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ABSTRACT 23 

Background: Current approaches to predicting Cardiovascular disease rely on conventional risk 24 

factors and cross-sectional data. In this study, we asked whether: i) machine learning and deep 25 

learning models with longitudinal EHR information can improve the prediction of 10-year CVD 26 

risk, and ii) incorporating genetic data can add values to predictability. 27 

Methods: We conducted two experiments. In the first experiment, we modeled longitudinal 28 

EHR data with aggregated features and temporal features. We applied logistic regression (LR), 29 

random forests (RF) and gradient boosting trees (GBT) and Convolutional Neural Networks 30 

(CNN) and Recurrent Neural Networks, using Long Short-Term Memory (LSTM) units. In the 31 

second experiment, we proposed a late-fusion framework to incorporate genetic features.  32 

Results: Our study cohort included 109, 490 individuals (9,824 were cases and 99, 666 were 33 

controls) from Vanderbilt University Medical Center’s (VUMC) de-identified EHRs. American 34 

College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk 35 

Equations had areas under receiver operating characteristic curves (AUROC) of 0.732 and areas 36 

under receiver under precision and recall curves (AUPRC) of 0.187. LSTM, CNN and GBT with 37 

temporal features achieved best results, which had AUROC of 0.789, 0.790, and 0.791, and 38 

AUPRC of 0.282, 0.280 and 0.285, respectively. The late fusion approach achieved a significant 39 

improvement for the prediction performance. 40 

Conclusions: Machine learning and deep learning with longitudinal features improved the 10-41 

year CVD risk prediction.  Incorporating genetic features further enhanced 10-year CVD 42 
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prediction performance, underscoring the importance of integrating relevant genetic data 43 

whenever available in the context of routine care. 44 

Key words: cardiovascular disease prediction, machine learning, deep learning, genetics, 45 

electronic health records 46 

INTRODUCTION 47 

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality, 48 

accounting for one-third of all global deaths [1,2]. There have been several proposed several 49 

prediction models, including the Framingham risk score [3], American College of 50 

Cardiology/American Heart Association (ACC/AHA) Pooled Cohort Risk Equations [4], and 51 

QRISK2 [5]. These models are typically built upon a combination of readily-available cross-52 

sectional risk factors such as hypertension, diabetes, cholesterol, age, and smoking status. 53 

Although the importance of conventional models cannot be ignored, well-known clinical risk 54 

factors for CVD explain only 50-75% of the variance in major adverse cardiovascular events [6]. 55 

About 15%-20% of patients who experienced myocardial infarctions had only one or two of 56 

these traditional risk factors and were not identified as being at “risk” of CVD according to 57 

current prediction models [7]. Given the fact that CVD is preventable, and that its first 58 

manifestation may be fatal, a new strategy to enhance risk prediction beyond conventional 59 

factors is critical for public health. 60 

Electronic health records (EHRs) contain a wealth of detailed clinical information and 61 

provide several distinct advantages for clinical research, including cost efficiency, a large 62 

amount of data, and the ability to analyze data over time.   Since its wide implementation in the 63 
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United States, accumulated EHR data has become an important resource for clinical studies. [8]. 64 

Meanwhile, the recent convergence of two rapidly developing technologies—high-throughput 65 

genotyping and deep phenotyping within EHRs – presents an unprecedented opportunity to 66 

utilize routine healthcare data and genetic information to accelerate the improvement of 67 

healthcare. Many institutions and health care systems have been building EHR-linked DNA 68 

biobanks to enable such a vision. For example, Vanderbilt University Medical Center (VUMC), 69 

as of May 2018, has genotype data of over 50,000 individuals available for research.  70 

