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Abstract 

 

Many neuroimaging studies have investigated reward processing dysfunction in major 

depressive disorder (MDD). These studies have led to the common idea that MDD is 

associated with blunted reward-related responses, particularly in the ventral striatum (VS). 

Yet, the link between MDD and reward-related responses in other regions remains 

inconclusive, thus limiting our understanding of the pathophysiology of MDD. To address 

this issue, we performed a coordinate-based meta-analysis of 41 neuroimaging studies 

encompassing reward-related responses from a total of 794 patients with MDD and 803 

healthy controls. Our findings argue against the idea that MDD is linked to a monolithic 

deficit within the reward system. Instead, our results demonstrate that MDD is associated 

with opposing abnormalities in the reward circuit: hypo-responses in the VS and hyper-

responses in the orbitofrontal cortex. These findings help to reconceptualize our 

understanding of reward processing abnormalities in MDD and suggest a role for 

dysregulated corticostriatal connectivity.  
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Introduction 

Depression is a prevalent mental disorder ranked as the leading non-fatal cause of disability 

by the World Health Organization (Friedrich, 2017; World Health Organization, 2017). 

Therefore, it is of paramount importance to understand its underlying neurobiological 

mechanisms. Over the past decade, theorists have proposed that anhedonia, one of the core 

symptoms of depression, is linked to reward processing dysfunction (Alloy et al., 2016; 

Heshmati and Russo, 2015; Nusslock and Alloy, 2017; Olino, 2016; Olino et al., 2014, 2011; 

Pizzagalli, 2014; Robbins, 2016; Treadway and Zald, 2011; Whitton et al., 2015). In 

particular, many neuroimaging studies have reported reduced activity in the ventral striatum 

(VS) in response to reward in individuals with major depressive disorder (MDD) as 

compared with healthy controls (HCs; Arrondo et al., 2015; Knutson et al., 2008; Luking et 

al., 2016; McCabe et al., 2009; Pizzagalli et al., 2009; Smoski et al., 2009)(Arrondo et al., 

2015; Knutson et al., 2008; McCabe et al., 2009; Pizzagalli et al., 2009; Smoski et al., 2009).  

The striatum, which can be divided into dorsal and ventral sections, is the primary 

input zone for basal ganglia (Haber, 2016; Haber and Knutson, 2010). It receives afferent 

projections from the midbrain, amygdala, and prefrontal cortex (PFC), such as the 

orbitofrontal cortex (OFC), dorsolateral prefrontal cortex (dlPFC), ventromedial prefrontal 

cortex (vmPFC), and anterior cingulate cortex (ACC; Haber, 2016; Haber and Knutson, 

2010). It also projects to such regions as the ventral pallidum, ventral tegmental area, and 

substantia nigra (Haber and Knutson, 2010). Many of the regions linked to the striatum, 

particularly prefrontal regions, have been associated with the computation and representation 

of reward value (Berridge and Kringelbach, 2015; Der-Avakian and Markou, 2012; 

Kringelbach, 2005; Levy and Glimcher, 2012; Padoa-Schioppa, 2011; Padoa-Schioppa and 

Conen, 2017; Rangel et al., 2008; Saez et al., 2017; Smith and Delgado, 2015; Smith and 

Huettel, 2010; Stalnaker et al., 2015; Wang et al., 2016), as well as the regulation of affect 
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and reward-related behavior in animals and healthy individuals (Delgado et al., 2016; 

Ferenczi et al., 2016; Peters and Büchel, 2010; Phelps et al., 2014; Voorn et al., 2004). The 

striatum also has long been proposed to play an important role in the onset and course of 

MDD, with longitudinal studies demonstrating that blunted VS activation during reward 

anticipation predicts the emergence of depressive symptoms and disorder (Morgan et al., 

2013; Stringaris et al., 2015) and deep-brain stimulation studies using it as a treatment target 

for treatment-resistant depression (Dougherty et al., 2015; Malone et al., 2009).  

Although blunted striatal response to reward in MDD is a well-established finding in 

the literature (Groenewold et al., 2013; Hanson et al., 2015; Heshmati and Russo, 2015; 

Whitton et al., 2015; Zhang et al., 2013), it is less clear how other regions, particularly the 

PFC, also may contribute to reward processing deficits in MDD. For instance, some studies 

have found that relative to HCs, MDD exhibited greater activation in the OFC (Forbes et al., 

2006; Smoski et al., 2009), dlPFC (Demenescu et al., 2011; Pizzagalli et al., 2009), vmPFC 

(Keedwell et al., 2005; Rizvi et al., 2013), ACC (Dichter et al., 2012; Mitterschiffthaler et al., 

2003), middle frontal gyrus (Dichter et al., 2012; Keedwell et al., 2005), inferior frontal gyrus 

(Kumari et al., 2003; Mitterschiffthaler et al., 2003), subgenual cingulate (Kumari et al., 

2003; Rizvi et al., 2013), and dorsomedial prefrontal cortex (Keedwell et al., 2005) during 

the processing of rewarding stimuli. In contrast, other studies have reported less activity in 

MDD in response to reward in the OFC (Dichter et al., 2012; Forbes et al., 2006), ACC 

(Forbes et al., 2006; Kumari et al., 2003; Pizzagalli et al., 2009; Smoski et al., 2009), middle 

frontal gyrus (Kumari et al., 2003; Mitterschiffthaler et al., 2003; Smoski et al., 2009), and 

frontal pole (Dichter et al., 2012). The inconsistencies may be due to a number of factors, 

such as limited statistical power (Button et al., 2013; Jia et al., 2018; Poldrack et al., 2017) 

and susceptibility artifacts in the PFC (Andersson et al., 2001; Chase et al., 2015; Delgado et 

al., 2016; Ojemann et al., 1997). Therefore, the association between prefrontal regions and 
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MDD remains equivocal, both in terms of the direction (i.e., hyper- or hypo-responses) and 

the location of the effect (e.g., OFC, dlPFC, vmPFC and/or ACC).  

Inconsistencies in the literature have prompted researchers to conduct coordinate-

based meta-analyses to identify common activation patterns implicated in MDD during 

reward processing (Groenewold et al., 2013; Keren et al., 2018; Zhang et al., 2013). 

Although prior meta-analytic efforts have shown some overlapping findings in the striatum, 

we note that there is a striking degree of anatomical disagreement across these efforts, with 

non-overlapping findings all throughout the brain (see Table S1 and Figure S1 for a complete 

comparison of findings across studies). The lack of agreement across studies can be due to 

methodological issues, such as lenient thresholding, overlapping samples, software issues 

(Eickhoff et al., 2017), and inclusion of region-of-interest (ROI) coordinates, as detailed in a 

previous review (Muller et al., 2016). For example, two previous meta-analyses (Groenewold 

et al., 2013; Zhang et al., 2013) corrected for multiple comparisons using the false discovery 

rate (FDR) approach, which has been shown to be inadequate in controlling the false 

positives among clusters in neuroimaging meta-analyses (Chumbley and Friston, 2009; 

Eickhoff et al., 2012) and might have contributed to the lack of agreement across studies.  

To address these issues and extend extant work, we performed a coordinate-based 

meta-analysis following procedures recommended by new guidelines (Barch and Pagliaccio, 

2017; Muller et al., 2017, 2016). The current work differed from previous meta-analyses on 

reward processing in MDD in various aspects, such as only including whole-brain studies to 

avoid localization bias; only including studies that used an active control condition to isolate 

reward-related processes; only including independent samples to avoid double counting the 

same participants; using more stringent thresholding criteria; having the most up-to-date 

literature search; and only conducting a meta-analysis when there were at least 17 eligible 
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experiments to ensure adequate statistical power and restrict excessive contribution of any 

particular studies to cluster-level thresholding (Eickhoff et al., 2016).  

Our primary hypothesis was that the literature would consistently show that compared 

with HCs, individuals with MDD would exhibit blunted activation of the striatum and 

abnormal activation of the prefrontal regions (e.g., the OFC) during the processing of 

rewarding stimuli. We also explored whether there were consistent neural responses to 

punishing stimuli in MDD relative to HCs. To examine these hypotheses, we conducted four 

separate coordinate-based meta-analyses testing spatial convergence of neuroimaging 

findings for the following four contrasts: 1) positive valence (reward > punishment/neutral 

stimuli or neutral stimuli > punishment) for MDD > HC; 2) negative valence (punishment > 

reward/neutral stimuli or neutral stimuli > reward) for MDD > HC; 3) positive valence for 

HC > MDD; 4) negative valence for HC > MDD. The comprehensive nature of the current 

meta-analysis allowed us to investigate whether a quantitative synthesis of neuroimaging 

studies on reward processing dysfunction in MDD would unveil common activation patterns 

that may be difficult to discern by individual studies due to inconsistent findings. We aimed 

to address two main questions. First, which brain regions show consistent hypo-responses to 

reward-relevant stimuli in MDD relative to HCs? Second, which brain regions show 

consistent hyper-responses to reward-relevant stimuli in MDD relative to HCs? 

