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ABSTRACT 16 

We analysed soil-borne microbial (bacterial, archaeal, and fungal) communities 17 

around the Fildes Region of King George Island, maritime Antarctica, which were 18 

divided into two groups according to soil elemental compositions and environmental 19 

attributes (soil chemical parameters and vegetation conditions) located in Holocene 20 

raised beach and Tertiary volcanic stratigraphy. Prokaryotic communities of the two 21 

groups were well separated; they predominantly correlated with soil elemental 22 

compositions, and were secondly correlated with environmental attributes (e.g., soil 23 

pH, total organic carbon, 𝑁𝑂3
− , and vegetation coverage; Pearson test, r = 0.59 vs. 24 

0.52, both P < 0.01). The relatively high abundance of P, S, Cl, and Br in Group 1 was 25 

likely due to landform uplift. Lithophile-elements (Si, Al, Ca, Sr, Ti, V, and Fe) 26 

correlated with prokaryotic communities in Group 2 may originate from weathering 27 

of Tertiary volcanic rock. The elements and nutrients accumulated during formation 28 

of different landforms influenced the development of soils, plant growth, and 29 

microbial communities, and resulted in small-scale spatially heterogeneous biological 30 

distributions. We propose that the geological evolution of the Fildes Region was 31 

crucial to its microbial community development. 32 

 33 

IMPORTANCE 34 

This current study analyzed soil-borne microbial communities around the Fildes 35 

Region of King George Island, maritime Antarctica, which were divided into two 36 

groups according to soil elemental compositions and environmental attributes. We 37 
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provide new evidence for the crucial influence of landforms on small-scale structures 38 

and spatial heterogeneity of soil microbial communities. 39 

 40 

KEYWORDS 41 

Soil-borne microbial community, small-scale spatial heterogeneity, landform, 42 

maritime Antarctica, pyrosequencing, phospholipid fatty acid  43 

 44 

Introduction 45 

Investigating microbial communities at different spatial scales, and the factors that 46 

affect microorganism distributions, are fundamental aspects of microbial 47 

biogeography (39, 42). In many terrestrial ecosystems, bacterial, fungal, and archaeal 48 

communities are distributed along soil parameter gradients (e.g., temperature, pH, 49 

water content, salinity, and nutrition; (35, 37, 48, 60, 71). Meanwhile, plants and 50 

animals that depend on the soil ecosystem may also have significant influences on 51 

microorganisms (22, 55, 75). It is therefore difficult to determine the most sensitive 52 

factors influencing microbial communities. Nonetheless, in most distinct terrestrial 53 

areas with special environments, distribution trends in the microbial community are 54 

dominantly shaped by environmental factors that limit or prevent cell growth (33, 39). 55 

Historical contingencies are also important for microbial community distribution on 56 

spatial scales of one to tens of thousands of kilometres, but such effects may be 57 

overwhelmed at small and intermediate scales (100m-1000km), including across 58 

Antarctica (12, 42). Therefore, microbial spatial structures can be used to partly 59 
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reflect the external or intrinsic drivers of microbial population development and 60 

activities (72). 61 

 62 

The extreme conditions of Antarctica, such as low temperatures, low nutrient 63 

availability, high UV radiation, and frequent freeze-thaw (14, 65), result in relatively 64 

simple ecosystems. Hence, the relatively uncomplicated food-web structure of 65 

Antarctic terrestrial habitats provides an appropriately manageable system to 66 

investigate the drivers of soil microbial diversity and composition (70). Unsurprisingly, 67 

spatial microbial community patterns have been observed here, ranging from 68 

site-specific regions to large regional scale (11, 63, 69). However, to the best of our 69 

knowledge the effects of historical contingency on microbial community distribution 70 

at small scale spatial have not been observed yet.  71 

 72 

In this study, we used Illumina Miseq pyrosequencing and the phospholipid fatty 73 

acids (PLFA) method to survey the diversity and structure of prokaryotic and fungal 74 

communities in 12 quadrat plots around the Fildes Region, King George Island. Fildes 75 

is one of the largest ice-free regions in maritime Antarctica, and has higher 76 

biodiversity than continental Antarctica. This typical small-scale spatial region 77 

includes two Antarctic Special Protected Areas (ASPAs), covering approximately 30 78 

km2 of the Fildes Peninsula, Ardley Island, and adjacent islands (8). Nevertheless, 79 

after the last glacial maximum, this region experienced multiple geologic and glacial 80 

events, including deglaciation (8400~5500 BP), glacial re-advance (after 6000 BP), 81 
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Holocene glacio-isostatic and tectonic uplift during the glacial erosive phase, and 82 

glacier retraction (30, 44). Glacial activities and past sea level changes were the key 83 

drivers of landform and soil development across the Fildes region (5, 62), and their 84 

effects on terrestrial microbial communities should not be ignored (59).  85 

 86 

The 12 permanent quadrats analysed in our study have been established since 2013. 87 

Their primary aim was to evaluate long-term ecosystem evolution according to 88 

biomass and diversity under climate change conditions, and to build a 89 

comprehensive research platform for multi-disciplinary study, including botany, 90 

microbiology, ecology, and environmental science (68). For these purposes, all 91 

selected quadrats must: (a) include Antarctic hairgrass (Deschampsia antarctica), the 92 

only advanced plant discovered in the Fildes region, associated with moss and lichen; 93 