Machine learning and deep learning approaches are particularly suited to the integration 71 

of big data, such as the data available within EHRs, especially when the EHR contains genetic 72 

information [9,10]. A recent study from the United Kingdom (UK) applied machine learning on 73 

conventional CVD risk factors from a large UK population and improved the overall prediction 74 

performance by 4.9% [11].  In the current study, we examined: i) the performance of machine 75 

learning and deep learning on longitudinal EHR data for the prediction of 10-year CVD risk, and 76 

ii) the benefits of incorporating extra genetic information.  77 

METHODS 78 

Study setting 79 

We conducted the study using data derived from Synthetic Derivative, a de-identified 80 

copy of whole EHRs at VUMC. Synthetic Derivative maintains rich and longitudinal EHR data 81 

from over 3 million unique individuals, including demographic details, physical measurements, 82 

history of diagnosis, prescription drugs, and laboratory test results. As of May 2018, over 50,000 83 

of these individuals have genotype data available.  84 
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We focused our analysis on individuals with European or African ancestry. We required 85 

individuals to meet the definitions of medical home [12]. We set the baseline date as 01/01/2007 86 

to allow all individuals within the cohort to be followed-up for 10 years. For each individual, we 87 

split the EHR into: i) the observation window (01/01/2000 to 12/31/2006; 7 years) and, ii) the 88 

prediction window (01/01/2007 to 12/31/2016; 10 years). We extracted EHR data within the 7-89 

year observation window to train a predictive model to predict CVD event occurred in prediction 90 

window. 91 

Cases were individuals with ≥ 1 CVD diagnosis codes (the International Classification of 92 

Diseases, Ninth Revision, Clinical Modification [ICD-9-CM]: 411. * and 433. *) recorded within 93 

the 10-year prediction window. Controls were individuals without any ICD-9-CM code 411. * or 94 

433. * during the 10-year prediction window.  95 

Study cohort  96 

The study cohort included patients between the ages of 18 to 78 on 01/01/2000 97 

(beginning of the observation window).  Individuals with any CVD diagnosis (ICD-9-CM 411. * 98 

or 433. *) prior to the baseline date for the prediction window (i.e. 01/01/2007) were excluded. 99 

To reduce chart fragmentation and optimize the density of our longitudinal EHR data, we 100 

required that each individual to have at least one visit and at least one record of blood pressure 101 

measurement during the observation window [13,14]. We excluded inpatient physical or 102 

laboratory measures for all individuals.  103 

In total, we identified 109, 490 individuals (9,824 cases and 99, 666 controls, mean [SD] 104 

age 47.4 [14.7] years; 64.5% female and 86.3% European) as our main study cohort. The 105 
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case/control ratio was consistent with a previous report from a large EHR cohort [11]. Among 106 

these 109, 490 individuals, a subset of 10,162 individuals (2,452 cases and 7,710 controls) had 107 

genotype data available.  108 

Data preprocessing and feature extraction  109 

Phenotypic data: we extracted features including demographics, variables used in the 110 

ACC/AHA Pooled Cohort Risk Equations (ACC/AHA Equations) (e.g. blood pressure 111 

measurements), physical measurements including BMI, and laboratory measures including 112 

glucose, triglyceride levels, and creatinine level (as a marker of renal function); such laboratory 113 

features have previously been reported relevant to CVD [11]. In addition, we applied chi-square 114 

(chi2) [15], a commonly used feature selection methods that can select independent features on 115 

EHR data and identified an additional 40 relevant diagnostic codes and medication codes (Table 116 

1). Values for all features were extracted within the observation window. 117 

We represented a physical measurement or laboratory feature with summarized data, e.g. 118 

minimum, maximum, median, and standard deviation (SD). We removed the outliers (>5 SD 119 

from the mean) to avoid unintended incorrect measurements (e.g. using lb. instead of kg. for 120 

body weight) [16]. If an individual had no such measure available within the EHR, we imputed 121 

the missing value with the median value of the group with the same age and gender [17]. We 122 

also added a dummy variable for each measure to indicate whether the test value was imputed.  123 

For disease phenotypes, we followed a standard approach and grouped relevant ICD 124 

codes into distinct phecodes [19]. For medications, we collapsed brand names and generic names 125 

into groups by their composition (ingredients) and represented the groups using the RxNorm [19] 126 
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concepts (RxCUIs) for this variable. For example, ‘Tylenol Caplet, 325 mg oral tablet’ and 127 

‘Tylenol Caplet, 500 mg oral tablet’ were both mapped to ‘Acetaminophen’ (RxCUI 161). We 128 

used a binary value to indicate whether or not an individual had each diagnosis or prescription. 129 