 

 

Materials and Methods  

Study Selection 

The current coordinate-based meta-analysis primarily followed the guidelines for meta-

analyses, whenever applicable (Moher et al., 2009; Muller et al., 2017). We conducted a 

systematic literature search to identify neuroimaging studies on reward processing 
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abnormalities in mood disorders (Figure 1). Potentially eligible studies published between 

1/1/1997 and 8/7/2018 were identified by searching the MEDLINE, EMBASE, PsycINFO, 

PsycARTICLES, Scopus, and Web of Science using the grouped terms (fMRI* or PET*) 

AND (depress* OR bipolar* OR mania* OR manic* OR hypomania* OR hypomanic*) AND 

(reward* OR effort* OR decision* OR reinforce* OR habit* OR discounting* OR 

“prediction error” OR “delayed gratification” OR “approach motivation” OR “positive 

valence systems”). To enhance search sensitivity, the reference lists of the retrieved articles 

and review papers were further checked to identify potentially relevant articles. Although our 

initial goal was to investigate reward processing dysfunction in both MDD and bipolar 

disorder, the current meta-analysis only focused on MDD due to an inadequate number of 

studies on bipolar disorder (the search identified 23 studies on bipolar disorder across 

positive and negative valence contrasts, yielding fewer than 17 experiments for each targeted 

meta-analysis). 
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Figure 1. Flowchart of study selection. Our systematic literature search identified a total of 

41 neuroimaging studies that met our inclusion criteria, yielding 4 coordinate-based meta-

analyses with at least 17 independent studies; ROI, region of interest; SVC, small volume 

correction; MDD, major depressive disorder. 

 

Inclusion Criteria 

We included studies that (a) used a reward and/or punishment task, (b) reported comparisons 

between people with MDD and HCs, (c) used standardized diagnostic criteria (e.g., DSM-IV, 

DSM-IV-TR, ICD-10) to determine psychiatric diagnoses, (d) used fMRI or PET in 

conjunction with parametric analysis or subtraction methodology contrasting an experimental 

condition and an active control condition (e.g., a punishment condition, a lower-intensity 

reward condition, or a neutral condition) to isolate reward-related processes and identify foci 

of task-related neural changes, (e) reported significant results of whole-brain group analyses 

without small volume corrections (SVC), as non-whole-brain coordinates [e.g., region of 

interest (ROI)-based coordinates] and analyses involving SVC have been argued to bias 

coordinate-based meta-analyses (Eickhoff et al., 2016; Muller et al., 2017), (f) reported 

coordinates in a standard stereotactic space [Talairach or Montreal Neurological Institute 

(MNI) space], and (g) used independent samples.  

The study with the largest sample size was included if there was sample overlap 

between studies. Reward tasks were operationalized as involving presentation of a rewarding 

stimulus (e.g., winning money, favorite music, positive faces), whereas punishment tasks 

were operationalized as involving presentation of a punishing stimulus (e.g., losing money, 

negative faces). The stimuli used in the included studies of the meta-analysis reflect both a 

reward-punishment continuum and a positive-negative continuum. For example, although 

positive faces are traditionally considered only as positive stimuli, we considered them as 
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rewards, based on previous research showing that positive faces activate the reward circuitry, 

that they are discounted as a function of time, that they are tradable for other rewards (e.g., 

money), that they reinforce work, and that people are willing to work to view positive faces 

and exert more effort for more positive faces (e.g., Hayden et al., 2007; Krach et al., 2010; 

Tsukiura and Cabeza, 2008).  

Coordinate-Based Meta-Analysis  

Coordinate-based meta-analyses were performed using GingerALE 2.3.6 (http:// 

brainmap.org), which employs the activation likelihood estimation (ALE) method (Eickhoff 

et al., 2012; Laird et al., 2005; Turkeltaub et al., 2012). The ALE method aims to identify 

regions showing spatial convergence between experiments and tests against the null 

hypothesis that the foci of experiments are uniformly and randomly distributed across the 

brain (Eickhoff et al., 2012). It treats foci from individual experiments as centers for 3D 

Gaussian probability distributions representing spatial uncertainty. The width of these 

distributions was determined based on between-subject and between-template variability 

(Eickhoff et al., 2009). The ALE algorithm weighs the between-subject variability by the 

number of participants for each study, based on the idea that experiments of larger sample 

sizes are more likely to reliably report true activation effects. Therefore, experiments with 

larger sample sizes are modeled by smaller Gaussian distributions, resulting in a stronger 

influence on ALE scores, which indicate the probability that at least one true peak activation 

lies in the voxel across the population of all possible studies (Eickhoff et al., 2009).  

The ALE method is implemented in the following steps. First, for each included 

study, a map of the activation likelihood is computed. Second, the maps are aggregated to 

compute the ALE score for each voxel. Finally, a permutation test is employed to identify 

voxels in which the ALE statistic is larger than expected by chance (Eickhoff et al., 2009, 

2012; Laird et al., 2005; Turkeltaub et al., 2012). The ALE method takes into account 
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heterogeneity in spatial uncertainty across studies (Eickhoff et al., 2009, 2012; Turkeltaub et 

al., 2012) and differences in number of peak coordinates reported per cluster (Turkeltaub et 

al., 2012). This approach allows random-effects estimates of ALE, increasing generalizability 

of the results (Eickhoff et al., 2009).   

It is important to note that coordinate-based meta-analyses represent a departure from 

traditional meta-analyses (Fox et al., 1998; Muller et al., 2017). Specifically, whereas 

traditional meta-analyses aim to calculate pooled effect sizes to determine the direction and 

magnitude of an effect based on a body of literature, coordinate-based meta-analyses evaluate 

whether the location of an effect is consistent within a body of literature (e.g., whether 

studies that examined blunted responses to reward in MDD consistently implicate the VS). In 

other words, coordinate-based meta-analyses are blind to effect size magnitude, but direction 

is tied to the analysis (Fox et al., 1998; Muller et al., 2017).  

Statistical Analysis  

Given the inconsistency of findings in the literature of reward processing abnormalities in 

MDD, we used a coordinate-based meta-analytic approach and activation likelihood 

estimation (Eickhoff et al., 2012, 2009) to examine whether we could identify consistent 

activation patterns across studies. Our main analyses focused on examining which brain 

regions show consistent hypo- or hyper-responses to reward in MDD relative to HCs. We 

also conducted exploratory analyses to investigate which brain regions consistently show 

aberrant responses to punishment in MDD relative to HCs. Our analyses were limited to four 

independent contrasts: 1) positive valence (reward > punishment/neutral stimuli or neutral 

stimuli > punishment) for MDD > HC; 2) negative valence (punishment > reward/neutral 

stimuli or neutral stimuli > reward) for MDD > HC; 3) positive valence for HC > MDD; 4) 

negative valence for HC > MDD. Assessing these contrasts in separate coordinate-based 

meta-analyses is essential for characterizing reward-processing abnormalities in MDD. 
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Indeed, this approach is adopted by many ALE meta-analyses of studies that compare a 

psychiatric group with a healthy control group (e.g., Delvecchio et al., 2013; Muller et al., 

2016; Zhang et al., 2013) 

To ensure adequate statistical power and limit the possibility that a meta-analytic 

effect is driven by a small set of studies (Eickhoff et al., 2016; Smith and Delgado, 2017), we 

only conducted a meta-analysis if there was at least 17 independent studies available for 

analysis. We also took steps to minimize within-group effects on the meta-analyses 

(Turkeltaub et al., 2012). If a study reported more than one contrast (often referred to as an 

“experiment” in meta-analyses), the contrasts examining similar processes were pooled 

together to avoid double counting the same participants in a meta-analysis. For example, 

when a study reported between-group effects in response to $1.50 and $5 rewards relative to 

neutral or loss conditions, the coordinates derived from the two contrasts were coded as a 

single reward experiment.  

All analyses were performed in Montreal Neurological Institute (MNI) space. 