(b) have stable soil and vegetation for long term monitoring; and (c) be protected 94 

from human disturbance (mostly scientific explorers) and animal activity as much as 95 

possible. Soil maturation and vegetation colonization takes a very long time under 96 

unfavourable conditions, so the established quadrats represented natural and stable 97 

habitats around the region. Recently, based on 454 pyrosequencing data, Wang et 98 

al.(61) found that the diversity and structure of soil bacterial communities in four 99 

sites of the Fildes region were significantly affected by pH, phosphate phosphorus, 100 

organic carbon, and organic nitrogen. The relationships between microbial 101 

communities, geological factors, and landform development have not been studied. 102 

In this study, we attempt to answer three questions: (i) what is the microbial 103 
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community structure in this small-scale region of maritime Antarctica; (ii) which 104 

factors affect the distribution of microbial communities ; and (iii) do microbial 105 

communities reflect different landform development in history. In order to explore 106 

these issues, a number of soil chemical properties and vegetation attributes were 107 

measured, representing conventional environmental factors; the soil element 108 

composition was determined by X-ray fluorescence spectrometer, which is an 109 

acceptable proxy for soil or sediment erosion and development in different 110 

landforms (4, 28, 66) , and combining geological literature related to the Fildes region 111 

to represent landform types. We aim to improve understanding of terrestrial 112 

microbial communities in maritime Antarctic ice-free areas, and contribute to a new 113 

perspective on small-scale microbial biogeography. 114 

 115 

Results 116 

Soil elemental compositions and environmental attributes of quadrats 117 

A total of 20 elements in the sample soils were detected by X-Ray fluorescence 118 

spectrometer, and 11 environmental attributes were measured (Table S1). Principle 119 

component analysis with normalized whole soil elemental compositions and 120 

environmental attribute data showed that 36 samples were well separated by the 121 

original point of the PC1 coordinate axis (Fig.1a). Hence the quadrat plots could be 122 

divided into two groups reflecting different soil types and environmental conditions, 123 

in which Group 1 included quadrat plots Q2, Q3, Q6, and Q7, and Group 2 included 124 

all other quadrat plots (Q1, Q4, Q5, Q9, Q10, Q11, Q12, and Q13). The heatmap 125 
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cluster analysis supported the grouping suggested by whole element and 126 

environmental data (Fig. 1b).  127 

 128 

The soil element profile revealed that lithophile elements (Si, Al, Ca, Mg, Fe) 129 

occupied the major portions. Twelve elements (Al, Ca, Cu, Fe, K, Mg, Mn, Si, Sr, Ti, V, 130 

and Zn) were more abundant in Group 2, and four elements (P, S, Cl, and Br) were 131 

significantly more abundant in Group 1 (Wilcoxon test, P < 0.05, Table S1). 132 

PERMANOVA analysis revealed a highly significant difference in soil element 133 

composition between the two sample groups (Pseudo-F = 17.74, P < 0.01). Pairwise 134 

correlative comparisons between elements demonstrated that P, S, Cl , and Br were 135 

positively correlated with each other, and negatively correlated with Mg, Al, Si, Ca, 136 

Mn, Zn, Sr, V, Fe and Ti, which also had positive correlations with each other (Fig. S1). 137 

A significant difference was also observed in the environmental attributes between 138 

Group 1 and Group 2 (PERMANOVA test, Pseudo-F = 15.17, P < 0.01), consisting of 139 

lower soil pH and higher total organic carbon (TOC, 𝑁𝐻4
+, 𝑁𝑂3

−) and moisture 140 

contents in Group 1. In addition, vegetation properties such as hairgrass coverage 141 

(DAC) and total vegetation coverage (VC) were also higher in Group 1 plots (Wilcoxon 142 

test, P < 0.05, Table S1).  143 

 144 

Diversity and composition of microbial communities in quadrats 145 

After sequence-quality filtering, we obtained a total of 2,389,662 high-quality 146 

bacterial 16S rRNA gene reads, 1,423,619 archaea 16S rRNA gene reads , and 147 
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1,953,908 ITS reads. These reads constituted 98,887, 49,000, and 8,464 operational 148 

taxonomic units (OTUs) at a 0.03 discrepancy (97% identity) for bacterial, archaeal, 149 

and fungal taxa, respectively. The OTUs diversities of Shannon, Chao 1, and ACE index 150 

of bacteria, archaea, and fungi did not differ between Group 1 and Group 2 151 

(Wilcoxon test, P > 0.05, Table S2). For bacteria, 20 phyla and some unidentified 152 

bacteria (0~0.8%) were detected, and the OTU sequences of most quadrat soils were 153 

dominated by Actinobacteria (24.2%), Acidobacteria (14.7%), Proteobacteria (15.1%), 154 

Chloroflexi (12.3%), and Gemmatimonadetes (7.2%) (Fig. S2).  For archaea, a 155 

number of OTU sequences (74.6%, maximum) were not assigned to any taxon; the 156 

remainder was dominated by Crenarchaeota (94.5%) and Euryarchaeota (5.5%), and 157 

the dominant classes of the phyla were Thaumarchaeota and Thermoplasmata,  158 

respectively. For fungi, six phyla were detected, and all quadrat plot soils were 159 

dominated by Ascomycota (69.1%), Basidiomycota (17.6%), and Zygomycota (4.5%). 160 

