by RT-PCR during follow up over 

164 the total number of household contacts at start of follow up. Secondary attack rates among 

165 household contacts with community type 4 were nearly half of other community types; however, 

166 differences were not statistically significant (5.9% vs. 10.2%-16.0%; χ2-test, p=0.056) (Fig 3). 

167 Similar differences were observed after stratifying by age.

168 We used a generalized linear mixed effects model to examine the relationship between 

169 community types and influenza susceptibility after adjusting for age, a smoker in the household, 

170 household crowding, and clustering by household. A detailed description of the model is available 

171 in S1 Appendix. Our decision to account for household clustering was supported by an intra-class 

172 correlation of 0.21, which indicates 21% of the total variance was due to clustering by household. 

173 We found household contacts with community type 4 had a lower odds of influenza virus infection 

174 (odds ratio (OR): 0.26; 95% CI: 0.07, 0.99) (Fig 4), Further, young children were most likely to 

175 acquire influenza virus (OR: 4.66; 95% CI: 1.62, 13.37), followed by older children (OR: 2.91; 

176 95% CI: 1.47, 5.80). These results suggest household contacts with community type 4 were less 
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177 likely to be infected with influenza and younger household contacts were at greater risk after 

178 adjusting for other known risk factors. 

179 We were inadequately powered for influenza type/subtype-specific models; however, no 

180 household contacts with community type 4 at enrollment (n=85) were infected with H3N2, the 

181 most commonly identified influenza subtype in this population (52% of all secondary cases). This 

182 suggests associations between the microbiota and influenza susceptibility may vary by subtype but 

183 further work is needed to test this hypothesis.

184

185 Oligotypes associated with susceptibility to influenza virus infection

186 In addition to analysis at the community type level, taxa-specific analysis was conducted 

187 using MaAsLin [27]. MaAsLin first uses boosting in a univariate pre-screen to identify taxa and 

188 metadata (features) that are potentially associated. Significantly associated features are then 

189 identified using linear mixed effects models. Models included in our analysis adjusted for age, a 

190 smoker in the household, household crowding, and clustering by household (S1 Appendix). Two 

191 oligotypes, Alloprevotella sp. and Prevotella histicola / sp. / veroralis / fusca / scopos / 

192 melaninogenica, were positively associated with influenza virus infection (S4 Table). One 

193 oligotype was negatively associated with influenza virus infection. Although unclassified in the 

194 HOMD database, a nblast search using the GenBank database 

195 (https://www.ncbi.nlm.nih.gov/genbank/) classified the oligotype as Bacteroides vulgatus.

196 The relative abundance of multiple oligotypes were strongly associated with age. Relative 

197 to adults, 119 oligotypes were differentially abundant among young children and 41 oligotypes 

198 were differentially abundant among older children. Lastly, four oligotypes were associated with 
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199 household crowding and no oligotype was associated with exposure to a smoker in the household. 

200 All statistically significant associations are listed in S4 Table.

201

202 Community diversity and influenza virus infection

203 We examined whether community diversity was associated with influenza susceptibility. 

204 Shannon diversity was significantly different between community type 4 and other community 

205 types (Wilcox rank-sum tests, all comparisons p<0.001) (S3 Fig). Community type 4 (median: 

206 3.43) was less diverse than community type 1 (median: 3.58) and more diverse than community 

207 types 2, 3, and 5 (medians: 2.56-3.29).

208 To further explore whether community diversity influenced the relationship between 

209 community types and influenza susceptibility, we reran our generalized linear mixed effects model 

210 using Shannon diversity as our primary predictor. Alpha diversity was not significantly associated 

211 with influenza susceptibility (OR: 1.76; 95% CI: 0.83, 3.72) (S4 Fig).

212

213 Stability of bacterial community structure during influenza virus infection

214 To examine the stability of the respiratory microbiota during influenza virus infection, we 

215 characterized changes in the bacterial community structure over a median of 9 days (IQR: 9, 10). 

216 We used Markov chain plots to represent short-term changes in the nose/throat microbiota among 

217 household contacts, by influenza case status and age (Fig 5 and S2 Appendix). Circles represent 

218 community types 1 through 5 and the size of the circles represent the prevalence of each 

219 community type at start of follow up. Arrows represent transitions between community types 

220 during follow up. The width and number assigned to each arrow represents the proportion of 
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221 individuals who transitioned between community types. Community stability was estimated as the 

222 proportion of household contacts who showed no change in community type over follow up.