Coordinates reported in Talairach space were converted to MNI using the “icbm2tal” 

transformation (Lancaster et al., 2007). We assessed statistical significance and corrected for 

multiple comparisons using the permutation-based approach (N = 1000) recommended by the 

developers of GingerALE (Eickhoff et al., 2016, 2017). This approach utilized a cluster-

forming threshold of P < 0.001 (uncorrected) and maintained a cluster-level family-wise 

error rate of 5% (Eickhoff et al., 2016). To capture anatomical variation between individual 

human brains (Mazziotta et al., 1995), we show probabilistic anatomical labels for the 

locations of the maximum ALE values using the Harvard–Oxford cortical and subcortical 

atlases (Desikan et al., 2006). For transparency, all of our statistical maps (thresholded and 

unthresholded) derived from the meta-analyses are publicly available on NeuroVault 
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(https://neurovault.org/collections/3884/). Readers are free to access these maps and define 

these regions using their own labels. 

Results 

As shown in Figure 1, our systematic literature search identified a total of 41 neuroimaging 

studies that met our inclusion criteria, yielding 4 coordinate-based meta-analyses with at least 

17 independent experiments. Tables S2 and S3 show the characteristics of the included 

studies and their samples. In the present meta-analytic dataset, for the MDD group, the mean 

number of participants was 19.9, the mean age was 36.4, the mean percentage of females was 

60.9%, and the mean percentage of medication usage was 36.6%. For the HC group, the 

mean number of participants was 20.1, the mean age was 34.9, and the mean percentage of 

females was 60.3%. Types of reward or punishment used by the included studies encompass 

money, points, or voucher (41.5%; 17/41); faces (34.1%; 14/41); pictures (12.2%; 5/41); 

words, statements, captions, or paragraphs (12.2%; 5/41); and autobiographical memory 

(4.9%; 2/41). 41.5% (17/41) of studies reported both reward and punishment contrasts; 

29.3% (12/41) of studies reported punishment contrasts only; and 26.8% (11/41) of studies 

reported reward contrasts only. 

Aberrant Reward and Punishment Responses in MDD 

We first synthesized results of 22 studies reporting less activity in response to reward in 

people with MDD than HCs (i.e. HC > MDD for reward > punishment/neutral stimuli or 

neutral stimuli > punishment). As expected, our results indicated that these studies reliably 

reported less activation in a single cluster extending bilaterally across the VS and including 

part of the subcallosal cortex in MDD (Table 1; Figure 2a).  

In addition to examining which regions consistently showed hypo-responses to 

reward, we also examined which, if any, brain regions showed consistent hyper-responses to 

reward-relevant stimuli. We aggregated results of 18 studies reporting greater activity in 
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response to reward in people with MDD than HCs (i.e. MDD > HC for reward > 

punishment/neutral stimuli or neutral stimuli > punishment). Importantly, our results 

indicated that these studies reliably reported greater activation in the right OFC in MDD 

(Table 1; Figure 2b). Taken together, these results suggest that relative to HCs, people with 

MDD exhibited hypo-responses in the VS and, more importantly, hyper-responses in the 

OFC to rewarding stimuli.  

We conducted sensitivity analyses to examine whether excluding studies that used 

neutral stimuli > punishment as a reward contrast would affect the main results related to 

reward responses in MDD. The analyses revealed that the results remained the same (see 

supplementary materials for details). We also conducted exploratory analyses to examine 

which brain regions consistently show aberrant responses to punishment in MDD relative to 

HCs. Results are detailed in supplementary materials. 

 

Table 1. Peak Coordinates of Group Differences in Neural Responses to Reward. 

 

Contrast Cluster Size (mm3) Probabilistic Anatomical Label x y z 

MDD > HC 912 Frontal Orbital Cortex (26%), 

Frontal Pole (13%) 

20 32 -12 

HC > MDD 1768 Subcallosal Cortex (14%) -2 8 -4 

  Caudate (32.1%),  

Accumbens (11.1%) 

8 6 -2 

Coordinates are x,y,z values of the locations of the maximum activation likelihood estimation 

(ALE) values in MNI space. Probabilistic labels reflect the probability that a coordinate 

belongs to a given region derived from the Harvard-Oxford probabilistic atlas. For clarity, we 

only report labels whose likelihood exceeds 5%. MDD, major depressive disorder; HC, 

healthy controls. 
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Figure 2. Opposing abnormalities in the reward circuit in response to reward in major 

depressive disorder (MDD). (A) To examine regions that consistently showed blunted 

response to reward, we synthesized 22 studies reporting less activity in response to reward in 

people with MDD than healthy controls (HCs). Our results indicated that these studies 

reliably report less activation in the ventral striatum (VS) in MDD. (B) To identify regions 

that consistently showed hyper-responses to reward, we meta-analyzed 18 studies reporting 

greater activity in response to reward in people with MDD than HCs. Our results indicated 

that these studies reliably report greater activation in the right orbitofrontal cortex (OFC) in 

MDD. 

 

Y = 32

A

X = 23Z = -15

Hyper Response to Reward in the OFCB

Hypo Response to Reward in the VS

Y = 12 X = -8Z = 1

L
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Discussion 

A growing number of researchers have used neuroimaging methods to enhance our 

understanding of the underlying pathophysiology of MDD. Many of these studies have 

shown that patients with MDD exhibit blunted responses in the VS, but more disparate 

patterns of responses in other brain areas (Arrondo et al., 2015; Hamilton et al., 2012; 

Knutson et al., 2008; McCabe et al., 2009; Miller et al., 2015; Palmer et al., 2014; Pizzagalli 

et al., 2009; Smoski et al., 2009)(Arrondo et al., 2015; Knutson et al., 2008; McCabe et al., 

2009; Pizzagalli et al., 2009; Smoski et al., 2009). Therefore, it remains unclear what brain 

regions, other than the VS, are most consistently implicated in people with MDD, particularly 

during reward processing (See Table S1 and Figure S1). To address this issue, we performed 

a coordinate-based meta-analysis of 41 neuroimaging studies containing reward-related 

responses from a total of 794 patients with MDD and 803 HCs. Our meta-analytic findings 

confirm that reward responses within the VS are consistently blunted in MDD relative to HCs 

across studies. In contrast, we find that reward responses within the OFC are consistently 

elevated in MDD. Contrary to the common notion that MDD is characterized by blunted 

responses to reward, these findings suggest that MDD may be characterized by both hypo- 

and hyper-responses to reward at the neural level and highlight the need for a more fine-

tuned understanding of the various components of reward processing in MDD.  

Although our blunted striatal findings are consistent with previous meta-analytic work 

documenting reward processing abnormalities in MDD (Groenewold et al., 2013; Keren et 

al., 2018; Zhang et al., 2013), we emphasize that our work differs in two key ways. First, our 

results implicate highly specific—yet distinct—abnormalities in the reward circuit, with 

hypo-responses to reward in the VS and hyper-responses to reward in the OFC. In sharp 

contrast, previous meta-analyses have generally reported distributed patterns of 

abnormalities, with little anatomical agreement across studies (see Table S1 and Figure S1). 
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Second, to minimize bias, our study employed more stringent analysis methods than prior 

studies in this area, following recommendations by new guidelines (Barch and Pagliaccio, 

2017; Muller et al., 2017, 2016). For example, instead of using the FDR approach which has 

been shown to be inadequate in controlling the false positives among clusters in 

neuroimaging meta-analyses (Chumbley and Friston, 2009; Eickhoff et al., 2012), we 

corrected for multiple comparisons using the permutation-based approach. We also excluded 

ROI- or SVC-based studies and only included whole-brain studies that used an active control 

condition and independent samples. In addition, we only conducted a meta-analysis when 

there were at least 17 eligible experiments to ensure adequate statistical power and restrict 

excessive contribution of any particular studies to cluster-level thresholding (Eickhoff et al., 

2016). We speculate that the enhanced rigor and methods of our study contributed to our 

ability to identify highly circumscribed and distinct abnormalities in the reward circuit.  

A prior meta-analysis using similarly rigorous methods revealed no significant 

convergence of findings among neuroimaging studies comparing MDD and HCs (Muller et 

al., 2016); nevertheless, we note that the previous meta-analysis differed from the current 

meta-analysis in at least four key ways. First, whereas the previous meta-analysis focused on 

emotional or cognitive processing, the current meta-analysis focused solely on reward 

processing. Second, the previous meta-analysis excluded participants younger than 18 years 

old; in contrast, the current meta-analysis included participants of all ages, boosting our 

power and ability to generalize our findings to MDD across ages. Third, the previous meta-

analysis included studies up until October 2015, whereas our meta-analysis included studies 

until August 2018. Finally, the previous meta-analysis excluded MDD participants in 

remission, whereas the current meta-analysis included them, allowing us to begin to address 

the question of whether reward processing dysfunction is not simply a state, but a trait of 

MDD. Our ability to identify significant convergence highlights the significance of reward 
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processing dysfunction in MDD and might indicate the literature on reward processing in 

MDD is more homogeneous than that on emotional or cognitive processing in MDD. 

