
Latent-Based Imputation of Laboratory Measures from Electronic Health Records: 
Case for Complex Diseases 
 
Abedi V.1,2,x, Shivakumar M.K.1, Lu P.3, Hontecillas R.2,3, Leber A.3, Ahuja M.1, Ulloa A.E.1 
Shellenberger M.J.4, Bassaganya-Riera J.2,3 

 
 
 
x : Corresponding Author: vidaabedi@gmail.com; vabedi@geisinger.edu;  
 
1, Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 
2, Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 
Blacksburg, VA 
3, Biotherapeutics, Inc., Blacksburg, VA 
4, Department of Gastroenterology and Hepatology, Geisinger Medical Center, Danville, PA. 
 
 
 
 
 
Abstract: 
 
Imputation is a key step in Electronic Health Records-mining as it can significantly affect the 
conclusions derived from the downstream analysis. There are three main categories that explain 
the missingness in clinical settings ̶ incompleteness, inconsistency, and inaccuracy  ̶and these 
can capture a variety of situations: the patient did not seek treatment, the health care provider did 
not enter the information, etc. We used EHR data from patients diagnosed with Inflammatory 
Bowel Disease from Geisinger Health System to design a novel imputation that focuses on a 
complex phenotype. Our approach is based on latent-based analysis integrated with clustering to 
group patients based on their comorbidities before imputation. IBD is a chronic illness of unclear 
etiology and without a complete cure. We have taken advantage of the complexity of IBD to pre-
process the EHR data of 10,498 IBD patients and show that imputation can be improved using 
shared latent comorbidities. The R code and sample simulated input data will be available at a 
future time.  
 
Keywords: Imputation, SVD, clustering, Electronic Health Records, EHR, Inflammatory Bowel 
Disease, IBD, complex diseases, missing data,  
 

I. Introduction 
 

Given the complexity and high-dimensionality of Electronic Health Records (EHR) the 
missingness and the need for imputation are an inevitable aspect in any study that attempts to 
use such data for downstream analysis. The EHR is not designed for research purposes, even 
though the breadth and depth of this information can be used to improve care at many levels, 
including developing predictive models of prognosis and designing in silico clinical trials [1-3]. 
Furthermore, the level and extent of the missing values in health care systems at large are not 
random. In fact, there are three main categories that explain the missingness in clinical settings 
[4, 5]  ̶  incompleteness, inconsistency, and inaccuracy  ̶  and these can capture a variety of 
situations, including the following: the patient could have been cared for outside of the health care 
system where the data are collected, the patient did not seek treatment, the health care provider 
did not enter the information, the patient has expired, the missing value was not needed for 
standard of care. Therefore, imputation can dramatically lead to biased results. Furthermore, 
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excluding variables or patients with high-level of missingness can also introduce bias and reduce 
the scope of the study significantly. To address these challenges, different imputation techniques 
have been proposed, and each have their own advantages and limitations.  
 
In a recent study, 12 different imputation techniques that were applied to laboratory measures 
from EHR were compared. In general, authors found that Multivariate Imputation by Chained 
Equations (MICE) and softImpute consistently imputed missing values with low error [6]; however, 
in that study, analysis was restricted to 28 most commonly available variables. In another study, 
authors assessed the different causes of missing data in the EHR data and identified these causes 
to be the source of unintentional bias [7]. Comparative analysis of three methods of imputation (a 
Singular Value Decomposition (SVD) based method (SVDimpute), weighted K-nearest neighbors 
(KNNimpute), and row average for DNA microarrays showed that in general KNN and SVD 
methods surpass the commonly accepted solutions of filling missing values with zeros or row 
average  [8]. However, comparing imputation for clinical data with DNA microarray can be 
misleading. Missingness in DNA microarray is likely missing-at-random due to technical issues 
unlike missingness in EHR which is missing-not-at-random. In another study, fuzzy clustering was 
integrated with neural network to enhance the imputation process [9]. Furthermore, research has 
been done to evaluate imputation methods for non-normal data [10]. Using simulated data from 
a range of non-normal distributions and a level of missingness of 50% (missing completely at 
random or missing at random), it was found that the linearity between variables could be used to 
determine the need for transformation for non-normal variables. In the case of a linear 
relationship, transformation can introduce bias, while non-linear relationship between variables 
may require adequate transformation to accurately capture the non-linearity. Furthermore, many 
of the techniques are optimized for smaller levels of missingness (the most commonly available 
measurements), yet most clinical datasets (including the EHRs) have a significant percentage of 
missingness for many of their variables. To address this problem, machine learning methods have 
also been proposed [11]. In fact, the challenges of imputation for EHRs are unique, and if left 
unaddressed the utility of the data becomes limited [12]. Consequently, even though, for smaller 
targeted studies, it could be possible to integrate additional modalities, or perform analytical 
evaluation through chart review, to determine a likely cause of missingness; for larger studies this 
becomes infeasible. For examples, missingness level for many of very important variables (ex: 
inflammatory markers such as CRP, vitamin levels, or even A1C levels, a common biomarker for 
diabetes) can easily reach 50% or more in many realistic large datasets. Finally, given the 
complexity and the scale of the problem, in many studies, MICE [13] remains the method of 
choice. The MICE [13] algorithm is regression-based and assumes that the non-missing variables 
can be used for the predicting missing variables. However, this assumption does not always hold 
in EHR, yet, given the high-level of redundancy and presence of highly correlated variables in the 
EHR, imputation by MICE still performs relatively well for large clinical datasets. A comprehensive 
overview of handling missing data in EHR is presented in [12].  
 