The percentage of unassigned OTUs and unidentified fungi were 6.8%–64.3% and 161 

0.4%–7.7%, respectively. PERMANOVA tests of Bray-Curtis distances revealed 162 

significant differences between the two groups for prokaryotic 16S rRNA genes 163 

(integrated data normalized by the bacterial and archaeal OTU data set, Pseudo-F = 164 

3.1, P = 0.0002), but not for fungal ITS genes (Pseudo-F = 1.3, P = 0.196). This was 165 

consistent with the grouping result of nonmetric multidimensional scaling (NMDS) 166 

analysis with the bacterial and archaeal OTU dataset (Fig. 2). 167 

 168 

Links among microbial composition, soil elemental composition, and environmental 169 
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attributes 170 

The prokaryotic OTU composition showed a strong and significant correlation with 171 

soil elements (r = 0.59, P < 0.01, Pearson test), and a less but still significant 172 

correlation with environmental attributes (r = 0.52, P < 0.01, Pearson test; Fig. 3a). 173 

Fungal community composition did not show strong correlations with either soil 174 

elements or environmental attributes (P > 0.05; Fig. 3b). The soil elements and 175 

environmental attributes in canonical correspondence analysis (CCA) were selected 176 

by variation inflation test (see the Methods for details). CCA results for bacterial and 177 

archaeal community composition and soil elements, with significant models at the 178 

confidence level (both P < 0.01), indicated that the 11 soil elements are important 179 

factors controlling bacterial and archaeal community structures , and explain 60.0% 180 

and 47.3% of their variations, respectively (Fig. 4a and b).  181 

 182 

Among these elements, P and Br were important elements controlling microbial 183 

community structures in Group 1, and other lithophile and metal elements 184 

controlled Group 2. The importance of these soil elements was verified by a Monte 185 

Carlo test (P < 0.05, 999 permutations) with prokaryotic community data comprising 186 

bacterial and archaeal community compositions (Table 1). For fungal communities, 187 

CCA analysis showed that the two groups were not well separated from the others, 188 

and the model was not significant within the confidence level (P > 0.05). Only 37.3% 189 

of fungal community variations could be explained by the 11 soil elements (Fig . 4c). 190 

Considering the relationships between microbial communities and environmental 191 
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attributes, the same analysis was made by CCA (Fig. 4d, e, and f). The models were 192 

significant between both bacterial (P < 0.01, 56.2% explained) and archaeal (P < 0.05, 193 

43.6% explained) community structures and environmental attributes. The Monte 194 

Carlo test (999) revealed that total organic C (TOC), soil pH, moisture, site altitude, 195 

hairgrass coverage (DAC), and total vegetation coverage (VC) showed strong effects 196 

on prokaryotic communities. For fungal communities, the model was not significant 197 

within the confidence level (P > 0.05, 34.3% explained); however, soil pH, site 198 

altitude, moss species amount (MS), and lichen species amount (LS) were the 199 

environmental attributes affecting fungal community composition (Monte Carlo test, 200 

P < 0.05, 999 permutations; Table 1). For the mantel test of microbial community 201 

structures, including all factors investigated in this study, see Table S3. 202 

 203 

Microbial biomass and microbial diversity determined by the phospholipid fatty acids 204 

(PLFA) method 205 

The total amounts of PLFA (totPLFA) of Group 1 were significantly higher than those 206 

of Group 2 (Wilcoxon test, P < 0.05; Fig. S3). CCA analysis of the individual relative 207 

concentration (mol%) of the 45 most common PLFAs showed that, on the whole, the 208 

11 soil elements and the 11 environmental attributes were all important factors 209 

controlling soil PLFA patterns (Fig. S4, P < 0.01), with 47.5% and 47.0% of the 210 

variations explained, respectively. Among these factors, each of the 11 elements , and 211 

pH, moisture, total organic C (TOC), Deschampsia antarctica coverage (DOC), and 212 

total vegetation coverage (VC) of the environmental attributes had significant effects 213 
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on soil PLFA composition (Table 1). Microorganism categories including bacteria, 214 

fungi and protozoa were classified by indictor PLFAs according to microbial 215 

identification systems (MIDI). The relative abundance of AM fungi, actinomycetes , 216 

and anaerobes were higher in Group 1, and Gram-negative bacteria was higher in 217 

Group 2 (Fig. S5; Welch’s t-test, two-sided, P < 0.05).  218 

 219 

Differences of microbial community composition between the two groups 220 

In our analysis, the classified mode of the Random forests machine learning 221 

technique (9, 16) could be accepted if the ratio of the baseline error to the observed 222 

error was greater than 2, and we considered an OTU to be highly predictive if its 223 

importance score was at least 0.001. For bacteria, random forest analysis revealed 224 

that 58 OTUs distinguished the two groups, Acidobacteria were overrepresented in 225 