223 Although the prevalence of community types appeared to remain similar between the two 

224 sampling points (S3 Table), we found transitions between community types were common with 

225 approximately half of all household contacts (45% among secondary cases, 55% among 

226 uninfected) changing to a different community type by the end of follow up (Fig 5 and S2 

227 Appendix). Stability ranged from 40-62% for all community types in both secondary cases and 

228 uninfected household contacts. Although we were inadequately powered to test for statistical 

229 differences in specific type-to-type transitions, the overall contrast between the two groups suggest 

230 community dynamics may differ by influenza status and should be explored further.

231 We specifically focused on the stability of community type 4, which was associated with 

232 decreased influenza susceptibility. Stability among uninfected household contacts with community 

233 type 4 increased with age (0-5 years: 0%, 6-17 years: 40%, adults: 70%; Fisher exact test, p=0.016) 

234 (Fig 5B). We were inadequately powered for a similar analysis among secondary cases. 

235 We used a generalized linear mixed effects model to examine whether community stability 

236 was associated with influenza virus infection, after adjusting for community type at enrollment, 

237 age, a smoker in the household, household crowding, and clustering by household (S1 Appendix). 

238 We did not find an association between community stability and influenza virus infection. 

239 However, we found stability was lowest among children 6-17 years old (OR: 1.67; 95% CI: 1.07, 

240 2.60) (Fig 6).

241

242 Sensitivity Analysis
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243 Sensitivity analysis was conducted to investigate potential sources of bias (S3 Appendix). 

244 To assess whether sequencing depth could influence our results, we first examined whether 

245 sequencing depth differed by community type. We found no meaningful differences in sequencing 

246 depth by community type. In addition, we reran our influenza susceptibility model with sequencing 

247 depth as an additional predictor. We found only minor differences in model estimates, with a 

248 slightly enhanced effect of community type 4 (OR: 0.24; 95% CI: 0.06, 0.94). 

249 To assess whether time between samples influenced community stability, we additionally 

250 controlled for time between samples in our community stability model. We found only minor 

251 differences in model estimates.

252 Lastly, we explored whether a more conservative criterion for community type assignments 

253 would influence our results. We reran our influenza susceptibility model after assigning samples 

254 with a maximum posterior probability ≤90% as missing. We found minor differences in our results. 

255 However, the association with community type 4 was no longer statistically significant (OR: 0.27; 

256 95% CI: 0.07, 1.03).

257

258 Discussion

259 To our knowledge, this is the first human population study to prospectively explore the 

260 relationship between the nose/throat microbiome and influenza virus infection. We demonstrate 

261 influenza susceptibility is associated with both differences in the overall bacterial community 

262 structure and in the relative abundance of specific taxa. Although the exact biological mechanisms 

263 remain unclear, the few murine studies that have examined this relationship suggest it is likely 

264 mediated by immunomodulation. In these studies, mice treated with antibiotics exhibited 

265 diminished innate and adaptive immune responses compared to placebo. Specifically, mice with 
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266 disrupted microbiomes expressed impaired macrophage responses to type I and type II interferons 

267 and a lack of bacterial lipopolysaccharides that stimulate Toll-like receptors and other pattern 

268 recognition receptors [6,7]. Although these mechanisms suggest a causal relationship between the 

269 respiratory microbiome and influenza virus infection, additional work is needed to evaluate 

270 whether epidemiologic associations in human populations represent a true effect of the 

271 microbiome or merely reflect differences in host immunity. Further, future studies should examine 

272 whether the relationship differs by influenza type/subtype.

273 Most studies that have characterized the upper respiratory tract microbiota are limited to 

274 infants [22,28,29]. Here, we examine a unique population consisting of both children and adults. 

275 We demonstrate age is strongly associated with both the prevalence and stability of nose/throat 

276 bacterial communities. Most notably, we found the community type associated with decreased 

277 susceptibility to influenza was less prevalent and less stable among young children. If a causal 

278 relationship between the microbiome and influenza truly exists, our results would suggest the 

279 microbiome may contribute to the increased influenza risk observed among young children [30].