In this study, we have developed a novel imputation strategy based on latent-based analysis 
integrated with clustering to group patients based on their comorbidities before imputation. We 
apply this method on 10,498 patients diagnosed with Inflammatory Bowel Disease (IBD) and show 
its strength in analyzing laboratory measures with missingness levels up to 95%.  
 

II. Methodology 
 
Dataset: IBD is a complex disease with two main manifestations: Ulcerative Colitis (UC) and 
Crohn’s Disease (CD). Both UC and CD are highly significant public health problem in the U.S. 
and worldwide due to increasing incidence, morbidity, and mortality [14]. Moreover, IBD is a 
complex disease with no clear etiology or associated risk factors. Utilization of EHR can help 
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facilitate better understanding this condition and continuous improvement in the design of 
treatment strategies for a more personalized care path.  
 
Data Extraction and Processing: We have identified an IBD cohort from the EHR of Geisinger 
Health System. Inclusion criteria of this cohort were based on extraction of patient population 
based on diagnosis recorded for patients under their visits, admissions and currently active 
problems listed under problem list, based on ICD9 and ICD10 codes for CD and UC (see Table 
1).  In order to confirm this diagnosis on patients, qualifying criteria included either two or more 
outpatient encounters, or one or more inpatient admissions, or an entry into problem list with an 
active flag checked. We have extracted clinical laboratory measurements for this cohort using the 
Logical Observation Identifiers Names and Codes (LOINC) system (see Table S1). For 
comorbidities, we extracted all the diagnosis for all the patients based on the ICD9 as well as 
ICD10 codes. Comorbidity data included details from visits, admissions, and problem list.  We 
identified 10,498 patients with both comorbidity and laboratory data in the EHR. A total of 129 
laboratory values, and 976 ICD codes (using 2-digit roll-up) were used. We excluded laboratory 
values with more than 95% missingness. 
 

Table 1: ICD9 and ICD10 used for inclusion of Inflammatory Bowel Disease patients. 
Diagnosis Inclusion Criteria using ICD codes 
ICD9 Diagnosis: Crohn’s 
and Ulcerative Colitis  

555,55.0,555.1,555.2,555.9, 556, 556.0, 556.1, 556.2, 556.3, 556.5, 556.6, 
556.8, 556.9 

ICD10 Diagnosis:  
Crohn’s and Ulcerative 
Colitis 

K50.00, K50.011, K50.012,  K50.013, K50.014, K50.018,  K50.019, 
K50.10 K50.111,  K50.112, K50.113, K50.114, K50.118, K50.119, K50.80,  
K50.811, K50.812, K50.813,  K50.814, K50.818, K50.819,  K50.90, 
K50.911, K50.912 K50.913, K50.914, K50.918, K50.919, K51.80,  K51.00, 
K51.011, K51.012 K51.014, K51.018,  K51.019, K51.20, K51.211, 
K51.212, K51.213  K51.218 K51.219, K51.30, K51.311, K51.313, 
K51.314,  K51.318 K51.319 K51.411 K51.414, K51.419, K51.50, K51.511,  
K51.513, K51.514 K51.518 K51.519 K51.80, K51.811, K51.812, K51.813, 
K51.814, K51.818 K51.819 K51.90 K51.911, K51.912, K51.913, K51.914, 
K51.918, K51.919 