In our view, our most important finding is that studies consistently report that people 

with MDD exhibit hyper-responses to reward in the OFC. Exposure to rewards (e.g., money 

and pleasant sights) evokes activity in the OFC, which has been associated with the 

computation and representation of reward value (Berridge and Kringelbach, 2015; Der-

Avakian and Markou, 2012; Kringelbach, 2005; Padoa-Schioppa, 2011; Padoa-Schioppa and 

Conen, 2017; Rolls, 2017). Therefore, given that MDD is traditionally linked to blunted 

response to reward or reduced capacity to experience pleasure (Whitton et al., 2015), our 

finding of hyperactivity of the OFC in response to reward in MDD may seem paradoxical. 

One interpretation would be that MDD is at least partly characterized by hyper-responses to 

reward, which fits with a set of experimental studies reporting that individuals with severe 

MDD found dextroamphetamine to be more rewarding than did controls (Naranjo et al., 

2001; Tremblay et al., 2005, 2002). Anhedonia, then, may be rooted in decreased 

connectivity between the prefrontal regions and subcortical regions underlying reward-

related behavior, as suggested by previous research (Young et al., 2016).  

Alternatively, OFC hyperactivity may reflect enhanced inhibitory control over 

subcortical regions underlying reward-related behavior, causing anhedonia. Optogenetic and 

neuroimaging studies have revealed that hyperactivity in prefrontal regions (e.g., medial 

PFC, vmPFC) innervated by glutamatergic neurons may causally inhibit reward-related 

behavior via suppressing striatal responses to dopamine neurons in the midbrain (Ferenczi et 

al., 2016; Robbins, 2016) and increasing connectivity between the medial PFC, lateral OFC, 

and VS (Ferenczi et al., 2016; Robbins, 2016). In addition, increased negative effective 

connectivity between the orbital and medial PFC and amygdala in response to reward has 

been found in MDD, but not bipolar depression or healthy controls (Almeida et al., 2009), 
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suggesting that the OFC might exert over-control over subcortical regions in MDD, but not 

bipolar depression or healthy individuals. The differences in the effects of OFC between the 

groups might be explained by research demonstrating that stimulation of the medial PFC at 

different frequencies affects dopamine release in the VS differently. Specifically, although 

stimulation of the medial PFC at low frequencies (10 Hz), which correspond to the firing rate 

of PFC neurons during performance of cognitive tasks, decreased dopamine release in the 

VS, high frequency stimulation (60 Hz) increased dopamine release in the VS (Ferenczi et 

al., 2016; Jackson et al., 2001) and has strong antidepressant effects (Covington et al., 2010; 

Steinberg et al., 2015). Taken together, OFC hyperactivity may inhibit reward-related 

behavior and lead to anhedonia via suppressing striatal responses to dopamine neurons in the 

midbrain (Ferenczi et al., 2016; Robbins, 2016) and increasing connectivity between the PFC 

and the VS in MDD (Ferenczi et al., 2016; Robbins, 2016).  

The role of corticostriatal connectivity during reward processing in MDD remains an 

open and important question (Admon and Pizzagalli, 2015a; Drysdale et al., 2017; Kaiser et 

al., 2015). Previous meta-analyses indicate that at least some people with MDD exhibit 

dysfunction in resting-state corticostriatal connectivity (Drysdale et al., 2017; Kaiser et al., 

2015). We believe our meta-analytic results will provide a springboard for future studies that 

seek to develop a full picture of the pathophysiology of MDD and understand the role of 

dysregulated corticostriatal connectivity in MDD, particularly in the context of reward 

processing. These endeavors will require empirical assessments of connectivity within the 

reward circuit using psychophysiological interaction analysis (Friston et al., 1997; McLaren 

et al., 2012; Smith et al., 2016a) and dynamic causal modeling (Friston et al., 2003). Such 

approaches have shown promise for revealing specific patterns of task-dependent 

corticostriatal interactions in samples containing healthy individuals (Chatham et al., 2014; 

Smith et al., 2016b; Wimmer et al., 2012; Wimmer and Shohamy, 2012), clinical populations 
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(Admon and Pizzagalli, 2015a, 2015b; Young et al., 2016), or a mix of both (Hanson et al., 

2017). Nevertheless, a caveat of such approaches is that dysregulated corticostriatal 

connectivity may involve modulatory regions, such as the midbrain (Murty et al., 2014). In 

addition, although reinforcement learning models, such as actor-critic models and prediction 

error models have been utilized to understand the pathophysiology of several psychiatric 

disorders (e.g., schizophrenia and addiction), research on their application on MDD has been 

scant (Gold et al., 2012; Maia and Frank, 2011). Our results help delineate specific 

abnormalities within the reward circuit and supply a foundation for refining connectivity-

based and computational models of MDD.  

Even though our meta-analysis reveals circumscribed patterns of abnormal responses 

to reward in the VS and OFC, we note that our findings should be interpreted in the context 

of their limitations. First, heterogeneity across studies may have added noise to our analyses 

and restricted our capacity for detecting true effects. Specifically, due to the limited number 

of studies, our analyses collapsed across different reward processes (e.g., anticipation and 

outcome), reward modalities (e.g., monetary and social), and specific contrasts that would 

help isolate and differentiate neural responses to salience and valence (Bartra et al., 2013; 

Clithero and Rangel, 2014; O’Doherty, 2014; Wang et al., 2016; Zald and Treadway, 2017). 

Our analyses also collapsed across different mood states, psychotropic medication usage, 

ages, and comorbidities (Drevets, 2007; Hafeman et al., 2012; Phillips et al., 2003). In doing 

so, important differences in brain activation may be obscured and more specific questions 

related to brain activation—particularly questions related to neural representations of valence 

or salience (Bartra et al., 2013; Cooper and Knutson, 2008; Kahnt et al., 2014; Litt et al., 

2011)—cannot be addressed in our work. Future studies should examine how these factors 

may affect reward processing in MDD. Nevertheless, we highlight that the convergence of 

findings despite the heterogeneity of the included studies is striking and suggests that the 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2018. ; https://doi.org/10.1101/332981doi: bioRxiv preprint 

https://doi.org/10.1101/332981
http://creativecommons.org/licenses/by/4.0/


 

 20 

current findings may reflect trait abnormalities of MDD. Second, many included studies have 

relatively small sample sizes and report coordinates that are not corrected for multiple 

comparisons, which may lead to biased results (Button et al., 2013; Jia et al., 2018). The 

validity of a meta-analysis hinges on the validity of the included studies (Akobeng, 2005). 

Future work should follow the most updated guidelines for best practices in the field to avoid 

generating biased findings (Nichols et al., 2017). Third, most of the included studies only 

recruited adults with acute major depression. More studies on other ages (e.g., pre-

adolescents, adolescents) and mood states (e.g., remission) are needed. Fourth, we note that 

the search criteria were designed to focus on studies on reward and might not identify some 

studies on punishment. Therefore, the analyses and results in relation to punishment are 

exploratory in nature and should be interpreted with caution. Fifth, the ALE method, by 

nature, cannot incorporate null results (Muller et al., 2017). As a result, the current findings 

could be confounded by publication bias. Sixth, it is important to acknowledge that reward 

processing is complex, and the receipt of reward can be linked to both affective and 

informative signals (Smith et al., 2016b). Finally, it is important to note that some patients in 

the included studies were medicated. The normalizing effects of treatment could obscure 

differences between MDD and HCs, increasing the probability of type II errors (Delaveau et 

al., 2011; Dichter et al., 2009). 

Notwithstanding these caveats, our meta-analysis shows that MDD is consistently 

associated with opposing abnormalities in the reward circuit in response to reward: hypo-

response in the VS and hyper-response in the OFC. Our meta-analytic results therefore argue 

against the common notion that MDD is only associated with blunted responses to reward. 