Group 1, and the OTUs assigned to the Thermoleophilia class of the phylum 226 

Actinobacteria, and genus Geobacillus of phylum Firmicutes, were overrepresented 227 

in Group 2. For archaea, 38 OTUs distinguished the two groups, except for 12 OTUs 228 

with no assigned taxa. Some 11 OTUs were overrepresented in Group 1 and 17 OTUs 229 

were overrepresented in Group 2; all were assigned to genus Candidatus 230 

Nitrososphaera of phylum Crenarchaeota. As the ratio of the baseline error to the 231 

observed error of the random forest analysis with fungal OTUs was less than 2, we 232 

considered that the non-obvious classified result suggested that there was no 233 

credible difference in fungal community composition between the two groups (Table 234 

S4). 235 
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 236 

Discussion 237 

The prokaryotic community composition of the quadrats can be divided into two 238 

groups that correlate with soil element compositions and environmental attributes. 239 

Interestingly, a published geologic map of the Fildes region and previously reported 240 

literature (38, 44) showed that the quadrats in Group 2 were located in Tertiary 241 

volcanic stratigraphy, and those in Group 1 were found on a Holocene raised beach 242 

(Fig. 5). We suggest that there is a potential relationship between microbial 243 

communities and the development of landforms at this small spatial scale. 244 

 245 

In this area, a series of geological events, including volcanic activity, glacial erosion 246 

and retraction, isostatic uplift, and sea level change, created rich landform types. 247 

According to geomorphological and sedimentary evidence, relative sea level (RSL) 248 

gradually fell to < 14.5 m between 7000 and 4750 cal a BP as a consequence of 249 

isostatic uplift in response to regional deglaciation (30, 62). During landform 250 

formation, rich marine elements and nutrients were transferred to the land (5, 44). 251 

Moreover, from approximately 2500 years ago, mammals, especially penguins, began 252 

to colonize the newly uplifted beaches until at least ~500 years ago when the raised 253 

beaches were abandoned (according to chronological research of abandoned 254 

rookeries on King George Island (54)). These abandoned penguin rookeries are 255 

indicators of Holocene paleoclimate and also accumulated rich nutrients during the 256 

period (3). These input elements, nutrients, and marine microorganisms clearly 257 
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promoted the development of soil and plant growth, and influenced patterns of 258 

microbial community formation. 259 

 260 

Soil elemental profiles can be seen as proxy indicators of soil types and landforms 261 

with strong soil-landform relationships (20, 34). In previous studies, soil compositions 262 

tested by X-ray fluorescence spectrometer have been revealed to be the key factors 263 

for the distribution of bacterial and fungal communities in some field sites, 264 

sediments, glacier forefields, and deserts (27, 29, 43, 52). In this study, the CCA 265 

analysis and similarity test showed that both environmental attributes and soil 266 

element compositions could influence the microbial structure and biomass. However, 267 

compared with environmental attributes, the relationship between soil element 268 

composition and prokaryotic community was stronger (Fig 4; Fig 5). Mantel analysis 269 

revealed that the relative abundance of almost every element was important for 270 

shaping prokaryotic compositions (Table S3). The quadrat plots located on the 271 

Holocene raised beach landform showed relatively high abundances of P, S, Cl, and Br, 272 

which were more correlated to marine environments and organisms. These elements 273 

are readily absorbed by vegetation and microorganisms, and presumably resulted in 274 

the development of microbial community structures in Group 1 (CCA analysis ; Fig. 4). 275 

The accumulation of elements P and S may represent marine input but also mammal 276 

and bird excrement that accumulated in these raised beaches during the early stage 277 

of uplifted landform formation (54). Meanwhile, the halogen elements Cl and Br in 278 

island coastal soil likely derived mostly from seawater (49). 279 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 28, 2018. ; https://doi.org/10.1101/310490doi: bioRxiv preprint 

https://doi.org/10.1101/310490


14 
 

 280 

Conversely, the bacterial and archaeal community compositions of Group 2 were 281 

more correlated with lithophile-elements (Si, Al, Ca, Sr, Ti, V, and Fe, CCA analysis), 282 

and the landforms were almost completely isolated from the external environment 283 

until the icecap retreated ~11000–7500 cal a BP (62). This suggests that soil in 284 

quadrats located in tertiary volcanic stratigraphy mainly developed from the 285 

chemical and biological weathering of volcanic rock generated by Tertiary volcanism, 286 

and underwent paraglacial and periglacial processes. That may explain the lower soil 287 

biomass, nutrition, and vegetation coverage, as compared with Group 1; the limited 288 

nutrient input distinguished the prokaryote community composition from that of the 289 

nutrient-rich soil of Group 1. Therefore, we believe that the element composition of 290 

the soil associated with these landforms reveals geological background and historic 291 

effects. 292 

 293 

In Group 1, the soil contained high contents of TOC,  𝑁𝐻4
+,  𝑁𝑂3

−, and vegetation 294 

coverage, which also correlates with prokaryotic community. The relatively low pH 295 

values (Table S1) may be a result of higher vegetation coverage with more humus and 296 

fulvic acids produced by moss and lichen (21). As the rich nutrients and elements 297 

transferred from Holocene raised beach marine environments could promote soil 298 

development and plant growth, these environmental attributes seem to be a 299 

secondary factor affecting the prokaryotic community when compared to soil 300 

element compositions. Unlike Group 1, very small amounts of nutrients in the soil 301 
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samples of Group 2 were more likely caused by current precipitation, snowfall,  and 302 

animal activity. In keeping with reported studies (19, 23, 35), pH is one of the most 303 

influential factors affecting the distribution of microbial communities in this study. 304 