 
Two versions of the laboratory values 
were created. In the first version, the 
actual laboratory values (continuous 
values) were kept and the median 
values for each measurement were 
calculated. In the second version, all 
the laboratory values were converted 
to binary values using the flag in the 
system prior to calculating the 
median values. For instance, if a 
value was above or below the 
threshold (abnormal flag), then that 
value was converted to one; while for 
a value within the normal range, a 
zero was recorded (see Fig. 1). As a 
pre-processing step, any value that 
deviated more than 3 standard 
deviation from the mean was 
removed. Furthermore, a 0.1% white 
noise (error noise) was added to the binary values. Four different datasets were created, each 

 
Fig. 1. Construction of laboratory value matrices from EHR.  
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with a limit on the level of missingness, ranging from low (5%), to moderation (50% and 75%), to 
extreme (95%).  
 
A binary comorbidity matrix for our cohort was also created using data from EHR. Data from 
primary or secondary diagnosis, as well as problem list were used for this purpose.  During the 
first phase, ICD9/10 codes were compiled for each patient. During the second phase, the matrix 
was compressed using 3-digit roll up strategy, where ICD codes were combined if the first three 
digits were identical (ex: 289.52 and 289.53 à 298). Furthermore, an ICD9/10 code was removed 
from the patient’s record if it was referenced only once. The resulting matrix was then converted 
to binary to represent the presence or absence of an ICD code for each patient. During the final 
stage, singular value decomposition (SVD) was applied to the matrix (Eq. 1) to compute the 
encoding of the dataset.  

 
𝐴"#_%&' = 𝐴"#	*	%&' = 𝑈𝑆𝑉#  (Eq. 1), 

 
Where APT_ICD is the matrix encompassing all the ICD9/10 codes (presence of 
absence) for all the patients; U is an mxm matrix, S is an mxn diagonal matrix, and 
V is an nxn matrix. The colums of V are eigenvectors of ATA, and colums of U are 
eigenvectors of AAT. The diagonal elements of S are the square root of the 
eigenvalues of ATA or AAT.  

 
The encoding matrix was then used to create different level of data abstraction by retaining only 
10, 15, 66, or 85% of the encoding using dimensionality reduction technique (Eq. 2). Note that 
the approximation matrix is referred to as the data abstraction. The finalized output is referred to 
as latent comorbidities.  Figure 2 summarize these steps.     
 

𝐴"#_%&'_. = 𝑈/012301𝑆/012301𝑉/012301#   (Eq. 2),  
 

Where g is the level of abstraction (10%, 15%, 66%, and 85%), corresponding to 
the level of reduced matrices. APT_ICD_g is an approximation of the initial matrix 
(APT_ICD).  

 
Imputation Strategies:  
 
Latent-based model: Our imputation 
method is a hybrid method, referred 
to as “latent-based model”, that is 
based upon concurrently applying 
dimensionality reduction and 
clustering strategy. This hybrid 
method, efficiently captures 
relationships among features (or 
variables) and reduces noise 
(through dimensionality reduction) 
while providing an adaptive 
mechanism to perform imputation for 
any complex phenotype or trait. 
Using latent comorbidity data, 
patients were clustered using k-mean 
clustering technique. The data was 

 
Fig. 2. Construction of “Patient ICD Matrix” using 
comorbidity data from EHR. 
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clustered into 2, 4, 8 ,16, 32 and 64 clusters. Imputation, using MICE, was then applied to each 
sub-group independently to predict the missing values. Furthermore, different variations in 
implementation were also explored.  
 