Our findings suggest that MDD may be tied to opposing abnormalities in the OFC and VS, 

which may suggest MDD stems, in part, from dysregulated connectivity between these 

regions. We believe our findings will help lay a foundation towards developing a more 
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refined understanding and treatment of MDD and its comorbid psychiatric disorders, 

particularly ones that involve abnormal reward processing (Diehl et al., 2018). For example, 

a more refined understanding of the abnormalities in the reward circuitry in MDD may help 

distinguish it from other disorders exhibiting reward processing abnormalities, such as 

bipolar disorder, schizophrenia, and substance use disorder (Batalla et al., 2017; Whitton et 

al., 2015). Finally, given that previous treatment targets for deep brain stimulation for 

treatment-resistant depression have yielded mixed results (Bewernick et al., 2010; 

Holtzheimer et al., 2012, 2017; Jiménez et al., 2005; Lozano et al., 2012; Malone et al., 2009; 

Naesström et al., 2016; Puigdemont et al., 2012; Schlaepfer et al., 2013; Schlaepfer, 2015), 

the portion of OFC implicated by our results could be a promising treatment target. 
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Meta-analysis of Reward Processing in Major Depressive Disorder Reveals Distinct 

Abnormalities within the Reward Circuit 

 

Supplemental Information 

Supplementary Results and Discussion 

Aberrant Reward Responses in Major Depressive Disorder (MDD)— Excluding Neutral 

Stimuli > Punishment Contrast 

As a significant result for the contrast of neutral stimuli > punishment could be due to positive 

reward salience (i.e., reward > neutral stimuli > punishment) or negative reward salience (i.e., 

neutral stimuli > reward/punishment), we conducted sensitivity analyses to examine whether 

excluding studies that used neutral stimuli > punishment as a reward contrast would affect our 

main results related to reward responses in MDD. After excluding the 2 experiments of neutral 

stimuli > punishment (1, 2), the results remained the same: We found significant convergence 

among experiments reporting blunted responses for reward in MDD relative to HCs in the VS, as 

well as significant convergence among experiments reporting elevated responses for reward in 

MDD relative to HCs in the OFC (See Table S4). 

 

Hyper Punishment Responses in Major Depressive Disorder (MDD) 

We also conducted exploratory analyses to examine which brain regions consistently show 

aberrant responses to punishment in MDD relative to HCs. First, we meta-analyzed 24 studies 

reporting greater activity in response to punishment in people with MDD than HCs (i.e. MDD > 

HC for punishment > reward/neutral stimuli or neutral stimuli > reward). Our results indicated 

that these studies reliably reported greater activation in the left sublenticular extended amygdala 

in MDD (Table S5; Figure S2). Second, we synthesized 17 studies reporting less activity in 

response to punishment in people with MDD than HCs (i.e. HC > MDD for punishment > 
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reward/neutral stimuli or neutral stimuli > reward). Our results indicated that these studies did 

not report consistent activation patterns. Together, these results suggest that relative to HCs, 

people with MDD exhibited hyper-responses in the left sublenticular extended amygdala during 

processing of punishment-relevant stimuli. 

Our finding fits with others in suggesting that amygdala hyperactivation is linked to the 

processing of affectively salient, especially punishing, stimuli in MDD, and may underlie 

negativity bias in depression (3, 4). It is also in agreement with a meta-analysis indicating 

increased activation in the amygdala in response to negative stimuli in MDD relative to HCs (5) 

and a long series of studies indicating that the amygdala may be a key brain region implicated in 

the pathophysiology of depression (6–8). Interestingly, longitudinal studies have reported that 

amygdala reactivity, potentially in combination with life stress, prospectively predicts 

internalizing (e.g., depressive and anxiety) symptoms (9, 10), highlighting the importance of 

amygdala reactivity in the course of depression. 
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Table S1. Comparison of Findings on Reward Responses (i.e., Reward > Punishment/Neutral) in 

Previous Meta-analyses.  

Brain Region MNI Coordinates 

x y z 

Groenewold et al. (50)  

MDD > HC    

Lingual Gyrus 26 -92 -14 

Olfactorius Cortex 4 22 -14 

Middle Orbitofrontal 2 26 -14 

Rectus 2 30 -24 

Middle Orbitofrontal 0 26 -12 

Rectus 0 24 -24 

HC > MDD    

Cerebellum -16 -74 -28 

Lingual Gyrus -18 -62 -6 

Fusiform Gyrus -22 -74 -14 

Inferior Occipital Gyrus -30 -80 -12 

Rolandic Operculum -40 -24 20 

Insula -36 -24 22 

Superior Temporal Gyrus -40 -36 12 

Heschl Gyrus -46 -16 12 

Postcentral Gyrus -50 -18 18 

Supramarginal Gyrus -50 -22 18 

Anterior Cingulate Cortex -2 28 16 

Anterior Cingulate Cortex 4 32 14 

Lingual Gyrus -18 -62 -6 

Cerebellum -6 -58 -4 

Calcarine Sulcus -20 -54 4 

Fusiform Gyrus -26 -58 -12 

Precuneus -20 -52 2 

Pallidum 18 0 -4 

Putamen 28 -4 8 

Thalamus 14 -8 0 

Insula 38 10 -12 

Amygdala 30 -2 -12 

Caudate 16 26 6 

Fusiform 44 -62 -20 

Crus Cerebellum 44 -64 -20 

Brain Region TAL Coordinates 

x y z 

Zhang et al. (51)  

MDD > HC    

Cuneus 4 -86 18 

Cuneus -6 -86 22 

Frontal Lobe 20 30 -6 
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Middle Frontal Gyrus 40 28 38 

Superior Frontal Gyrus -4 48 32 

Fusiform Gyrus -48 -74 -12 

Middle Frontal Gyrus -48 14 30 

Lingual Gyrus 12 -52 4 

Lingual Gyrus 14 -54 0 

HC > MDD    

Caudate -6 18 4 

Caudate -8 -8 10 

Thalamus -10 -12 8 

Thalamus -14 -14 16 

Caudate -12 -4 20 

Cerebellum 4 -36 -4 

Cerebellum -4 -42 4 

Putamen 14 8 2 

Caudate 14 14 10 

Anterior Cingulate -8 30 10 

Insula 34 -4 16 

Cerebellum -6 -60 -20 

Brain Region Coordinates 

x y z 

Keren et al. (52)  

HC > MDD    

Caudate Body 12 14 14 

Caudate Head 6 2 -2 

Caudate Body -8 -2 -18 

MNI, Montreal Neurological Institute space; MDD, major depressive disorder; HC, healthy 

controls; TAL, Talairach space. Ventral striatum is the only area implicated in reward processing 

in MDD relative to HCs across the two previous meta-analyses and the current meta-analysis 

(see Table 1 for peak coordinates of group differences in neural responses to reward found in the 

current meta-analysis). 
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Table S2. Characteristics of the Study Samples Included in the Meta-Analysis. 

  MDD Patients   Healthy Controls 

Study Diagnostic 

Criteria 

n Age % Female % 

Medicated 

Mood 

States 

Comorbidity  n Age % 

Female 

Arrondo et al. (11) DSM-IV 24 33.1 29.2% 54.2% D Exclusion of alcohol or drug 

dependence. 

 21 34.3 23.5% 

Bremner et al. (12) DSM-IV 18 40 66.7% 0.0% D Exclusion of organic mental 

disorders or comorbid 

psychotic disorders, post-

traumatic stress disorder, 

childhood trauma, alcohol 

or substance abuse or 

dependence, or dyslexia. No 

current or past history of 

comorbid psychiatric 

disorders. 

 9 35 77.8% 

Burger et al. (13) DSM-IV 36 40.7 61.1% 100.0% D Exclusion of substance 

dependence. Inclusion of 

PD, agoraphobia, 

generalized anxiety 

disorder, social phobia, 

obsessive compulsive 

disorder, post-traumatic 

stress disorder, somatoform 

disorder, eating disorder, 

dysthymia, alcohol abuse, 

and substance abuse. 

 36 41.3 52.8% 

Chantiluke et al. 

(14) 

DSM-IV 20 16.2 50.0% 0.0% D Exclusion of major 

psychiatric disorders. 

 21 16.3 52.4% 

Chase et al. (15) DSM-IV 40 31 77.5% 77.5% D No exclusion of psychiatric 

comorbidities. Inclusion of 

lifetime comorbid anxiety 

 37 33.1 67.6% 
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disorders and substance use 

disorders. 

Demenescu et al. 

(1) 

DSM-IV 59 36.2 66.1% 23.7% D Exclusion of axis I 

disorders, such as psychotic 

disorder or dementia, 

current alcohol or substance 

abuse. 