For genetic data, we selected 248 single nucleotide polymorphisms (SNPs) that have 130 

been previously reported to be associated with CVD in two large meta-analyses [20,21]. Among 131 

these SNPs, genotype data were available for 204 SNPs in our cohort and were included as 132 

features. Each SNP had a value 0, 1, or 2 based on the count of minor alleles for an individual. 133 

Table 1 shows the features that we used in the machine learning models.   134 

Table 1. Features included in the machine-learning models. 135 

Feature type Features  Values 

Demographic 

Age* Continuous 

Gender* Binary 

Race Categorical 

Life styles 

Body mass index (BMI) Summarized data† 

Smoking* Binary 

Physical or lab 
measurements 

Systolic blood pressure (SBP)* Summarized data† 

Diastolic blood pressure (DBP)* Summarized data† 

Total Cholesterol (Cholesterol)* Summarized data† 
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HDL Cholesterol (HDL-C)* Summarized data† 

LDL Cholesterol (LDL-C) Summarized data† 

Creatinine Summarized data† 

Glucose Summarized data† 

Triglyceride Summarized data† 

Diagnosis 

Other tests (phecode 1010) 

Binary 

Benign neoplasm of skin (216) 

Diabetes mellitus* (250) 

Disorders of lipoid metabolism (272) 

Other mental disorder, random mental disorder 
(306) 

Heart valve disorders (395) 

Hypertension (401) 

Cardiomyopathy (425) 

Congestive heart failure; nonhypertensive (428) 

Atherosclerosis (440) 

Acute upper respiratory infections of multiple or 
unspecified sites (465) 
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Chronic airway obstruction (496) 

Disorders of menstruation and other abnormal 
bleeding from female genital tract (626) 

Medication  

Warfarin (RXCUI 11289)  

Binary 

Aspirin (1191) 

Atenolol (1202) 

Amlodipine (17767) 

Carvedilol (20352) 

Lisinopril(29046) 

Adenosine(296) 

Clopidogrel (32968) 

Digoxin (3407) 

Diltiazem (3443) 

Ramipril (35296) 

Diuretics (3567) 

Dobutamine (3616) 

Simvastatin(36567) 
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Enalapril (3827) 

Sestamibi (408081) 

Ethinyl Estradiol (4124) 

Furosemide (4603) 

Nitroglycerin (4917) 

Hydrochlorothiazide(5487) 

Ibuprofen (5640) 

Metoprolol (6918) 

Acellular pertussis vaccine (798302) 

Atorvastatin(83367) 

ACE inhibitors (836) 

Thallium(1311633) 

Clonidine (2599) 

Genetic 204 SNPs # Categorical 

Others EHR length Continuous 

*Features in ACC/AHA Equations  

† Summarized data includes minimum, maximum, median and SD within a time window. 
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# 204 SNPs are listed in the Supplementary Appendices S1 

 136 

Experiment 137 

Gold standard. We chose ACC/AHA Pooled Cohort Risk Equations for 10-year CVD 138 

risk as our baseline. For physical measurements or laboratory features (i.e. SBP/DBP and high-139 

density lipoprotein [HDL]- cholesterol level), we used the most recent values prior to the split 140 

date, 01/01/2007.  141 

Machine learning and deep learning with longitudinal EHR data to predict 142 

10-year CVD risk (Experiment I) 143 

The objective of this experiment is to examine 1) predictive performance achieved by 144 

machine learning and deep learning with longitudinal EHR data compared to golds standard, and 145 

2) two different approaches we use to model the longitudinal EHR data for machine learning 146 

models (Figure 1).  147 

Aggregate features. We aggregated features across the 7-year observation window (e.g. 148 

median, max, min and SD of HDL from 01/01/2000 to 12/31/2006). 149 

 Multivariate temporal features. We exploited the temporal information in the 150 

longitudinal EHR data by dividing the whole observation window into one-year slice window. 151 

Specifically, for physical or laboratory features, we extracted the median, max, min and SD 152 

values within one-year slice window. We replaced the missing physical or laboratory measures 153 

with the individual’s measurement on the closest date, e.g. using the HDL cholesterol result on 154 
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12/20/2005 instead if the individual had no HDL test in 2006. For diagnosis and medication 155 

features, we used a binary value to indicate whether or not an individual had each diagnosis or 156 

prescription in one-year slice window.  157 

Machine learning and deep learning models. Three machine learning models, LR, RF 158 

and GBT were used in both aggregate and temporal features. Two deep learning models, 159 