Latent-based model with reduced sparsity: using the information from the singular value 
decomposition, the comorbidity data were evaluated for sparsity. The SVD captures the encoding 
of the matrix and insignificant ICD9/10 codes are transformed to values close to zero. Therefore, 
removing ICD9/10 codes corresponding to low values will reduce the sparsity of the matrix without 
eliminating important information. Three levels were assessed and number of disease codes 
(ICD9/10) was reduced to build three different datasets with varying level of sparsity. High sparsity 
is referred to when the sum of all the values for a ICD9/10 code in latent comorbidity matrix is less 
than 1 (that is the final matrix is very sparse by including the majority of the ICD9/10 codes), 
medium when the sum is less than 10 and low sparsity is when the sum is below 100 (only highly 
used ICD9/10 codes are included in the dataset). This strategy will also reduce noise, while also 
decreasing the size of the matrix, which will slightly reduce the computational complexity.  
 
Feature expansion: a feature-expanded model was developed to evaluate if addition of 
comorbidity data as added features to the lab measurements could enhance the imputation 
performance as 
compared to 
the 
implementation 
of the hybrid 
model. In this 
situation, the 
matrix with the 
binary 
laboratory 
measures was 
expanded with 
the addition of 
comorbidity 
matrix (see Fig 
3). The MICE 
imputation was 
then performed 
to predict the 
values of missing lab measurements.  
 
Evaluation Strategy: 
 
Model evaluation was performed by randomly selecting variables and predicting them using the 
different strategies. To ensure fair distribution of random values that were withheld for testing 
before imputation, the data were split into bins based on missingness. The data were split into 2 
bins in case of 5% missingness and 4 bins in case of 50%, 75% and 95% missingness. Equal 
number of values were withheld from each of the bins. Probability is low for selecting values from 
labs with high sparsity, thus sampling from bins ensures random values chosen to be withheld for 
testing are picked from all the levels of missingness. Each run was then repeated 10 times and 
the P-value was calculated using standard t-test statistics. The root mean square error (RMSE) 
was also calculated and averaged over the 10 runs. Comparison was based on calculating the 

 
Fig. 3. Feature expansion model. Laboratory and ICD codes are combined prior to 
imputation. The comparison is made with performing imputation on laboratory 
values using the same MICE algorithm.  
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difference between running imputation using the latent-based model and its’ various derivations 
techniques, and the standard MICE algorithm.  
 

III. Results 
 
A rich clinical dataset for Inflammatory Bowel Disease facilitates the development of 
imputation techniques targeted for complex phenotypes.  
 
We have identified 10,498 IBD patients from the Geisinger EHRs, with rich longitudinal data, 
spanning an average of nine years (time between first time diagnosed and current age) with over 
10% of the IBD patients having over 15 years of EHR data in the system capturing their treatment 
experience and co-morbidities.  Furthermore, only less than 20% of our IBD patients have less 
than five years of clinical data for analysis, making this dataset rich. In general, we observed, that 
for a very small set of the variables, the percentage of missingness was very small; however, the 
majority of the laboratory values had a relatively larger number of missing level. Fig. 4 highlights 
this trend. These observations further motivate the need for development of a method that is 
robust for imputation of sparse datasets. 
 

Comorbidity can improve imputation for complex phenotypes. 
 
Our novel method when compared with standard MICE algorithm shows significant improvement 
for variables with up to 95% missingness (Fig 5), even the comparison was disadvantageous for 
the hybrid method since the number of patients was larger when the data was not clustered. The 
goal of this study was to identify a combination of model parameters (number of clusters, data 
abstraction, and sparsity level), such that the imputation can be optimized for a given level of 
missingness in the data extracted from EHR. For instance, if low level of missingness is what is 
required, then for this specific dataset, optimal imputation can be performed by finding optimal 
region with that setting, considering both improved performance and significance level (P-value).  
However, if more lab measurements are of interest with possibly reaching a 75% missingness for 
some lab values, then panel A3,7,11 can be compared with their respective B3,7,11 P-value 
levels (see Fig. 5). Furthermore, if binary values are of interest as opposed to actual values, then 
one may consider evaluating sub-panels C1-12 and their corresponding p-values (D1-12). This 
strategy demonstrates the need to better understand the scope of the imputation technique prior 
to estimating the missing values from large and complex dataset retrieved from EHRs.  
 