 56 39.8 60.7% 

Dichter et al. (16) DSM-IV 19 23.6 78.9% 0.0% R Exclusion of current axis I 

psychopathology. 

 19 27.9 63.2% 

Elliott et al. (17) DSM-IV 10 42.2 70.0% 100.0% D Exclusion of current 

comorbid anxiety disorders, 

substance abuse or 

dependence, bipolar 

disorder, or other 

psychiatric diagnoses. 

Inclusion of past history of 

PD and bulimia. 

 11 37.6 72.7% 

Engelmann et al. 

(18) 

DSM-IV 19 37.6 52.6% 0.0% D Exclusion of lifetime 

bipolar disorder, psychotic 

disorder, obsessive-

compulsive disorder, tic 

disorder, eating disorder, 

cognitive disorder, 

substance abuse or 

dependence in the previous 

6 months or positive urine 

drug screen, or clinically 

significant suicidal ideation. 

 23 33.7 60.9% 

Fournier et al. (19) DSM-IV 26 30.6 69.0% 69.2% D Exclusion of bipolar 

disorder, borderline 

personality disorder, and 

alcohol/substance use 

 28 32.6 57.0% 
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disorder within 2 months 

before the scan. Inclusion of 

history of anxiety disorder 

and substance abuse. 

Fu et al. (20) and 

(21) 

DSM-IV 19 43.2 68.4% 100.0% D Exclusion of current axis I 

disorder and history of 

substance abuse within 2 

months of study 

participation. 

 19 42.8 57.9% 

Fu et al. (22) DSM-IV 16 40 81.3% 0.0% D Exclusion of other axis I 

disorder, including anxiety 

disorder or history of 

substance within 2 months 

of study participation. 

 16 39.2 81.3% 

Gotlib et al. (23) DSM-IV 18 35.2 72.2% 50.0% D Exclusion of psychotic 

ideation, social phobia, PD, 

mania, or substance abuse in 

the past 6 months or 

behavioral indications of 

possible impaired mental 

status. 

 18 30.8 72.2% 

Gradin et al. (24) DSM-IV 25 25.5 68.0% 0.0% D Unspecified  25 25.4 68.0% 

Hall et al. (25) DSM-IV 29 37.4 55.2% 51.7% D Exclusion of history of 

alcohol or substance abuse. 

 25 37.7 55.2% 

Johnston et al. (26) DSM-IV/ 

ICD-10 

19 50.8 78.9% 85.0% D Exclusion of other primary 

psychiatric disorder and 

substance misuse. 

 21 46.1 71.4% 

Keedwell et al. 

(27) 

ICD-10 12 43 66.7% 66.7% D Exclusion of other axis I 

disorder. 

 12 36 66.7% 

Knutson et al. (28) DSM-III-R 14 30.7 64.3% 0.0% D Exclusion of other current 

axis I disorder. 

 12 28.7 66.7% 
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Kumari et al. (29) DSM-IV 6 47 100.0% Unspecifie

d 

D Unspecified  6 44 100.0% 

Laurent et al. (30) DSM-IV 11 24.1 

(whole 

sample) 

100.0% 23.1% D No exclusion of psychiatric 

comorbidities. Inclusion of 

past substance 

abuse/dependence, anxiety 

disorders, and eating 

disorder. 

 11 24.1 

(whol

e 

sampl

e) 

100.0% 

Liu et al. (31) DSM-IV 21 30.7 57.1% 0.0% D Exclusion of axis I disorders 

(other than anxiety) and 

psychotic features and 

lifetime substance abuse or 

dependence. 

 17 28.3 58.8% 

Murrough et al. 

(32) 

DSM-IV 20 38.1 44.4% 0.0% D Exclusion of lifetime history 

of psychotic illness or 

bipolar disorder and current 

alcohol or substance abuse. 

 20 35 45.0% 

Pizzagalli et al. 

(33) 

DSM-IV 30 43.2 50.0% 0.0% D Exclusion of other axis I 

disorder except for anxiety 

disorders. 

 31 38.8 41.9% 

Remijnse et al. 

(34) 

DSM-IV 20 35 40.0% 0.0% D Exclusion of current alcohol 

or substance abuse at the 

time of study participation. 

Inclusion of social anxiety 

disorder, generalized 

anxiety disorder, PD 

without agoraphobia, PD, 

and cannabis abuse in early 

and sustained full remission. 

 27 32 70.4% 

Rizvi et al. (35) DSM-IV 21 38.9 66.7% 0.0% D Exclusion of other primary 

axis I disorder, lifetime 

history of 

 18 36.2 66.7% 
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hypomania/mania, 

psychosis, obsessive 

compulsive disorder, or 

eating disorder, and 

substance abuse or 

dependence (except nicotine 

or caffeine) within the last 3 

months. 

Rosenblau et al. 

(36) 

DSM-IV 12 43.5 41.7% 0.0% D Exclusion of other axis I or 

II disorders. 

 12 45.8 41.7% 

Scheuerecker et al. 

(37) 

DSM-IV 13 37.9 23.1% 0.0% D Exclusion of past alcohol or 

substance abuse, other 

mental illnesses, and 

personality disorders. 

 15 35.5 33.3% 

Schiller et al. (38) DSM-IV 19 23.6 78.9% 0.0% R Exclusion of current axis I 

psychopathology. 

 19 27.9 63.2% 

Segarra et al. (39) DSM-IV 24 33.1 29.2% 54.0% D Exclusion of dependence on 

alcohol or recreational 

drugs. 

 21 34.3 19.0% 

Sharp et al. (40) DSM-IV 14 13.4 100.0% Unspecifie

d 

D Exclusion of current use of 

nicotine, illicit drugs, 

psychotic disorders, bipolar 

I disorder, learning 

disabilities, and mental 

retardation.  

 19 13.7 100.0% 

Smoski et al. (41) DSM-IV 14 34.8 50.0% 0.0% D Exclusion of current mood 

disorder, anxiety disorder, 

psychotic disorder, 

substance abuse, or active 

suicidal ideation and history 

of psychosis or mania. 

 15 30.8 60.0% 
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Smoski et al. (42) DSM-IV 9 34.4 Unspecifie

d 

44.4% D Inclusion of generalized 

anxiety disorder and binge 

eating disorder. 

 13 26.2 Unspec

ified 

Surguladze et al. 

(43) 

DSM-IV 16 42.3 37.5% 100.0% D Exclusion of illicit 

substance abuse. 

 14 35.1 42.9% 

Surguladze et al. 

(44) 

DSM-IV 9 42.8 44.4% 100.0% D Exclusion of illicit 

substance abuse and other 

axis I disorders. 

 9 39.7 44.4% 

Townsend et al. 

(45) 

DSM-IV 15 45.6 40.0% 0.0% D Exclusion of comorbid axis 

I disorder. 

 15 44.8 40.0% 

Wagner et al. (2) DSM-IV 19 39.9 55.0% 100.0% D Exclusion of current 

comorbid axis I disorder 

and a history of manic 

episodes. 

 20 34.1 60.0% 

Wang et al. (46) DSM-IV 12 69.1 58.3% 91.7% D Exclusion of another major 

psychiatric disorder and 

alcohol/drug 

abuse/dependence. 

Inclusion of generalized 

anxiety disorder. 

 20 73.1 60.0% 

Young et al. (47) DSM-IV-

TR 

16 37.1 87.5% 0.0% D Exclusion of serious 

suicidal ideation, psychosis, 

drug/alcohol abuse in the 

past year and dependence 

(except for nicotine) in their 

lifetime. 

 16 37.8 87.5% 

Zhang et al. (48) ICD-10 21 43.8 38.1% 100.0% D Exclusion of illicit 

substance use or substance 

use disorders. 

 25 39.3 36.0% 

Zhong et al. (49) DSM-IV 29 20.5 55.2% 0.0% D Exclusion of lifetime 

substance dependence and 

 31 20.8 51.6% 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2018. ; https://doi.org/10.1101/332981doi: bioRxiv preprint 

https://doi.org/10.1101/332981
http://creativecommons.org/licenses/by/4.0/


 

 11 

substance abuse in the last 6 

months. 

MDD, major depressive disorder; D, depressed; R, remitted; PD, panic disorder. 
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Table S3. Study Characteristics. 

Study fMRI 

or PET 

Design Space Paradigm Correction Stimuli Contrast 

Arrondo et al. 

(11) 

fMRI Event-

related 

MNI Modified monetary 

incentive delay task 

Uncorrected Money HC > MDD, Anticipation: 

Reward > Non-Reward 

Bremner et al. 