 305 

Interestingly, both prokaryotes and fungi communities were significantly correlated 306 

to the altitude of the sample location. Despite the slightly different altitudes (ranging 307 

from 11–56 m), they do not lead to significant changes in temperature, oxygen 308 

content, etc., which seems to suggest that geological uplift had an impact on 309 

microbial communities. In addition, moss and lichen species were significantly 310 

associated with fungal communities. It was previously reported that some fungal 311 

species coexist with moss and lichen in Antarctica (36, 58). We also noted that the 312 

soil element compositions and environmental attributes of ancient landforms 313 

investigated in our study were relatively stable, while those of younger landforms 314 

were more volatile (from Euclidean distances computed between samples from the 315 

PCA analysis in Fig 1a, Table S5). This suggests that the quadrat plots of Group 1 may 316 

be in an unstable new geological layer within a transboundary ecological stage from 317 

ocean to land, and disturbance from the new terrestrial environment may increase 318 

the heterogeneity of the geomorphic ecology. 319 

 320 

As the quadrats in our study all had hairgrass growth, vegetation may be one of the 321 

main causes of this difference. Thus, our results were similar to bacterial community 322 

compositions in other vegetated parts of Antarctica (36, 58), with relatively high 323 
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abundances of Chloroflexi and Gemmatimonadetes, which have strong reported 324 

relationships with plants (2, 10, 17). Previous studies of Antarctic archaeal 325 

communities were mostly concentrated in marine and lake environments (13, 18, 31, 326 

32, 45), and in this study, only two archaeal phyla (Crenarchaeota and Euryarchaeota)  327 

were detected, with Crenarchaeota representing the overwhelming majority (> 90%) 328 

of archaeal communities. This was consistent with other terrestrial archaeal 329 

structures of Antarctica derived using other investigated methods (e.g., clone 330 

libraries of rRNA genes and microarray (1, 70). 331 

 332 

Random forest analysis revealed that OTUs belonging to Alphaproteobacteria, 333 

Acidobacteria, and Bacteroidetes were mostly overrepresented in Group 1. These 334 

phyla have shown positive correlations with vegetation and the rhizosphere in 335 

farmland, arctic glacier moraines, and the Brazilian Antarctic Station (41, 55, 57). The 336 

results of our study showed different patterns at the family level, with 337 

Acidobacteriaceae, Koribacteraceae, Chitinophagaceae, and Rhodospirillaceae the 338 

most overrepresented families in Group 1. The family level differences from our 339 

study could be due to the locations of sampling points and the diverse sequencing 340 

methods. Conversely, in Group 2, the major overrepresented OTUs were class 341 

Thermoleophilia of phylum Actinobacteria. Thermoleophilia is a newly proposed class 342 

of phylum Actinobacteria that was created from the splitting of Rubrobacteridae (40), 343 

and its ecological position is not well understood. However, Thermoleophilia is 344 

abundant in deserts and glacier forelands (15, 74), and some isolated parts could be 345 
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cultured in low nutritional media during long incubation periods. Thus, it is 346 

reasonable that this class is found in the quadrats located in volcanic stratigraphy 347 

with high proportions of lithospheric elements and low nutrition conditions. In 348 

addition, we also found that five OTU sequences affiliated to Flavobacteriaceae 349 

extracted from Group 1 were clustered in marine clades, and no marine clade OTUs 350 

of Flavobacteriaceae were found in Group 2 (Fig. S6). Members of the family 351 

Flavobacteriaceae are among the most abundant picoplankton in coastal and polar 352 

oceans, and a number of genera have potential evolutionary sources from the ocean 353 

(7). Regarding genus Candidatus Nitrososphaera, the vital ammonia-oxidizing 354 

archaea (51, 53) was the overrepresented archaeal OTU in both groups. The 355 

uncultivable species s_Ca. N. SCA1170 was a major genus in Group 2 but did not 356 

appear in Group 1. This, along with evidence from NMDS analysis, implies that the 357 

two different landforms have diverse archaeal communities. Those suggested that 358 

spatial constraints for microorganisms also occur at small spatial scales.  359 

 360 

The importance of geological factors, such as the landform and lithology, on 361 

microbial structure is less well understood (59). Locations with distinct geologic 362 

factors generally exhibit geographical isolation; hence, they are mostly distributed at 363 

large and global scales. Limited research has shown that different landforms and soil 364 

profiles are also important drivers of bacterial diversity at the regional scale (>1000 365 

km distance), and their impacts are more significant than contemporary 366 

environmental factors (25, 47). Interestingly, we found that, on such a small spatial 367 
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scale, prokaryotic communities also showed a landform-governed distribution trend, 368 

and the microbial community structure is expected to be an indicator of the 369 

formation of the landform. The role of geological evolution in microbial distribution 370 

can be highlighted in this study because: (i) a clear effect of the geological evolution 371 

of the Fildes region in maritime Antarctica. Glacial activity, sea level changes, and 372 

tectonic uplift due to climate change after LGM have all resulted in landform 373 

heterogeneity at a small spatial scale; (ii) seasonal freezing-thawing cycles in the area 374 

have enhanced soil development, and promoted soil particle and nutrition migration 375 

to upper and surface soil layers; and (iii) the low activity of microorganisms under the 376 

cold climate, and less human disturbance where the quadrats were established, 377 

maintained relatively stable microbial community diversity for a long time after the 378 

geological changes. However, in contrast to other research, we did not attempt to 379 

classify the common environmental factors measured in this study as ‘contemporary 380 

environmental’ factors because those representing soil nutritional conditions were 381 

considered to be the consequence of landform development (44, 54), especially in 382 