 
Fig. 4. Missingness level in the Inflammatory Bowel Disease (IBD) cohort. Inflammation markers such as CRP 

(missing at 56%) and Sedimentation Rate (missing at 33%) are important lab measures for IBD. 
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Fig. 5. Optimized imputation method based on shared latent comorbidity information from EHR. The darker 
region corresponds to improvement of imputation using our novel method when compared to the standard MICE 
algorithm (difference between RMSE using new approached and MICE). Clustering level is based on number of 
clusters using k-mean clustering with k ranging from 0 to 64. Data abstraction level is based on using SVD and 
retaining only 10, 146, 634, 830 or 976 (or 10%, 15%, 66%, 85%, or 100%) of eigenvalues. Sparsity level is 
measured by including ICD codes that are prevalent using information from the encoding matrix from the SVD 
process; high sparsity (A1-4 and C1-4) is when all ICD codes are included in the model. Panels A1-12 correspond 
to imputation applied to binary lab measurement with their respective P-value (panels B1-12). Panels C1-12 
correspond to imputation applied to original values with their respective P-value (panels D1-12).   
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Increasing the feature space deteriorates the performance of imputation.  
 
By considering the feature 
expansion model 
alternative, we have 
increased the 
dimensionality of our 
feature space from 129 
features (lab values) to 
about 1,000 features (129 
labs + 976 ICD9 codes) for 
a fix population of 10K+ 
IBD patients. This 
alternative proved to be 
outperforming slightly the 
standard MICE, but for 
only the 5% missingness 
level (see Fig. 6). For 
higher level of 
missingness, the extended 
model did not outperform 
the standard MICE with 
the 129 variables.  
 
 

IV. Discussion and Conclusion 
 
The use of heterogeneous and large-scale clinical datasets, such as EHRs, provide an avenue 
for exploration of strategies to improve care at individualized levels, which include developing 
personalized models of response to therapy for complex diseases such as IBD. However, the 
data extracted from EHRs is noisy and have a large number of missing values, which requires a 
robust imputation strategy designed for large dataset of heterogeneous population. For realistic 
applications, It is not recommended to solely rely on redundancy of EHR data to conduct 
imputation, as our imputation strategy suggests. Our imputation strategy attempts to address this 
critical challenge using the IBD as a case study.   
 
The IBD population is heterogeneous and a clear understanding of its risk factors is still lacking; 
therefore, treatment plan is usually still designed based on the average patient. Recent advances 
in knowledge of IBD pathogenesis have led to the implication of a complex interplay between 
metabolic reprogramming and immunity [15]. Furthermore, response to treatment in IBD varies 
significantly among individuals and disease subtypes based on demographic characteristics, diet, 
comorbidities, underlying immunological factors, and genetic polymorphisms. Thus, there is an 
urgent unmet clinical need to replace current approaches with personalized strategies that 
consider individual variability and diversity, and clinical data, if properly used, can provide a 
valuable resource in this field.  
 
There has been a large number of studies developing novel imputation methods, and various 
studies assessing the use of different methods for large clinical studies. However, these methods 
do not tend to focus on a disease and more importantly on a complex disease or trait, rather they 
focus on the scale of the problem (number of cases, number of variables). It is only in some 
instances that studies are designed to investigate the possible correlation between variables and 

 
Fig. 6. Increasing the feature space by using ICD code matrix 
information; N=20.  
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the effect of such correlation on the imputation outcome. However, majority of imputation methods 
for large clinical datasets (such as EHRs) will be used in a well-defined context, such as a specific 
disease or disease category (ex: infectious diseases, immune diseases, cancer, or cardiovascular 
diseases). In general, in a given study, the focus is rarely on all diseases at the same time, 
therefore, methods developed for imputation should also be designed with that in mind. Easy 
access to EHRs from large hospital systems could be one of the major limiting factors in the lack 
of development of novel imputation techniques for data from EHRs.  
 
In this study, we have developed an intuitive method that can be applied for predicting missing 
values for complex diseases from EHRs. We have used the EHR s from Geisinger Health System, 
a pioneering institution in personalized and precision medicine. Geisinger has a national 
reputation for both high quality patient care and for being an innovative, integrated health care 
delivery system. This is especially true around electronic health information, being an early 
adopter of EPIC (1996) and building an enterprise-wide clinical data warehouse that contains 
comprehensive clinical and insurance claims data. We have reported demographic and clinical 
characteristics of the active patients in a recent publication [16].  
 