(12) 

PET Block MNI Verbal declarative 

memory tasks with 

neutral paragraph 

encoding compared to 

a control condition and 

sad word pair retrieval 

compared to a control 

condition. 

Uncorrected at p 

< .005 

Words and 

paragraphs 

MDD > HC, Outcome: 

Negative > Neutral  

HC > MDD, Outcome: 

Negative > Neutral 

Burger et al. (13) fMRI Event-

related 

MNI Face matching 

paradigm 

Corrected at p < .05 

(TFCE) 

Faces HC > MDD, Outcome: 

Negative > Neutral  

HC > MDD, Outcome: 

Positive > Neutral 

Chantiluke et al. 

(14) 

fMRI Event-

related 

TAL Reward continuous 

performance task 

Uncorrected at p 

< .005 

Money MDD > HC, Outcome: Reward 

> Non-Reward  

HC > MDD, Outcome: Reward 

> Non-Reward 

Chase et al. (15) fMRI Event-

related 

MNI Card guessing 

paradigm 

Voxel-wise 

corrected at p < .05 

and cluster-wise 

corrected at p < .01 

Money MDD > HC, Anticipation: 

Reward > Non-Reward 

HC > MDD, Anticipation: 

Reward > Non-Reward 

MDD > HC, Anticipation: 

Reward Expectancy 

HC > MDD, Anticipation: 

Reward Expectancy 

MDD > HC, Outcome: 

Prediction Error 
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Demenescu et al. 

(1) 

fMRI Event-

related 

MNI Viewing faces with 

angry, fearful, sad, 

happy, and neutral 

expressions and 

scrambled faces; rating 

gender or pressing 

buttons in conformity 

with the instruction 

presented on the 

screen 

Cluster-wise 

corrected at p < .05 

Faces MDD > HC, Outcome: 

Positive > Scrambled Face 

Dichter et al. 

(16) 

fMRI Event-

related 

MNI Modified monetary 

incentive delay task 

Uncorrected at p 

< .005, k ≥ 10 

Money MDD > HC, Anticipation: 

Reward > Non-Reward  

MDD > HC, Outcome: Reward 

> Non-Reward 

HC > MDD, Outcome: Reward 

> Non-Reward 

Elliott et al. (17) fMRI Block MNI Affective go/no go 

task 

Uncorrected at p 

< .001 

Words MDD > HC, Outcome: 

Negative > Positive  

HC > MDD, Outcome: 

Positive > Negative 

Engelmann et al. 

(18) 

fMRI Event-

related 

MNI Economic decision-

making task 

Cluster-wise 

corrected at p < .05 

Money MDD > HC, Outcome: 

Negative > Positive 

Fournier et al. 

(19) 

fMRI Block MNI Labeling a color flash 

superimposed upon 

neutral faces that 

gradually morphed 

into angry, fearful, sad, 

or happy faces 

Uncorrected at p 

< .001, k > 20 

Faces MDD > HC, Outcome: 

Negative > Neutral MDD > 

HC, Outcome: Positive > 

Neutral 

Fu et al. (20) and 

(21) 

fMRI Event-

related 

TAL Indicating the sex of 

faces morphed to 

represent low, 

Cluster-wise 

corrected at p < .005 

Faces MDD > HC, Outcome: 

Negative (low, medium, and 

high intensity) 
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medium, and high 

intensities of sadness 

HC > MDD, Outcome: 

Positive (low, medium, and 

high intensity) 

Fu et al. (22) fMRI Event-

related 

TAL Indicating the sex of 

faces morphed to 

represent low, 

medium, and high 

intensities of sadness 

Unspecified Faces MDD > HC, Outcome: 

Negative (low, medium, and 

high intensity) 

HC > MDD, Outcome: 

Negative (low, medium, and 

high intensity) 

Gotlib et al. (23) fMRI Block MNI Indicating the sex of 

faces that were fearful, 

angry, sad, happy, 

neutral, or scrambled 

Uncorrected at p 

< .001, k > 5 

Faces MDD > HC, Outcome: 

Negative > Neutral 

HC > MDD, Outcome: 

Negative > Neutral 

MDD > HC, Outcome: 

Positive > Neutral 

HC > MDD, Outcome: 

Positive > Neutral 

Gradin et al. (24) fMRI Event-

related 

MNI Ultimatum game Cluster-wise 

corrected at p < .05 

Money HC > MDD, Outcome: 

Increasing fairness (decreasing 

inequality) 

MDD > HC, Outcome: 

Increasing inequality 

(decreasing fairness) 

Hall et al. (25) fMRI Event-

related 

TAL Contingency reversal 

reward paradigm 

Voxel-wise 

corrected at p < .05 

Money HC > MDD, Outcome: 

Magnitude of Loss: Large Loss 

> Small Loss 

HC > MDD, Outcome: 

Magnitude of Reward: Large 

Reward > Small Reward 

MDD > HC, Outcome: Reward 

Acquisition > Punishment 

Reversal 
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HC > MDD, Outcome: Reward 

Acquisition > Punishment 

Reversal 

Johnston et al. 

(26) 

fMRI Event-

related 

MNI Modified Pessiglione 

task 

Cluster-wise 

corrected at p < .01 

Voucher MDD > HC, Outcome: Loss > 

Non-Loss 

HC > MDD, Outcome: Loss > 

Non-Loss 

MDD > HC, Outcome: Reward 

> Non-Reward 

HC > MDD, Outcome: Reward 

> Non-Reward 

Keedwell et al. 

(27) 

fMRI Block TAL Being exposed to 

happy, sad, or neutral 

autobiographical 

memory prompts and 

facial expressions 

Cluster-wise 

corrected at p < .01 

Autobiogra

phical 

memory 

and faces 

MDD > HC, Outcome: 

Negative > Neutral 

HC > MDD, Outcome: 

Negative > Neutral 

MDD > HC, Outcome: 

Positive > Neutral 

HC > MDD, Outcome: 

Positive > Neutral 

Knutson et al. 

(28) 

fMRI Event-

related 

TAL Monetary incentive 

delay task 

Uncorrected at p 

< .05 

Money MDD > HC, Anticipation: 

Reward > Non-Reward 

HC > MDD, Anticipation: 

Reward > Non-Reward 

HC > MDD, Outcome: Non-

Loss > Loss 

HC > MDD, Outcome: Reward 

> Non-Reward 

Kumari et al. 

(29) 

fMRI Block TAL Viewing positive or 

negative pictures with 

a caption 

Cluster-wise 

corrected at p < .005 

Pictures 

and 

captions 

HC > MDD, Outcome: 

Negative > Neutral 

MDD > HC, Outcome: 

Negative > Neutral 
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HC > MDD, Outcome: 

Positive > Neutral 

MDD > HC, Outcome: 

Positive > Neutral 

HC > MDD, Outcome: 

Positive > Negative 

MDD > HC, Outcome: 

Positive > Negative 

Laurent et al. 

(30) 

fMRI Event-

related 

MNI Seeing own infant vs. 

other infant distress 

faces 

Cluster-wise 

corrected at p < .05 

Faces HC > MDD, Outcome: Very 

negative > Negative 

Liu et al. (31)  fMRI Event-

related 

MNI Instrumental 

probabilistic reward- 

and punishment-based 

associative learning 

task 

Cluster-wise 

corrected at p < .05 

Money MDD > HC, Outcome: 

Negative > Neutral 

MDD > HC, Outcome: 

Punishment Prediction Errors 

Murrough et al. 

(32) 

fMRI Event-

related 

MNI Rating emotional 

valence of happy, sad, 

or neutral faces 

Cluster-wise 

corrected at p < .05 

Faces HC > MDD, Outcome: 100% 

Positive > Neutral 

Pizzagalli et al. 

(33) 

fMRI Event-

related 

MNI Monetary incentive 

delay task 

Uncorrected at p 

< .005 

Money MDD > HC, Anticipation: 

Loss > Non-Loss 

HC > MDD, Anticipation: 

Loss > Non-Loss 

MDD > HC, Anticipation: 

Reward > Non-Reward 

HC > MDD, Anticipation: 

Reward > Non-Reward 

MDD > HC, Outcome: Loss > 

Non-Loss 

HC > MDD, Outcome: Loss > 

Non-Loss 
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MDD > HC, Outcome: Reward 

> Non-Reward 

HC > MDD, Outcome: Reward 

> Non-Reward 

Remijnse et al. 