Convolutional Neural Networks (CNN) [22] and Recurrent Neural Networks, using Long Short-160 

Term Memory (LSTM) hidden units (LSTM) [23]) were applied to the temporal features. We 161 

compared their performance with the gold standard. 162 

Implementation detail: We used CNN and LSTM on temporal features and concatenated 163 

an auxiliary input of demographic features to feed into a multilayer perceptron (MLP) with two 164 

hidden layers. More details can be found in Supplementary Appendices S2. LR, RF, and GBT 165 

models were implemented with Python Scikit-Learn 0.19.1 (http://scikit-learn.org/stable/) [24]. 166 

The CNN and LSTM models were implemented with Keras 2.1.3 (https://keras.io/) using 167 

Tensorflow1.6.1 as the backend. 168 

Evaluation. We divided the dataset into a training and a test set with a 90/10 split and 169 

learned the models with a 10-fold stratified cross- validation using grid search on the training set. 170 

Finally, we evaluated the optimized model on the test set using area under a receiver operating 171 

characteristic curve (AUROC) and average precision, also known as area under precision-recall 172 

curve (AUPRC) [25]. For each machine learning model, we repeated the above processed 10 173 

times. For deep learning models, we randomly divided the data into training, validation, and 174 

testing sets with a ratio of 8:1:1 and iterated the process for 10 times. We reported the mean and 175 

SD of AUROC and AUPRC. 176 
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Machine learning and deep learning with additional genetic information to 177 

predict 10-year CVD risk. (Experiment II) 178 

The objective of this experiment is to examine combining genetic features with 179 

demographic and longitudinal EHR data compared to only using demographic and longitudinal 180 

EHR data for 10- year CVD prediction. To meet the objectives, we used a subset of 10,162 had 181 

genotyped data from the main study cohort of 109, 490 individuals.  It is also a subset of BioVU 182 

(VUMC’s de-identified DNA biobank) that contains nearly >50,000 genotyped individuals.  183 

We developed a two-stage framework of using late-fusion approach to incorporate EHR 184 

and genotyped features. Late-fusion is an effective approach to enhance prediction accuracy by 185 

combining the prediction results of multiple models trained separately by a group of features. [26] 186 

Here, we trained two machine learning models separately by EHR data and genotyped data and 187 

used a subset of 10,162 which had both available EHR and genotyped data to train and test a 188 

fusion model based on the prediction results. (Figure 2 and 3). The subset of 10,162 individuals 189 

(intersect cohort) was randomly split into a training set (8,129 individuals) and a holdout test set 190 

(2, 033 individuals) with an 80/20 split. The training set is used for training the fusion model at 191 

final decision level. The holdout test set is used for comparing the performance of models trained 192 

with only EHR data and the proposed late-fusion approach. 193 

In the first stage of the framework, we trained a machine learning model (model1) with 194 

longitudinal EHR features on the main study cohort (removing holdout test set). We trained 195 

another machine learning model (model 2) with 204 SNPs features on a big 34,926 genotyped 196 

cohort (removing holdout test set), which shared similar criteria with the main study cohort 197 

except for not restricting to the criteria for having >1 record of SBP in the observation window. 198 
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In the second stage, we combined the predictions scores of two models on the training set (8, 129 199 

individuals) to train a late fusion model. We used gradient boosting trees for the model 1 because 200 

it has good generalizability as an ensemble approach to make it more robust. We used the 201 

logistic regression as model 2 and the late fusion model. 202 

To compare the performance of adding genetic features, we evaluated prediction 203 

performance of model 1 and fusion model on the holdout test set (2,033 individuals). We 204 

performed 5-fold cross-validation and repeated the process 10 times. We reported the mean and 205 

SD of AUROC and AUPRC. 206 

RESULTS 207 

Machine learning and deep learning models with longitudinal EHR data to 208 

predict 10-year CVD risk (Experiment I) 209 

Table 2 shows the results for the experiment. The performance of the gold standard 210 