The method presented here is an intuitive approach for any given complex disease, where bio-
signatures or risk factors are only partially known and the relationship among the variables can 
be convoluted given the large dimensionality of the dataset. Furthermore, level of missingness 
can be high, even though the best results are typically obtained when the level of missingness is 
low or moderate. However, given the disease or condition of interest, the investigator will have 
the ability to include variables that may be crucial for the study. For instance, in the case of IBD, 
key variables of interest include CRP (missing at 56%), sedimentation rate (missing at 33%) which 
are not among the common variables in our dataset. Therefore, selecting the most commonly 
used variables will exclude important parameters for an investigation into the IBD cohort.  
 
Using this approach, we were able to predict missingness of laboratory values that had missing 
level up to 95%. Our method was able to better predict the missing values than the standard 
algorithm. Furthermore, we have also shown that by simply integrating more features into the 
model and building very high-dimensional dataset (with about 1000 features) may not be an 
appropriate strategy, at least for a cohort of 10,000+ patients. Therefore, the hybrid-based 
strategy may be a better alternative in most situations.   
 
Even though we had access to a large cohort of IBD population, our dataset was still limited if 
compared to more common conditions such as Diabetes with over 80,000 patients in our 
Geisinger cohort, or our COPD cohort of >49,000 patients. For those cases, more clusters could 
be formed to further improve the prediction outcome. Furthermore, we have only imputed median 
values; however, given a disease such as IBD, evaluating laboratory measures during the various 
stages of the disease may be more useful and also more predictive of the disease progression 
and relapse. However, imputing laboratory measures for each encounter is challenging at many 
levels, one such challenge is the significantly higher level of missingness in the dataset. As a 
future direction, we will investigate how to best impute longitudinal laboratory measures to better 
inform clinical studies. In addition, we will also explore integrating additional features, such as 
demographic information, age, gender, medication usage, as well as genetic information when 
available to further enhance the imputation outcome. Finally, we will evaluate various pre-
processing and normalization strategies and evaluate if these manipulations can improve the 
outcome of our predictions, especially for variables with non-normal distributions. At last, even 
though MICE is one of the most popular imputation technique for EHRs, it would be interesting to 
compare our method with other algorithms. 
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To conclude, we have optimized the level of abstraction needed to improve the imputation for our 
IBD cohort of 10,498 patients. Our novel method when compared with standard “multiple 
imputation using chained equations” (MICE) shows significant improvement of up to 49% for 
variables with up to 95% missingness. We have shown that imputation can be improved, using 
shared latent comorbidities, and can facilitate generating a robust EHR dataset for further mining 
and modeling.  
 
 
Funding: This work was supported by Geisinger Health System.  
 
 
Supplemental Material: 
 
Table S1: Laboratory data elements used in this study and their level of missingness in the IBD cohort. 