280 We found the microbiome structure changed frequently among both influenza cases and 

281 household contacts who remained uninfected during follow up (median: 9.0 days, IQR: 9.0-10.0). 

282 This was expected among influenza cases as prior studies have demonstrated increased 

283 colonization by opportunistic pathogens in the upper respiratory tract following respiratory virus 

284 infection [20,21]. However, the high degree of change among uninfected household contacts was 

285 surprising and may represent a response to influenza exposure in the household. 

286 Preliminary findings from our Markov chain analysis suggest community dynamics may 

287 differ by influenza status. Characterizing multiple longitudinal samples per participant would lead 

288 to a better understand of influenza and its impact on the microbiome. In addition, future studies 
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289 should explore whether changes in the bacterial community structure are directly due to influenza 

290 virus or indirect responses to changes in the virome or mycobiome.

291 A limitation in our study is the use of pooled nose and throat samples. Differential sampling 

292 by site can introduce bias if sampling is related to both the observed bacterial community structure 

293 and influenza susceptibility. Although this was minimized through consistent sampling techniques 

294 across all study participants, factors such as age could confound associations and may partially 

295 explain age-related differences in the bacterial community structure. We attempted to reduce 

296 potential bias by adjusting age and other potential confounders in our analysis. A second limitation 

297 is the use of RT-PCR for identifying influenza cases. Individuals can be infected with influenza 

298 virus (i.e. ≥4-fold increase in hemagglutinin inhibition antibody titer) and not shed virus [31]. We 

299 may have missed true index cases and secondary cases with low levels of virus. Although our 

300 results and conclusions are limited to secondary cases with viral shedding, RT-PCR allowed us to 

301 screen for secondary cases at 2-3 day intervals while limiting invasive procedures. Lastly, we did 

302 not consider pre-existing immunity from previous infections, which might potentially confound or 

303 modify associations.

304 While much work is needed to translate these results into potential clinical and public 

305 health applications, our findings contribute to a growing literature suggesting that it may be 

306 possible to manipulate the microbiome and decrease risk of disease [9,10]. Influenza virus is a 

307 major cause of severe illness and death each year [1,2]. However, vaccine effectiveness varies by 

308 year [4] and there still much debate on the use of antivirals for prophylaxis, especially for 

309 preventing asymptomatic infections and influenza transmission [32]. Our study suggests the 

310 microbiome should be further explored as a potential target in reducing influenza risk.

311
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312 Methods

313 Study population and sample collection

314 The Nicaraguan Household Transmission Study of Influenza is an ongoing prospective 

315 case-ascertained study conducted among urban households in Managua, Nicaragua. Patients 

316 attending the Health Center Sócrates Flores Vivas were screened for study eligibility. Index cases 

317 of influenza were identified as patients with a positive QuickVue Influenza A+B rapid test, 

318 symptom onset of an acute respiratory infection within the past 48 hours, and living with at least 

319 one other household member. Symptoms of acute respiratory infection included fever or 

320 feverishness with cough, sore throat, or runny nose. 

321 Index cases and household members (contacts) were invited to participate and clinical, 

322 sociodemographic, and household data were collected at time of enrollment. Participants were 

323 followed for up to 13 days through 5 home visits conducted at 2-3 day intervals. At each home 

324 visit, oropharyngeal and nasal swabs were collected, combined, and stored at 4⁰C in viral transport 

325 media. All samples were transported to the National Virology Laboratory at the Nicaraguan 

326 Ministry of Health within 48 hours of collection and stored at -80⁰C. A symptom diary was 

327 collected for all participants during follow up.