Group 1. In our study, the environmental factors had strong influences on bacterial 383 

and archaeal community structures. Nonetheless, these were likely to play 384 

subsequently important roles in the distribution of microbial communities, 385 

predominantly driven by landforms and soil element compositions. 386 

 387 

In conclusion, this study provides evidence for the influence of geological evolution 388 

on the small-scale distribution of microbial communities. As a result, microbial 389 
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community structure is proposed as an indicator of the two different landforms in 390 

the Fildes region, King George Island. In addition, other locations in Antarctica 391 

experience the same type of glacial activity and isostatic uplift as the coastal ice-free 392 

areas around King George Island, maritime Antarctica, and Prince Charles Mountains 393 

area, East Antarctica (64), implying that microbial communities may also be diverse 394 

and influenced by different geological evolution events at small to moderate spatial 395 

scales in these areas. Continued research already, in progress, will verify whether 396 

microbial communities can be used as indicators of different landforms in other, 397 

similar geological areas in maritime Antarctica. This will contribute to finding 398 

different microbial communities in limited spatial regions  based on geological 399 

research, and will examine different types of geological heterogeneity according to 400 

microbial communities. 401 

 402 

Materials and Methods  403 

Quadrat plot description, soil sampling, and sample preparation 404 

The Fildes region is the largest ice-free area on King George Island, with a humid and 405 

relatively mild sub-Antarctic maritime climate. The mean annual temperature and 406 

precipitation are −2.4ºC and over 500 mm, respectively (26). The 12 permanent 407 

quadrat plots (1.5 m × 1.0 m each) investigated in this study had been established on 408 

Fildes Peninsula and Ardley Island between 2013 and 2015. For plot characteristics, 409 

please see the Introduction for details. Each quadrat plot was fenced to minimize 410 

disturbance. GPS coordinates, vegetation characteristics , and the landscape of 411 
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quadrat locations are shown in Table 2 and Fig. S7. The distance between quadrat 412 

plots ranges from approximately 1.6 to 8.2 km. Sampling occurred during China’s 413 

33rd Antarctic expedition in January 2017. Soils were sampled from the A-horizon (10 414 

cm), at an internal distance of approximately 3–5 m, in triplicate around each 415 

quadrat plot. Soil samples collected for each replicate were taken from five soil cores 416 

(5 cm diameter) and mixed thoroughly. A total of 36 soil samples were placed in 417 

sterile plastic bags, and soil DNA was extracted within 2 h in the laboratory of the 418 

Great Wall Station. The remaining soils were stored in the freezer until further soil 419 

physic-chemical property analysis. 420 

 421 

DNA extraction, PCR, pyrosequencing, and pyrosequencing data treatment 422 

Genomic DNA was extracted using a PowerSoil DNA Isolation Kit (MoBio, Carlsbad, 423 

CA, USA) according to the manufacturer's instructions. Duplicate DNA extraction was 424 

performed for each sampling plot, and all duplicated DNA products were pooled to 425 

reduce potential DNA extraction bias. Afterwards, DNA concentration was measured 426 

by UV spectrophotometer (Eppendorf, Bio Photometer), and its molecular size was 427 

estimated by 0.8% agarose gel electrophoresis. Details of pyrosequencing and 428 

pyrosequencing data treatment are described in Appendix S1. These sequence data 429 

have been submitted to the DDBJ/EMBL/GenBank databases (SRA) under accession 430 

no. SRP132288, accession no.SRP132345 and accession no.SRP132350. 431 

 432 

PLFA analysis 433 
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Phospholipid fatty acids (PLFAs) from soil samples were extracted, fractionated, 434 

quantified, and analysed using the protocol described by (6). In brief, 2.0 g of soil (dry 435 

weight) was extracted with a chloroform-methanol-citrate buffer mixture (1:2:0.8) 436 

and fractionated into neutral lipids, glycolipids, and phospholipids on a silicic acid 437 

column (Agilent Technologies, Sillic Box, CA, USA). Phospholipids were subjected to 438 

mild alkaline methanolysis, after separating out fatty acid methyl esters on an Agilent 439 

6890N gas chromatograph equipped with a flame ionization detector and an HP-1 440 

Ultra 2 capillary column (Agilent Technologies, Santa Clara, CA, USA). Peak areas were 441 

quantified by adding methyl non-adecanoate fatty acid (C19:0) (Sigma) as an internal 442 

standard. The fatty acid methyl esters were prepared according to the MIDI protocol 443 

and analysed using the MIDI Sherlock Microbial Identification System (MIDI, Newark, 444 

DE). The fatty acids i14:0, i15:0, a15:0, i16:0, a16:0, i17:0, and a17:0 represented 445 

gram-positive bacteria, 16:1ω9c, cy17:0, 18:1ω5c, 18:1ω7c, and cy19:0 represented 446 

gram-negative bacteria, 10Me16:0 (24), 10Me17:0, and 10Me18:0 represented 447 

Actinomycetea (73), branched monoenoic and mid-branched saturated fatty acid 448 

PLFAs represented anaerobic microorganisms (76), and 16:1ω5 represented AM fungi 449 