LAB LOINC Name Missing % 
Hemoglobin [Mass/volume] in Blood 3.6 
Hematocrit [Volume Fraction] of Blood by Automated count 3.9 
Leukocytes [#/volume] in Blood by Automated count 3.9 
Erythrocyte mean corpuscular volume [Entitic volume] by Automated count 3.9 
Erythrocytes [#/volume] in Blood by Automated count 3.9 
Erythrocyte mean corpuscular hemoglobin [Entitic mass] by Automated count 3.9 
Erythrocyte mean corpuscular hemoglobin concentration [Mass/volume] by Automated count 3.9 
Erythrocyte distribution width [Ratio] by Automated count 3.9 
Platelets [#/volume] in Blood by Automated count 4.1 
Creatinine [Mass/volume] in Serum or Plasma 4.4 
Platelet mean volume [Entitic volume] in Blood by Automated count 4.6 
Potassium [Moles/volume] in Serum or Plasma 4.7 
Urea nitrogen [Mass/volume] in Serum or Plasma 5.0 
Chloride [Moles/volume] in Serum or Plasma 5.3 
Carbon dioxide, total [Moles/volume] in Serum or Plasma 5.3 
Calcium [Mass/volume] in Serum or Plasma 5.8 
Glucose [Mass/volume] in Serum or Plasma 6.0 
Sodium [Moles/volume] in Serum or Plasma 7.4 
Bilirubin.total [Mass/volume] in Serum or Plasma 8.3 
Protein [Mass/volume] in Serum or Plasma 8.8 
Aspartate aminotransferase [Enzymatic activity/volume] in Serum or Plasma by With P-5'-P 9.6 
Alanine aminotransferase [Enzymatic activity/volume] in Serum or Plasma by With P-5'-P 9.7 
Anion gap 3 in Serum or Plasma 11.8 
Neutrophils [#/volume] in Blood by Automated count 13.5 
Sedimentation Rate 32.7 
Triglyceride [Mass/volume] in Serum or Plasma 34.1 
Bilirubin.direct [Mass/volume] in Serum or Plasma 34.4 
Cholesterol [Mass/volume] in Serum or Plasma 35.2 
Cholesterol in HDL [Mass/volume] in Serum or Plasma 37.3 
Cholesterol in LDL [Mass/volume] in Serum or Plasma by calculation 38.2 
Lipase [Enzymatic activity/volume] in Serum or Plasma 54.4 
C reactive protein [Mass/volume] in Serum or Plasma 55.5 
Iron [Mass/volume] in Serum or Plasma 56.8 
Immature granulocytes [#/volume] in Blood by Automated count 56.8 
Cobalamin (Vitamin B12) [Mass/volume] in Serum or Plasma 57.1 
Immature granulocytes/100 leukocytes in Blood by Automated count 58.0 
Ferritin [Mass/volume] in Serum or Plasma 59.6 
Iron binding capacity.unsaturated [Mass/volume] in Serum or Plasma 61.0 
Phosphate [Mass/volume] in Serum or Plasma 64.6 
Magnesium [Mass/volume] in Serum or Plasma 65.3 
Hemoglobin A1c/Hemoglobin.total in Blood by HPLC 66.7 
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Glucose [Mass/volume] in Blood by Automated test strip 67.8 
Amylase [Enzymatic activity/volume] in Serum or Plasma 68.8 
Creatine kinase [Enzymatic activity/volume] in Serum or Plasma 69.4 
Folate [Mass/volume] in Serum or Plasma 69.4 
Thyroxine (T4) free [Mass/volume] in Serum or Plasma 70.7 
Neutrophils.band form/100 leukocytes in Blood by Manual count 70.7 
Neutrophils.band form [#/volume] in Blood by Manual count 72.4 
Glucose mean value [Mass/volume] in Blood Estimated from glycated hemoglobin 73.2 
Iron saturation [Mass Fraction] in Serum or Plasma 73.3 
Cholesterol in LDL [Mass/volume] in Serum or Plasma by Direct assay 77.3 
Creatine kinase.MB [Mass/volume] in Serum or Plasma 78.7 
Prostate specific Ag [Mass/volume] in Serum or Plasma 81.1 
Urate [Mass/volume] in Serum or Plasma 81.2 
IgA [Mass/volume] in Serum or Plasma 81.5 
Rheumatoid factor [Units/volume] in Serum or Plasma 82.8 
Creatine kinase.MB/Creatine kinase.total in Serum or Plasma by Electrophoresis 83.9 
Lactate dehydrogenase [Enzymatic activity/volume] in Serum or Plasma by Lactate to pyruvate 
reaction 