328 A total of 168 households were enrolled for follow up during 2012-2014. Households were 

329 excluded from analysis if a suspected index case was negative for influenza virus by real-time 

330 reverse-transcription polymerase chain reaction (RT-PCR) at time of enrollment. Two household 

331 contacts were excluded from analysis due to missing influenza virus infection status at time of 

332 enrollment. The remaining participants consisted of 144 index cases of influenza positive by RT-

333 PCR, 537 household contacts influenza negative by RT-PCR at time of enrollment, and 36 

334 household contacts who were RT-PCR positive for influenza virus on the first day of follow up.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2018. ; https://doi.org/10.1101/372649doi: bioRxiv preprint 

https://doi.org/10.1101/372649
http://creativecommons.org/licenses/by/4.0/


16

335

336 Ethics statement

337 Written informed consent was obtained from adult participants and from parents or legal 

338 guardians of participants under 18 years of age. In addition, verbal assent was obtained from 

339 children over 5 years of age. The study was approved by Institutional Review Boards at the 

340 University of Michigan, the Nicaraguan Ministry of Health, and the University of California at 

341 Berkeley.

342

343 RNA extraction and RT-PCR

344 Total RNA was extracted from all available nasal/oropharyngeal samples using the QIAmp 

345 Viral Mini Kit (QIAGEN, Hilden, Germany) per manufacturer’s instructions at the National 

346 Virology Laboratory in Nicaragua. Samples were tested for influenza virus by RT-PCR using 

347 standard protocols validated by the Centers for Disease Control and Prevention [33].

348

349 DNA extraction and 16S rRNA sequencing

350 Total DNA was extracted from a pair of samples from each study participant: the first 

351 sample collected at time of enrollment and the second sample collected at the last day of follow 

352 up (median days between samples: 9.0 days, IQR: 9.0-10.0). Among the 717 total study 

353 participants, five first samples and 19 second samples were not available for DNA extraction. DNA 

354 was extracted using the QIAmp DNA Mini Kit and an enzyme cocktail composed of cell lysis 

355 solution (Promega, Madison, USA), lysozyme, mutanolysin, RNase A, and lysostaphin (Sigma-

356 Aldrich, St. Lious, USA) in 22.5:4.5:1.125:1.125:1 parts, respectively. 100 µL of sample was 

357 incubated at 37°C for 30 minutes with 80 µL of the enzyme cocktail. After adding 25 µL proteinase 
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358 K and 200 µL of Buffer AL, samples were vortexed and incubated at 56°C for 30 minutes. Samples 

359 were washed with 200 µL of 100% ethanol, 500 uL of Buffer AW1, and then 500 uL of Buffer 

360 AW2. To maximize DNA yield, DNA was eluted twice with 100 uL of Buffer AE and stored at -

361 80°C.

362 The V4 hypervariable region of the 16S rRNA gene was amplified and sequenced at the 

363 University of Michigan Microbial Systems Laboratories using Illumina MiSeq V2 chemistry 

364 2x250  (Illumina, San Diego, CA) and a validated dual-indexing method [34]. Briefly, primers 

365 consisted of an Illumina adapter, an 8-nt index sequence, a 10-nt pad sequence, a 2-nt linker, and 

366 the V4-specific F515/R806 primer [35]. Amplicons were purified and pooled in equimolar 

367 concentrations. A mock community of 21 species (Catalog No. HM-782D, BEI Resources, 

368 Manassas, VA) or a mock community of 10 species (Catalog No. D6300, Zymo Research, Irvine, 

369 CA) was included by the Microbial Systems Laboratories to assess sequencing error rates. For 

370 every 96-well plate submitted for amplification and sequencing (90 study samples), we included 

371 two aliquots of an in-house mock community consisting of Streptococcus pneumoniae, 

372 Streptococcus pyogenes, Staphylococcus aureus, Haemophilus influenzae, and Moraxella 

373 catarrhalis and two aliquots of an oropharyngeal control sample. These internal controls were 

374 randomly assigned to plate wells and used to assess systematic variation in sequencing. All 

375 samples were sequenced in duplicate, demultiplexed, and quality filtered.

376

377 Oligotyping and community typing

378 We used mothur v1.38.1 [36] to align and perform quality filtering on raw sequences using 

379 the mothur standard operating procedures (https://www.mothur.org/wiki/MiSeq_SOP, accessed 

380 November 18, 2016). Sequences were converted to the appropriate oligotyping format as 
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381 previously described [37]. We used the Minimum Entropy Decomposition (MED) algorithm [38] 

382 with default parameters (-M: 13779.0, -V: 3 nt) to cluster sequences into oligotypes. Briefly, the 

383 algorithm identifies variable nucleotide positions and uses Shannon entropy to partition sequences 

384 into nodes. The process is iterative and continues to decompose parent nodes into child nodes until 

385 there are no discernable entropy peaks. Oligotyping has previously been used to examine within-

386 genus variations in the microbiota [37,39–41] and provides increased resolution relative to 

387 conventional distance-based clustering methods.

