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Abstract

While widespread genome sequencing ushers in a new era of preventive medicine, the
tools for predictive genomics are still lacking. Time and resource limitations mean that
human diseases remain uncharacterised because of an inability to predict clinically relevant
genetic variants. The structural or functional impact of a coding variant is mirrored by
allele frequencies amongst the general population. Studies in protein function frequently
target sites that are evolutionarily preserved. However, rare diseases are often attributable
to variants in genes that are highly conserved. An immunological disorder exemplifying
this challenge occurs through damaging mutations in RAG1 and RAG2. RAG deficiency
presents at an early age with a distinct phenotype of life-threatening immunodeficiency
or autoimmunity. Many tools exist for variant pathogenicity prediction but these cannot
account for the probability of variant occurrence. We present variants in RAG1 and RAG2
proteins which are most likely to be seen clinically as disease-causing. Our method of
mutation rate residue frequency builds a map of most probable mutations allowing pre-
emptive functional analysis. We compare the accuracy of our predicted probabilities to
functional measurements and provide the method for application to any monogenic disorder.
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BCR (B-cell receptor), CADD (combined annotation dependent depletion), CID-G/A (com-

bined immunodeficiency with granuloma and/or autoimmunity), GWAS (genome-wide

association studies), Mr (mutation rate), MRF (mutation rate residue frequency), PID

(primary immunodeficiency), pLI (probability of being loss-of-function intolerant), RAG1

(recombination activating gene 1), Rf (residue frequency), rf -igf (residue frequency,
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inverse gene frequency), RNH (RNase H), RSS (recombination signal sequence), SCID (se-

vere combined immunodeficiency), TCR (T-cell receptor), tf -idf (term frequency, inverse

document frequency).

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2018. ; https://doi.org/10.1101/272609doi: bioRxiv preprint 

https://doi.org/10.1101/272609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Costs associated with genomic investigations continue to reduce [1] while the richness of

data generated increases. Globally, the adoption of wide scale genome sequencing implies

that all new-born infants may receive screening for pathogenic genetic mutation in an

asymptomatic stage, pre-emptively [2]. The one dimensionality of individual genomes is

now being expanded by the possibility of massive parallel sequencing for somatic variant

analysis and by single-cell or lineage-specific genotyping; culminating in a genotype

spectrum. In whole blood, virtually every nucleotide position may be mutated across 105

cells [3]. Mapping one’s genotype across multiple cell types and at several periods during a

person’s life may soon be feasible [4]. Such genotype snapshots might allow for prediction

and tracking of somatic, epigenetic, and transcriptomic profiling.

The predictive value of genomic screening highly depends on the computation tools

used for data analysis and its correlation with functional assays or prior clinical experi-

ence. Interpretation of that data is especially challenging for rare human genetic disorders;

candidate disease-causing variants that are predicted as pathogenic often require complex

functional investigations to confirm their significance. There is a need for predictive ge-

nomic modelling with aims to provide a reliable guidance for therapeutic intervention for

patients harbouring genetic defects for life-threatening disease before the illness becomes

clinically significant. Most genomic investigations currently are not predictive for clinical

outcome. The study of predictive genomics is exemplified by consideration of gene essen-

tiality, accomplished by observing intolerance to loss-of-function variants. Several gene

essentiality scoring methods are available for both the coding and non-coding genome [5].

Approximately 3,000 human genes cannot tolerate the loss of one allele [5]. The greatest

hurdle in monogenic disease is the interpretation of variants of unknown significance while

functional validation is a major time and cost investment for laboratories investigating

rare disease. Severe, life-threatening immune diseases are caused by genetic variations in

almost 300 genes [6, 7] however, only a small percentage of disease causing variants have

been characterised using functional studies. Several rhobust tools are in common usage for

predicting variant pathogenicity. Compared to methods for pathogenicity prediction, a void

remains for predicting mutation probability, essential for efficient pre-emptive validation.
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Our investigation aims to apply predictive genomics as a tool to identify genetic variants

that are most likely to be seen in patient cohorts.

We present the first application of our novel approach of predictive genomics using

Recombination activating gene 1 (RAG1) and RAG2 deficiency as a model for a rare

primary immunodeficiency (PID) caused by autosomal recessive variants. RAG1 and RAG2

encode lymphoid-specific proteins that are essential for V(D)J recombination. This genetic

recombination mechanism is essential for a robust immune response by diversification the

T and B cell repertoire in the thymus and bone marrow, respectively [8, 9]. Deficiency of

RAG1 [10] and RAG2 [11] in mice causes inhibition of B and T cell development. Schwarz

et al. [12] formed the first publication reporting that RAG mutations in humans causes

severe combined immunodeficiency (SCID), and deficiency in peripheral B and T cells.

Patient studies identified a form of immune dysregulation known as Omenn syndrome

[13, 14]. The patient phenotype includes multi-organ infiltration with oligoclonal, activated

T cells. The first reported cases of Omenn syndrome identified infants with hypomophic

RAG variants which retained partial recombination activity [15]. RAG deficiency can be

measured by in vitro quantification of recombination activity [16–18]. Hypomorphic RAG1

and RAG2 mutations, responsible for residual V(D)J recombination activity (in average

5-30%), result in a distinct phenotype of combined immunodeficiency with granuloma

and/or autoimmunity (CID-G/A) [2, 19, 20].