83.9 

Calcium.ionized [Moles/volume] in Serum or Plasma by Ion-selective membrane electrode (ISE) 84.4 
Microalbumin [Mass/volume] in Urine 84.4 
Microalbumin/Creatinine [Mass Ratio] in Urine 84.5 
Gamma glutamyl transferase [Enzymatic activity/volume] in Serum or Plasma 85.2 
Metamyelocytes/100 leukocytes in Blood by Manual count 85.7 
Oxygen [Partial pressure] in Arterial blood 85.7 
Carbon dioxide [Partial pressure] in Arterial blood 85.8 
Fractional oxyhemoglobin in Arterial blood 85.9 
Bicarbonate [Moles/volume] in Arterial blood 86.0 
pH of Arterial blood 86.0 
Metamyelocytes [#/volume] in Blood by Manual count 86.1 
Parathyrin.intact [Mass/volume] in Serum or Plasma 86.3 
Triiodothyronine (T3) Free [Mass/volume] in Serum or Plasma 87.2 
Oxygen saturation in Arterial blood 88.0 
Beta globulin/Protein.total [Pure mass fraction] in Serum or Plasma by Electrophoresis 88.4 
Gamma globulin/Protein.total [Pure mass fraction] in Serum or Plasma by Electrophoresis 88.5 
Albumin/Protein.total [Pure mass fraction] in Serum or Plasma by Electrophoresis 88.5 
Reticulocytes/100 erythrocytes in Blood by Automated count 88.6 
Protein [Mass/volume] in Urine 89.2 
Oxygen/Inspired gas setting [Volume Fraction] Ventilator 89.5 
Myelocytes [#/volume] in Blood by Manual count 89.6 
Base deficit in Arterial blood 89.7 
Chloride [Moles/volume] in Blood 89.9 
Natriuretic peptide.B prohormone N-Terminal [Mass/volume] in Serum or Plasma 90.6 
C reactive protein [Mass/volume] in Serum or Plasma by High sensitivity method 90.9 
Carbon dioxide, total [Moles/volume] in Blood 90.9 
Base excess in Arterial blood by calculation 91.3 
Follitropin [Units/volume] in Serum or Plasma by 2nd IRP 91.6 
Creatinine [Mass/volume] in Blood 91.8 
Natriuretic peptide B [Mass/volume] in Serum or Plasma 92.0 
Thyrotropin [Units/volume] in Serum or Plasma by Detection limit <= 0.005 mIU/L 92.4 
Glucose [Mass/volume] in Blood 92.5 
Cortisol [Mass/volume] in Serum or Plasma 92.8 
IgG [Mass/volume] in Serum or Plasma 93.2 
Testosterone [Mass/volume] in Serum or Plasma 93.3 
Carboxyhemoglobin/Hemoglobin.total in Blood 93.7 
IgM [Mass/volume] in Serum or Plasma 93.8 
Methemoglobin/Hemoglobin.total in Blood 94.4 
Lutropin [Units/volume] in Serum or Plasma 94.6 
Cardiolipin IgG Ab [Units/volume] in Serum by Immunoassay 94.8 
Cardiolipin IgM Ab [Units/volume] in Serum by Immunoassay 94.8 
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Carcinoembryonic Ag [Mass/volume] in Serum or Plasma 95.2 
Testosterone Free [Mass/volume] in Serum or Plasma 95.2 
Fibrinogen [Mass/volume] in Platelet poor plasma by Coagulation assay 95.3 
Insulin [Units/volume] in Serum or Plasma 95.3 
Thyroxine (T4) [Mass/volume] in Serum or Plasma 95.4 
Homocysteine [Moles/volume] in Serum or Plasma 95.5 
Calcidiol [Mass/volume] in Serum or Plasma 95.9 
Albumin/Protein.total in Body fluid by Electrophoresis 96.4 
Beta globulin/Protein.total in Serum or Plasma by Electrophoresis 96.5 
Digoxin [Mass/volume] in Serum or Plasma 96.6 
dRVVT (LA screen) 97.2 
Alpha-1-Fetoprotein [Mass/volume] in Serum or Plasma 97.4 
Methylmalonate [Moles/volume] in Serum or Plasma 97.4 
Sex hormone binding globulin [Moles/volume] in Serum or Plasma 97.7 
Cancer Ag 125 [Units/volume] in Serum or Plasma 97.7 
Estradiol (E2) [Mass/volume] in Serum or Plasma 97.8 
Testosterone.free+weakly bound [Mass/volume] in Serum or Plasma 97.8 
Protein [Mass/time] in 24 hour Urine 97.9 
Calcium [Mass/volume] in Urine 98.0 
Calprotectin 98.2 
Progesterone [Mass/volume] in Serum or Plasma 98.3 
Prostate Specific Ag Free/Prostate specific Ag.total in Serum or Plasma 98.7 
C peptide [Mass/volume] in Serum or Plasma 98.8 
Glucose [Mass/volume] in Serum or Plasma --1 hour post dose glucose 98.8 
Glucose [Mass/volume] in Serum or Plasma --2 hours post dose glucose 98.9 
Aldosterone [Mass/volume] in Serum or Plasma 98.9 
Glucose [Mass/volume] in Serum or Plasma --3 hours post dose glucose 98.9 
Angiotensin converting enzyme [Enzymatic activity/volume] in Serum or Plasma 99.0 
Volume of 24 hour Urine 99.1 
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