(46). PLFAs were categorized and calculated in the MIDI Sherlock Microbial 450 

Identification System (MIDI, Newark, DE). 451 

 452 

Soil element composition determined by X-ray fluorescence spectrometer 453 

Soil samples were dried at 105ºC for 6 h and then ground into powder. The soil 454 

powder was pressed in a 45 mm bore steel die under an approximately 20 t hydraulic 455 
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press. Every soil sample formed a stable soil pie of 45 mm diameter and 10 mm 456 

height. These pies were generally analysed within a few hours. The elements within 457 

soil samples were determined by X-ray fluorescence spectrometry (Bruker AXS, 458 

Germany) using a standardless quantitative analysis method (29). We removed poor 459 

quality elemental signals that rarely appeared (< 0.01%), generally in only one or two 460 

samples.  461 

 462 

Soil parameters and vegetation attribute measurements 463 

Soil temperature was measured by a plug-type thermometer (ZD Instrument, China) 464 

at depths of 15 cm during soil sampling. Soil pH was measured by adding 10 ml of 465 

distilled water to 5 g of soil, and recording pH by a pH electrode (Mettler-Toledo, 466 

Switzerland). Soil moisture was determined as the gravimetric weight loss after 467 

drying the soil at 105ºC until reaching a constant weight. Analysis of total organic 468 

carbon was performed using a TOC analyser (vario TOC, Elementar, Germany). To 469 

measure 𝑁𝐻4
+ and 𝑁𝑂3

−, 10 g of soil was suspended in 50 ml of 2 mol/L KCl 470 

solution and shaken at 25ºC for 1 h. Then, the soil solution mixture was centrifuged 471 

for 5 min in 3000 g. Subsequently, clear supernatant was passed through a filter of 472 

0.45 μm (Millipore, type GP), and analysed using a continuous flowing analyser 473 

(FIAstar 5000, Foss, Denmark). Each quadrat of 1 × 1 m was selected to measure 474 

vegetation attributes including moss species number (MS), lichen species number 475 

(LS), hairgrass (Deschampsia antarctica) coverage (DAC), and total vegetation 476 

coverage (VC) according to previous protocols (68). 477 
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 478 

Data statistical analyses 479 

For estimating bacterial, archaeal, and fungal diversity, Operational Taxonomic Unit 480 

(OTU) analysis including the Shannon, Chao1, and ACE indices was performed using 481 

the Mothur v. 1.30.2 software package (50). The relationships between soil 482 

elemental compositions and environmental attributes in the 32 soil samples were 483 

analysed by principal component analysis and hierarchical clustering heatmap 484 

analysis using the R v. 3.3.1 statistical software. The Wilcoxon test was performed for 485 

the soil elements and environments to determine the level of significance with a 486 

two-sided hypothesis using the Statistical Package for the Social Sciences software 487 

(SPSS). Significant differences in soil elemental compositions, environmental 488 

attributes, and microbial community structures between groups were determined by 489 

permutational multivariate analysis of variance (PERMANOVA) on 999 permutations 490 

of residuals under a reduced model using the R v. 3.3.1 statistical software. The 491 

Bray-Curtis distance was used to obtain dissimilarity matrices in the PERMANOVA 492 

test for microbial OTU data. The similarity test, Mantel test, and Canonical 493 

correspondence analysis (CCA) were used to evaluate the linkages between microbial 494 

community structures (general levels) and soil elemental compositions and 495 

environmental attributes with the Vegan package (v. 2.4-1) in R v. 3.3.1 according to 496 

the method described by Yang et al (67). Variation inflation factors were used to 497 

select factors in CCA modelling, of which the variance of canonical coefficients was 498 

not inflated by the presence of correlations with other factors, so that soil elements 499 
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and environmental attributes were removed if the variation inflation factor was 500 

larger than 20. Variation partitioning analysis resulted in 11 soil elements (Si, Ca, Zn, 501 

Fe, Al, Mn, V, Ti, Sr, P, Br) and 10 environmental attributes. The effect of factors on 502 

microbial community structures and the PLFA profile was estimated by a Monte Carlo 503 

permutation test (999 permutation). Differences in microbial categories marked by 504 

PLFA was determined using Welch’s t-test (two-sided) using the STAMP software (v. 505 

2.1.3) package. 506 
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 748 

 749 

Fig. 1 (a) Principle component analysis (PCA) and (b) heatmap cluster analysis of the normalized soil 750 

elemental compositions and environmental attribute data. The values of PC1 and 2 are percentages of total 751 

variations that can be attributed to the corresponding axis. Abbreviations: T, temperature; TOC, total 752 

organic carbon; MS, moss species amount; LS, lichen species amount; DAC, hairgrass (Deschampsia 753 

antarctica) coverage; and VC, total vegetation coverage. 754 
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 756 

Fig. 2 Nonmetric multidimensional scaling (NMDS) analysis of the (a) bacterial, (b) archaeal, and (c) fungal 757 

Operational Taxonomic Unit (OTU) datasets. Circle = Group 1; triangle = Group 2. 758 
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 760 