(AUROC 0.732, AUPRC 0.187) was consistent with other study reports [11,27]. Compared with 211 

gold standard, all three machine-learning models with aggregate features achieved significant 212 

improvements over the prediction metrics. For AUROC, RF increased the performance from 213 

0.732 to 0.765, an absolute (relative) improvement of +0.033 (+4.5%). LR [+0.044 (+ 6.0%)] 214 

and GBT [+0.05 (+6.8%)] had a higher increase rate. For AUPRC, the improvement was much 215 

bigger, from RF [0.059 (+31.6%)] to GBT [+ 0.081 (+43.3%)]. 216 

Table 2. Performance of machine learning and deep learning models predicting 10-year 217 

CVD risk.  The + indicates that the mean is significantly different from the mean of gold 218 

standard (p < 0.05), when evaluated using the t-test. # indicates that the mean of the model 219 
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on longitudinal one-year slice window is significantly different from the model with 220 

aggregate features.  221 

 Method AUROC AUPRC 

ACC/AHA Equations 0.732 (± 0.010) 0.187 (± 0.009) 

Machine learning models on aggregate features across seven-year window 

Logistic regression (LR) 0.776 (± 0.008) + 0.260 (± 0.014) + 

Random forest (RF) 0.765 (± 0.009) + 0.246 (± 0.009) + 

Gradient boosting trees (GBT) 0.782 (± 0.009) + 0.268 (± 0.014) + 

Machine learning models on longitudinal features within one-year window (temporal) 

Logistic regression (LR) 0.781 (± 0.007) + 0.273 (± 0.013)+ # 

Random forest (RF) 0.753 (± 0.008) + 0.236 (± 0.010) + 

Gradient boosting trees (GBT) 0.791 (± 0.008)+ # 0.285 (± 0.013)+ # 

Deep learning models on longitudinal features within one-year window (temporal) 

LSTM 0.789 (± 0.011) + 0.282 (± 0.012) + 

CNN 0.790 (± 0.012) + 0.280 (± 0.012) + 

Compared to the aggregate features, using longitudinal features further improved the 222 

prediction performance across most models. AUROC of GBT is improved from 0.782 to 0.791 223 
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[+ 0.009 (+1.2%)] and the AUPRC of GBT is improved from 0.268 to 0.285 [+0.017; (+6.3%)]. 224 

LR [+0.0013 (5.0%)] also had a significant improvement in AUPRC. For deep learning models 225 

with longitudinal features, LSTM and CNN achieved nearly same results as GBT, better than the 226 

LR and RF. Overall, the best result achieved by GBT using longitudinal features increased the 227 

AUROC of gold standard +0.059 (+8.1%) and AUPRC +0.098 (+52.4%). 228 

Feature importance. We listed top features for each of optimized machine learning 229 

models in Table 3. Feature importance was determined by the coefficient effect size from the LR 230 

model. For RF and GBT, which are based on decision-trees, the features are ranked according to 231 

the impurity (information gain/entropy) decreasing from each feature. Since CNN and LSTM are 232 

black box models, estimation of each feature’s contribution to predict CVD risk is difficult, so 233 

we were not able to analyze the feature importance of the deep learning models in this study. 234 
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Table 3. Top 10 features for machine learning prediction in descending order of coefficient effect size or feature importance 
returned by RF and GBT. Systolic Blood Pressure (SBP); Diastolic Blood Pressure (DBP).  

LR with aggregate 
features 

RF with aggregate 
features 

GBT with aggregate 
features 

LR with longitudinal 
features 

RF with longitudinal 
features 

GBT with longitudinal 
features 

EHR length EHR length Age EHR length EHR length Age 

Max LDL-C Age  EHR length Age Age  EHR length 

Min Creatinine Max BMI SD Creatinine SD Glucose in 2000  Aspirin in 2006  Smoking 

Age Min BMI Smoking SD Creatinine in 2000  Max SBP in 2006  Heart valve disorders in 
2006 

Max HDL-C  Median BMI  Min BMI  Max HDL-C 2005 Min BMI in 2006 Hypertension in 2006  