(34) 

fMRI Event-

related 

MNI Reversal learning task Uncorrected p 

< .001 

Points MDD > HC, Outcome: Loss > 

Baseline 

HC > MDD, Outcome: Loss > 

Baseline 

MDD > HC, Outcome: Reward 

> Baseline 

Rizvi et al. (35) fMRI Blocked MNI Viewing IAPS pictures 

that elicit positive, 

negative or neutral 

affective states 

Cluster-wise 

corrected at p < .05 

Pictures MDD > HC, Outcome: 

Positive > Neutral 

MDD > HC, Outcome: 

Negative > Neutral 

Rosenblau et al. 

(36) 

fMRI Event-

related 

MNI Viewing IAPS pictures 

that elicit positive, 

negative or neutral 

affective states with 

and without cues 

indicating their 

emotional valence 

Uncorrected at p 

< .05 or p < .005 

Pictures MDD > HC, Anticipation: 

Negative > Neutral 

MDD > HC, Outcome: 

Negative > Neutral 

Scheuerecker et 

al. (37) 

fMRI Block MNI Face matching 

paradigm 

Uncorrected at p 

< .001 

Faces MDD > HC, Outcome: 

Negative > Neutral 

Schiller et al. 

(38) 

fMRI Event-

related 

MNI Monetary incentive 

delay task 

Cluster-wise 

corrected at p < .05 

Money HC > MDD, Anticipation: 

Loss > Non-Loss 

HC > MDD, Outcome: Loss > 

Non-Loss 

Segarra et al. 

(39) 

fMRI Event-

related 

MNI Simulated slot-

machine game 

Cluster-wise 

corrected at p < .05 

Money HC > MDD, Outcome: 

Unexpected Reward > Full 

Miss 

Sharp et al. (40) fMRI Event-

related 

TAL Card guessing 

paradigm 

Uncorrected at p 

< .005 

Money HC > MDD, Outcome: Reward 

> Non-Reward 
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Smoski et al. 

(42) 

fMRI Event-

related 

MNI Modified monetary 

incentive delay task  

Cluster-wise 

corrected  

Money MDD > HC, Anticipation: 

Money > Control 

HC > MDD, Anticipation: 

Money > Control 

MDD > HC, Outcome: Non-

Win > Control 

HC > MDD, Outcome: Non-

Win > Control 

MDD > HC, Outcome: 

Winning > Control 

HC > MDD, Outcome: 

Winning > Control 

MDD > HC, Selection: Money 

> Control 

HC > MDD, Selection: Money 

> Control 

Smoski et al. 

(41) 

fMRI Event-

related 

MNI Wheel of fortune task Uncorrected at p 

< .005, k ≥ 10 

Money HC > MDD, Anticipation: 

Reward > Non-Reward 

HC > MDD, Outcome: Reward 

> Non-Reward 

Surguladze et al. 

(44) 

fMRI Event-

related 

TAL Indicating the sex of 

neutral faces and faces 

morphed to represent 

mild and high 

intensities of fear and 

disgust 

Cluster-wise 

corrected at p < .001 

Faces HC > MDD, Outcome: 

Increasing intensities of happy 

faces 

MDD > HC, Outcome: 

Increasing intensities of sad 

faces 

Surguladze et al. 

(43) 

fMRI Event-

related 

TAL Indicating the sex of 

neutral faces and faces 

morphed to represent 

mild and high 

intensities of sadness 

and happiness 

Cluster-wise 

corrected at p < .001 

Faces MDD > HC, Outcome: 

Differential response to 100% 

disgust 

HC > MDD, Outcome: 

Differential response to 50% 

fear 
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Townsend et al. 

(45) 

fMRI Block MNI Face matching 

paradigm 

Cluster-wise 

corrected at p < .05 

Faces HC > MDD, Outcome: 

Negative > Neutral 

Wagner et al. 

(48) 

fMRI Event-

related 

MNI Self-referential 

processing task 

Cluster-wise 

corrected at p < .05 

Statements MDD > HC, Outcome: Neutral 

> Negative 

MDD > HC, Outcome: Neutral 

> Positive 

Wang et al. (46) fMRI Event-

related 

MNI Emotional oddball task Uncorrected at p 

< .001, k = 5 

Pictures MDD > HC, Outcome: 

Negative > Neutral 

Young et al. (47) fMRI Event-

related 

TAL Autobiographical 

memory task 

Cluster-wise 

corrected at p < .05, 

k > 30 

Words and 

autobiogra

phical 

memories 

HC > MDD, Outcome: Very 

Positive > Positive 

HC > MDD, Outcome: Very 

Negative > Negative 

MDD > HC, Outcome: Very 

Negative > Negative 

Zhang et al. (48) fMRI Event-

related 

MNI Viewing IAPS 

positive, neutral, and 

negative pictures with 

or without valence 

cues  

Cluster-wise 

corrected at p < .05, 

k > 157 

Pictures MDD > HC, Outcome: Reward 

> Non-Reward 

Zhong et al. (49) fMRI Block MNI Face matching 

paradigm 

Uncorrected at p 

< .005, k =8 

Faces MDD > HC, Outcome: 

Negative > Neutral 

HC > MDD, Outcome: 

Negative > Neutral 

fMRI, functional magnetic resonance imaging; PET, positron emission tomography; MNI, Montreal Neurological Institute space; SVC, small 

volume correction; MDD, major depressive disorder; HC, healthy controls; TFCE, threshold-free cluster enhancement; TAL, Talairach space; 

VS, ventral striatum; dACC, dorsal anterior cingulate cortex; rACC, rostral anterior cingulate cortex; ACC, anterior cingulate cortex; mPFC, 

medial prefrontal cortex; mOFC, medial orbitofrontal cortex; IAPS, International Affective Picture System.  
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Table S4. Peak Coordinates of Group Differences in Neural Responses to Reward (Excluding 

Neutral Stimuli > Punishment). 

 

 

Contrast Cluster Size (mm3) Probabilistic Anatomical Label x y z 

MDD > HC 968 Frontal Orbital Cortex (26%), 

Frontal Pole (13%) 

20 32 -12 

HC > MDD 1784 Subcallosal Cortex (14%) -2 8 -4 

  Caudate (32.1%),  

Accumbens (11.1%) 

8 6 -2 

Coordinates are x,y,z values of the locations of the maximum activation likelihood estimation 

(ALE) values in MNI space. Probabilistic labels reflect the probability that a coordinate belongs 

to a given region derived from the Harvard-Oxford probabilistic atlas. For clarity, we only report 

labels whose likelihood exceeds 5%. MDD, major depressive disorder; HC, healthy controls. 

 

 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 21, 2018. ; https://doi.org/10.1101/332981doi: bioRxiv preprint 

https://doi.org/10.1101/332981
http://creativecommons.org/licenses/by/4.0/


 

 21 

Table S5. Peak Coordinates of Group Differences in Neural Responses to Punishment. 

 

Contrast Cluster Size (mm3) Probabilistic Anatomical Label x y z 

MDD > HC 1104 Amygdala (85.4%) -26 -8 -14 

  Amygdala (61.4%) -16 -2 -18 

Coordinates are x,y,z values of the locations of the maximum activation likelihood estimation 

(ALE) values in MNI space. Probabilistic labels reflect the probability that a coordinate belongs 

to a given region derived from the Harvard-Oxford probabilistic atlas. For clarity, we only report 

labels whose likelihood exceeds 5%. MDD, major depressive disorder; HC, healthy controls. 
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Figure S1.   Illustration of Findings of Previous Meta-analyses on Reward Processing in 

Unipolar Depression. There is a striking degree of anatomical disagreement across these meta-

analyses, with non-overlapping findings all throughout the brain. Blue represents Groenewold et 

al. (50). Green represents Keren et al. (52). Red represents Zhang et al. (51). (A) Previous meta-

analyses examining convergence among studies reporting hypo-responses to reward include 

Groenewold et al. (50), Keren et al. (52), and Zhang et al. (51). (B) Previous meta-analyses 

examining convergence among studies reporting hyper-responses to reward include Groenewold 

et al. (50) and Zhang et al. (51). 

  

A
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Hypo Response to Reward
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Figure S2. Hyper-responses to punishment in the sublenticular extended amygdala (SLEA) in 

major depressive disorder (MDD). To conduct exploratory analyses to examine which brain 

regions consistently show elevated response to punishment in MDD relative to healthy controls 

(HCs), we meta-analyzed 24 studies reporting greater activity in response to punishment in 

people with MDD than HCs. Our results indicated that these studies reliably report greater 

activation in the left SLEA in MDD. 
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