Fig. 3 Pearson correlations between (a) the prokaryotic community and (b) the fungal community with soil 761 

elemental compositions and environmental attributes. Similarity values are directly indicated by calculated 762 

pairwise Euclid distances between samples. 763 
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 765 

Fig. 4 Canonical correspondence analysis (CCA) of (a) Bacterial Operational Taxonomic Unit (OTU) data and 766 

elemental compositions; (b) archaeal OTU data and elemental compositions; (c) fungal OTU data and 767 

elemental compositions; (d) bacterial OTU data and environmental attributes; (e) archaeal OT U data and 768 

environmental attributes; (f) fungal OTU data and environmental attributes. 769 

  770 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 28, 2018. ; https://doi.org/10.1101/310490doi: bioRxiv preprint 

https://doi.org/10.1101/310490


40 
 

 771 

Fig. 5 Geomorphological map of the Fildes region, derived from Michel et al (44). Quadrats of Group 1 and 772 

Group 2 were located at Holocene raised beaches (No. 15) and marine platforms (periglacial landforms 773 

belonging to Tertiary volcanic stratigraphy, No. 14). The landform type of quadrat Q7 can be deemed as 774 

part of the Holocene raised beaches because it suffered recent glacio-isostatic uplift but was still covered 775 

by ice during that uplift (personal communication; Michel, 2018). Please refer to original literature for 776 

landforms marked by other numbers. 777 
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 798 

Table 1 Monte Carlo test of the factors (soil elemental compositions and environmental attributes) and 799 

compositions of microbial communities and phospholipid fatty acids (PLFA). Significant differences (P < 0.05) 800 

are indicated in bold. ***P < 0.001, **P < 0.01, *P < 0.05. P-values based on 999 permutations. 801 

  802 

Soil elements 
Prokaryote Fungi PLFA 

r2 P-value r2 P-value r2 P-value 

Al 0.2547 0.002** 0.0014 0.979 0.4648 0.001*** 

Ca 0.5647 0.001*** 0.0012 0.981 0.3276 0.003** 

Mn 0.5235 0.001*** 0.0018 0.965 0.3859 0.001*** 

P 0.3372 0.005** 0.0488 0.378 0.2883 0.012* 

Si 0.5621 0.001*** 0.0299 0.609 0.6624 0.001*** 

Sr 0.5332 0.001*** 0.2784 0.007* 0.4546 0.001*** 

Ti 0.3316 0.003** 0.2702 0.010* 0.3503 0.001*** 

V 0.2005 0.020* 0.0408 0.697 0.1828 0.041* 

Zn 0.2309 0.009** 0.1120 0.216 0.3289 0.003** 

Br 0.5059 0.001*** 0.0369 0.558 0.6223 0.001*** 

Fe 0.5210 0.001*** 0.0165 0.761 0.6978 0.001*** 

Environmental 

factors 

Prokaryote Fungi PLFA 

r2 P-value r2 P-value r2 P-value 

TOC 0.4139 0.001*** 0.1748 0.099 0.6776 0.001*** 

NO3 0.0667 0.286 0.0055 0.792 0.5661 0.120 

T 0.1531 0.068 0.1867 0.055 0.1042 0.176 

pH 0.6958 0.001*** 0.2385 0.007** 0.4830 0.001*** 

Moisture 0.2644 0.012* 0.1231 0.128 0.5844 0.001*** 

Altitude 0.3003 0.002** 0.2463 0.024* 0.0065 0.912 

DAC 0.2007 0.030* 0.0454 0.516 0.3487 0.003** 

MS 0.0320 0.557 0.2723 0.007** 0.0505 0.430 

LS 0.0624 0.325 0.5927 0.001*** 0.1367 0.103 

VC 0.6465 0.001*** 0.0298 0.779 0.4422 0.001*** 
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 803 

 804 

*Data from the previous study (Yao et al., 2017) 805 

Table 2 Locations and partial vegetation properties of the 12 soil quadrats. 806 

 807 

Quadrate 

code 
Coordinates 

Elevation 

/(m.a.s.l) 
Aspect* 

Number of 

grass tufts* 

Grass 

cover/%* 

Moss 

cover/%* 

Lichen 

cover/%* 

Q1 
62°12’39''S 

59°00’49''W 
11 NW 26 20.75 55 10 

Q2 
62°12'39.6''S 

58°55'35.9''W 
34 N 30 11 46 43 

Q3 
62°11'05.1''S 

58°52'37.3''W 
22 NE >50 37.50 56 6 

Q4 
62°12’00''S 

58°59’40''W 
42 NW 46 20 15 7 

Q5 
62°10’13''S 

58°55’26''W 
50 NW 1 1.75 35 5 

Q6 
62°13’00''S 

58°57’52''W 
42 NE 4 14 40 45 

Q7 
62°11'00.4''S 

58°51'28.6''W 
47 NE >100 50 40 10 

Q9 
62°11’20''S 

58°55’10''W 
42 NW 24 10 20 10 

Q10 
62°09'09.1''S 

58°55'44.2''W 
37 NW 17 31 60 1 

Q11 
62°09'57.4''S 

58°57'59.4''W 
32 NW 2 1.50 - 20 

Q12 
62°10’33''S 

58°58’16''W 
43 NW 1 1.50 10 30 

Q13 
62°11'45.6''S 

58°56'21.1''W 
56 NE 1 2.50 5 25 
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