Max BMI  Max SBP  Heart valve disorders 
(Phecode 395) 

SD Glucose in 2006 Median BMI in 2005  Aspirin in 2006  

Max Cholesterol  Median SBP  Min Glucose Median LDL-C in 2006 

 

Median SBP in 2006  Disorders of lipoid 
metabolism in 2006  

Max DBP SD BMI  Max SBP  Median BMI in 2006  Max BMI in 2006 Clopidogrel in 2006  

Median Trigs 

 

MIN SBP  Max Trigs  Median Cholesterol in 
2006 

Min BMI in 2001 Max SBP in 2006  

Min Cholesterol Max DBP Aspirin Heart valve disorders in 
2006  

Min BMI in 2002 SD Glucose in 2006  

.
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The conventional risk factors such as age, blood pressure and total cholesterol were 1 

consistently present as top 10 features in all three machine learning models.  BMI, Creatinine 2 

and Glucose that were not in ACC/AHA equations were determined as important features in 3 

machine learning models.  Moreover, the maximum, minimum, and SD of laboratory values 4 

showed promising contributions to the models. GBT models preferred diagnoses such as heart 5 

valve disorder, hypertension, and lipid disorders over other features.  6 

For machine learning models with longitudinal features, LR models selected laboratory 7 

values in the years 2000 and 2006 (e.g. SD Glucose in 2000 and 2006). The RF models chose 8 

BMI in multiple years. Whereas GBT models prioritized the medical conditions in the most 9 

recent year (year 2006) in the observation window.  10 

Evaluate incorporating genetic features for machine learning models to 11 

predict 10-year CVD risk (Experiment II) 12 

Table 4 reported the results of Experiment II. GBT with only longitudinal EHR features 13 

improved AUROC of gold standard from 0.698 to 0.710 [+0.012 (+1.7%)] and AUPRC from 14 

0.396 to 0.427 [+0.031(+7.8%)]. The proposed late fusion approach for adding genetic features 15 

further improved the metrics, with AUROC +0.015 (+2.1%) and AUPRC +0.036 (+9.1%). 16 

Table 4. Comparison of predicting 10-year CVD risk with genetic features and 17 

without genetic features. + indicates that the mean is significantly (p < 0.05) different from 18 

gold standard, and # indicates that the mean is significantly different from GBT using 19 

demographic and longitudinal EHR features, when evaluated using the paired t-test. 20 
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 Method AUROC AUPRC 

ACC/AHA 0.698 (±0.012) 0.396 (± 0.016) 

Using demographic and longitudinal EHR features 

Gradient boosting trees (GBT) 0.710 (± 0.011) + 0.427 (± 0.015) + 

Using demographic, longitudinal EHR and genetic features 

Fusion approach  0.713 (± 0.012) +# 0.432 (± 0.015) +# 

We listed the top ten features in the pre-trained model with genetic data in Supplementary 21 

Appendices S3.  SNP (rs2789422) was ranked as the second most important feature after age.  22 

DISCUSSION 23 

Our results demonstrate that machine learning models with longitudinal EHR information 24 

can improve the prediction of 10-year CVD risk. We also showed that incorporating genetic data 25 

can enhance 10-year CVD risk prediction.  26 

We used a large dataset including longitudinal EHR information of 109, 490 individuals. 27 

The prediction result of ACC/AHA (AUROC of 0.732, AUPRC of 0.187) was consistent with 28 

previous studies (AUROC of 0.728 in a study conducted in the UK) [11].  29 

For machine learning models with aggregate values, as we used summarized data for 30 

physical and laboratory features, and we also included 40 additional pre-selected features 31 

including diagnosis codes and medication codes, the performance of prediction was significantly 32 
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improved.  Further, the min, max and SD values were ranked higher in importance than the 33 

median values. BMI, medications (e.g. aspirin) that were not used by the ACC/AHA equations 34 

were also present in the top 10 features.  35 

Longitudinal information reflects the fluctuation of physiological factors over time, 36 

which can be used for prediction models to enhance CVD risk prediction. The most recent results 37 

from the STABILITY trial suggested the higher visit-to-visit variabilities of both systolic and 38 

diastolic blood pressures are strong predictors of increased risk of CVD, independently of mean 39 

blood pressure[28].  By zooming in the observation window of one-year slice time, we 40 

constructed multivariate temporal features for machine learning models and deep learning 41 

models. The results showed that it improved the prediction performance. CNN and LSTM that 42 

allows for exhibiting dynamic temporal changes, outperformed LR and RF models. Surprisingly, 43 