388 After excluding five samples with less than 1,000 reads, our dataset consisted of 1,405 

389 samples with a total of 61,784,957 sequences decomposed into 230 oligotypes. To assign 

390 taxonomy, we searched representative sequences of each oligotype against the Human Oral 

391 Microbiome Database (HOMD) v14.51 [42] using blastn v2.2.23 [43]. Classifications with ≥98% 

392 identity were kept.

393 We used Dirichlet multinomial mixture models [26] in R v3.4.4 [44] and the 

394 DirichletMultinomial v1.16.0 package [45] to assign all samples to 5 community types. We 

395 determined the number of community types by comparing the Laplace approximation of the 

396 negative log models and identifying the point at which an increase in Dirichlet components 

397 resulted in minor reductions in model fit (S1 Fig). This approach allowed us to consider both 

398 model fit of the negative log models and statistical power in downstream analysis. The goal was 

399 not to identify the “true communities”, as community types are representations of data. All 

400 formal statistical inferences are based on the models relating community types to our outcomes 

401 of interest, with any findings being statistically supported by the data.

402 Samples were assigned to community types with the greatest posterior probability. 98.2% 

403 of all samples had a posterior probability of 80% or higher. To minimize misclassification, samples 
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404 were assigned as having an undefined community type if the posterior probability was less than 

405 80%. Each community type contained between 13.0-24.8% of all samples (n=182-348) and 1.8% 

406 of all samples (n=25) were undefined.

407

408 Statistical Models

409 Detail to statistical models used in this study are described in S1 Appendix. To examine 

410 the association between community types at enrollment and susceptibility of influenza virus 

411 infection, we used a generalized linear mixed effects model estimating the odds of infection after 

412 adjusting for community type (relative to community type 1), age (relative to adults), a smoker in 

413 the household, household crowding, and clustering by household.  Household crowding was 

414 defined as having, on average, more than three household members per bedroom. The model was 

415 adapted to examine the effects of alpha diversity. 

416 Associations between individual oligotypes and participant data were determined using 

417 MaAsLin [27]. Briefly, MaAsLin is a sparse multivariate approach used to identify associations 

418 between individual taxa and participant data. Relative abundance values were arcsine square-root 

419 transformed to stabilize variance. Potentially associated features (i.e. oligotypes) were selected 

420 using boosting in a univariate prescreen. Linear mixed effects models are then used to find 

421 associations between the selected features and metadata. The Benjamin-Hochberg method was 

422 used to correct for multiple testing. Associations with a q-value <0.05 were considered statistically 

423 significant.

424 To examine the effect of influenza virus infection on community stability, we used a 

425 generalized linear mixed effects model estimating the odds of any change in community type over 

426 follow up, after adjusting for community type at enrollment (relative to community type 1), age 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2018. ; https://doi.org/10.1101/372649doi: bioRxiv preprint 

https://doi.org/10.1101/372649
http://creativecommons.org/licenses/by/4.0/


20

427 (relative to adults), a smoker in the household, household crowding (average of >3 persons per 

428 bedroom), and clustering by household. All statistical analysis was conducted using R v3.4.4 [44] 

429 and the lme4, vegan, and maaslin packages [27,46,47]. 

430

431 Markov chain analysis

432 We estimated community transition rates over time using methods described previously 

433 [48]. Briefly, we restricted our dataset to household contacts with complete nose/throat sample 

434 pairs (i.e. microbiota data at enrollment and at follow up). Community transition rates were 

435 calculated as Markov chain probabilities. Analysis was repeated after stratifying by influenza 

436 status and age.

437
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599 Fig 1. Graphical abstract.

600

601 Fig 2. Relative abundance of 15 oligotypes, by community type. 

602 Oligotypes included in the figure attributed >50% of the difference between the single-community 

603 type model and the five-community type model. Bars represent the mean relative abundance of 

604 each oligotype (±1 standard error). 1,405 samples from 717 study participants residing in 144 

605 households in Managua, Nicaragua, 2012-2014.

606

607 Fig 3. Secondary attack rates by community type at enrollment and age. 

608 533 household contacts of influenza cases with defined community type at enrollment, residing in 

609 144 households in Managua, Nicaragua, 2012-2014. Numbers represent sample size of each group.

610

611 Fig 4. Generalized linear mixed effects model estimating odds of influenza virus infection. 

612 Model adjusting for community type (relative to community type 1), age (relative to adults), a 

613 smoker in the household, household crowding (average of >3 persons per bedroom), and clustering 

614 by household. 468 household contacts of influenza cases with complete data, residing in 132 

615 households in Managua, Nicaragua, 2012-2014.

616

617 Fig 5. Stability of nose/throat bacterial community over follow up.

618  513 household contacts with microbiota data both at enrollment and follow up, residing in 144 

619 households in Managua, Nicaragua, 2012-2014. (A) By influenza case status. (B) By age, among 

620 443 household contacts who remained negative for influenza virus infection during follow up. (C) 

621 By age, among 70 secondary cases. Circles represent community types and circle size is 

622 proportional to prevalence of community types at enrollment. Community type u corresponds to 
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623 samples with an undefined community type. Transition rates between community types were 

624 estimated as Markov chain probabilities and are shown numerically. Transitions rates <0.10 were 

625 removed for simplicity. Complete data are available in S2 Appendix.

626

627 Fig 6. Generalized linear mixed effects model estimating odds of change in community type 

628 during follow up. 

629 Model adjusting for influenza virus infection, community type at enrollment (relative to 

630 community type 1), age (relative to adults), a smoker in the household, household crowding 

631 (average of >3 persons per bedroom), and clustering by household. 443 household contacts with 

632 defined community types at enrollment and follow up and complete data, residing in 130 

633 households in Managua, Nicaragua, 2012-2014. Household contacts with an undefined community 

634 type were excluded from analysis.

635

636 S1 Fig. Model fit of negative log models by number of Dirichlet components. 

637 We determined the number of community types by estimating the Laplace approximation of the 

638 negative log models and identifying the point at which an increase in Dirichlet components 

639 resulted in minor reductions in model fit. This approach allowed us to consider both model fit of 

640 the negative log models and statistical power in downstream analysis. The goal was not to identify 

641 the “true communities”, as community types are representations of data. All formal statistical 

642 inferences are based on the models relating community types to our outcomes of interest, with any 

643 findings being statistically supported by the data.

644

645 S2 Fig. Principal coordinates analysis of nose/throat samples assigned to community types. 
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646 1,405 nose/throat samples from 717 study participants residing in 144 households in Managua, 

647 Nicaragua, 2012-2014. Based on Bray-Curtis dissimilarity.

648

649 S3 Fig. Shannon diversity of nose/throat samples, by bacterial community type. 

650 1,380 samples with defined community type, 717 study participants residing in 144 households in 

651 Managua, Nicaragua, 2012-2014.

652

653 S4 Fig. Generalized linear mixed effects model estimating odds of influenza virus infection 

654 using Shannon diversity. 

655 Model adjusts for Shannon diversity, age (relative to adults), a smoker in the household, household 

656 crowding (average of >3 persons per bedroom), and clustering by household. 477 household 

657 contacts of influenza cases with complete data, residing in 132 households in Managua, Nicaragua, 

658 2012-2014.

659

660 S1 Table. Characteristics of 71 secondary cases from 48 households, Managua, Nicaragua, 

661 2012-2014, by community type at enrollment.

662

663 S2 Table. Relative abundance of all 230 oligotypes, by community type. 

664 A total of 1,405 samples from 717 study participants residing in 144 households in Managua, 

665 Nicaragua, 2012-2014. 

666

667 S3 Table. Distribution of community types by age, time, and whether acquired influenza by 

668 end of follow up. 
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669 537 household contacts with any microbiota data, residing in 144 households in Managua, 

670 Nicaragua, 2012-2014.

671

672 S4 Table. MaAsLin results. 

673

674 S1 Appendix. Description of statistical models.

675

676 S2 Appendix. Stability of nose/throat bacterial community over follow up, including all 

677 transitions.

678

679 S3 Appendix. Sensitivity analysis.
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