GBT almost had similar performance as LSTM and CNN. The time steps (7 years, 7-time steps) 44 

may not be long enough to activate the gates of LSTM. Another reason is that a 10-year follow-45 

up prediction window may be a little long thereby removing the advantage of LSTM and CNN in 46 

capturing the dependency with the observation and prediction. 47 

Our approach also underscores the importance of including genetic variants. It has long 48 

been known that CVD has a sizeable hereditary component [3], and emerging data continue to 49 

increase our understanding of the genetic architecture underlying this important clinical trait 50 

[20,21]. Previous studies have uncovered many novel genetic associations with CVD for risk 51 

factors that are also heritable such as lipids, blood pressure, and diabetes  [29,30]. While 52 

polygenic scores have been used to summarize genetic effects for diseases, strategies to combine 53 

genetic variants with other biological and lifestyle factors for existing predictive models remains 54 
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a topic of intense ongoing investigation. Although 10,162 individuals (2,452 cases and 7,710 55 

controls) of our main study cohort had genotype data available, this subset may still limit our 56 

power for large scale genetic analyses and machine learning. Since the quality of prediction often 57 

depends on the amount of available training data, without sufficient training data, the learning 58 

models cannot differentiate useful patterns from noise and predictive accuracy may 59 

underperform. To overcome this challenge, we proposed a late-fusion approach to pre-train the 60 

models with EHR features and genetic features separately by taking advantage of a larger 61 

genotyped cohort (34,926).  62 

From the results, we can see that adding genetic features offered benefit to clinical 63 

features and significantly improved the performance compared to gold standard and only using 64 

longitudinal EHR features.  65 

Importance of Genetic Features 66 

We present the top 10 features identified from the cohort (Supplementary Appendices S3). 67 

Age remains the strongest predictor for CVD (coefficient 0.747), followed by gender, EHR 68 

length and two variants from MIA3 gene.  Although dyslipidemia is one of the most important 69 

risk factors for CVD, none of the top genes was strong predictor for circulating lipid levels, 70 

except LPA gene.  71 

While LPA genotype are associated with circulating lipid levels, it also strongly 72 

influenced Lp(a) levels which was an independent CVD predictor with or without statin 73 

treatment [31]. For decades, lipid-lowering medications (especially statins) have been shown to 74 

be effective in both primary and secondary CVD prevention. Our observations highlight the 75 
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importance of CVD risk determinants independent of lipid levels. These findings underscore the 76 

importance of targeting residual CVD risk through non-lipid mechanisms. 77 

We acknowledge the limitations that, 1) we manually abstracted a subset of the physical 78 

or laboratory features known to impact CVD risk, and we planned to incorporate more laboratory 79 

features that could be automatically selected by feature engineering from the EHR, and 2) we 80 

only used 204 SNPs in our study, whereas some of effects of the SNPs are modeled by 81 

phenotypes (e.g., a SNPs affecting cholesterol are better captured by direct cholesterol 82 

measurements).  Yet some SNPs for endophenotypes are more predictive of CVD events than the 83 

endophenoytpe itself  [31]. As each SNP has a relatively small effect size compared with other 84 

features like age, gender, and diabetes, and thus may not contribute much to the predictive ability 85 

of the models, we believe that with more phenotypic and genetic information available in larger 86 

cohorts may further improve prediction. This study confirmed that combining phenotypic and 87 

genetic information with robust computational models can improve disease prediction. 88 
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 199 

Figure Legends 200 

Figure 1. Flowchart of Experiment I: comparison of machine learning and deep learning 201 

models on longitudinal features against baselines.  202 

 203 

 204 

Figure 2. Flowchart of selecting cohort for late-fusion approach 205 

Figure 3. Framework for proposed late fusion approach to combine the genetic features 206 

with longitudinal EHR features.   207 

 208 
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