Human RAG deficiency has traditionally been identified at very early ages due to the

rapid drop of maternally-acquired antibody in the first six months of life. A loss of adequate

lymphocyte development quickly results in compromised immune responses. More recently,

we find that RAG deficiency is also found for some adults living with PID [16].

RAG1 and RAG2 are highly conserved genes but disease is only reported with autosomal

recessive inheritance. Only 44% of amino acids in RAG1 and RAG2 are reported as mutated

on GnomAD and functional validation of clinically relevant variants is difficult [21]. Pre-

emptive selection of residues for functional validation is a major challenge; a selection

based on low allele frequency alone is infeasible since the majority of each gene is highly

conserved. A shortened time between genetic analysis and diagnosis means that treatments

may be delivered earlier. RAG deficiency may present with very variable phenotypes and
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treatment strategies vary. With such tools, early intervention may be prompted. Some

patients could benefit from hematopoietic stem cell transplant [22] when necessary while

others may be provided mechanism-based treatment [23]. Here, we provide a new method

for predictive scoring that was validated against groups of functional assay values, human

disease cases, and population genetics data. We present the list of variants most likely seen

as future determinants of RAG deficiency, meriting functional investigation.

Results

RAG1 and RAG2 conservation and mutation rate residue frequency

Variant probability prediction is dependent on population genetics data. While many

in-house or public database are available, our study queried GnomAD [21] to identify

conserved residues using a Boolean score C (0 or 1, although allele frequency can be

substituted). The gene-specific mutation rate Mr of each residue was calculated from allele

frequencies. The gene-specific residue frequency Rf was also calculated and together the

values are used to calculate the most probable disease-causing variants which have not yet

been identified in patients. We term the resulting score a mutation rate residue frequency

(MRF); where MRF = C ×Mr ×Rf . For visualisation, a noise reduction method was

also applied; a sliding window was used to find the average MRF per 1% interval of each

gene. The resulting scores are displayed with a cut-off threshold to highlight the top scoring

residues (using the 75th percentile).

Figure 1 presents the most probable unidentified disease-causing variants in RAG1/2.

Phenotypic, epigenetic, or other such weighting data may also be applied to this model.

Variants with a low MRF may still be damaging but resources for functional validation

are best spent on gene regions with high MRF. Clusters of conserved residues are shown

in Figure 1 (i) and are generally considered important for protein structure or function.

However, these clusters do not predict the likelihood of clinical presentation. Raw MRF

scores are presented in Figure 1 (ii). A histogram illustrates the MRF without Boolean

scoring applied and Figure 1 (iii) provides a clearer visualisation. Variant sites most likely

to present in disease cases are identified by high MRF scoring. Table S1 provides all
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MRF scores for both proteins as well as raw data used for calculations and the list of

validated residues of RAG1 and RAG2. Analysis-formatted data is also available in the

Supplemental zip “RAG MRF map” along with the associated R source file to allow for

alternative visualisations as shown in Figure S1.

(i)

(ii)

(iii)

RAG1 RAG2

(iv)

Figure 1: RAG1 and RAG2 conservation and mutation rate residue frequency. (i) Gene conservation
score, non-conserved 0 and conserved 1. (ii) Histogram; raw MRF score. Heatmap; MRF prediction
for conserved residues, graded 0 to 0.05 (scale of increasing likelihood for producing disease). (iii)
MRF score averaged with 1% intervals for each respective gene and cut-off below 75th percentile,
graded 0 to 0.03 (Noise reduction method). (iv) Gene structure with functional domains.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2018. ; https://doi.org/10.1101/272609doi: bioRxiv preprint 

https://doi.org/10.1101/272609
http://creativecommons.org/licenses/by-nc-nd/4.0/


MRF scores select for confirmed variants in human disease

We have applied MRF scores to known damaging mutations from other extensive reports in

cases of human disease [12, 15, 17, 19, 20, 24–47] [originally compiled by Notarangelo et al.

[48]]. This dataset compares a total of 44 variants. We expected that functionally damaging

variants (resulting in low recombination activity in vitro) that have the highest probability of

occurrence would be identified with high MRF scores. MRF prediction correctly identified

damaging mutations in RAG1 and RAG2 (Fig. 2 (i)). Variants reported on GnomAD which

are clinically found to cause disease have significantly higher MRF scores than variants

which have not been reported to cause disease (Fig. 2 (i)).
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Figure 2: RAG1 and RAG2 mutation rate residue frequency accurately predicts disease. (i) Known
damaging variants (clinically diagnosed with genetic confirmation) reported on GnomAD have
significantly higher MRF scores than non-pathogenic variants. (ii) GnomAD rare variant allele
frequency <0.0001. No significant difference in allele frequency is found between known damaging
and non-clinically reported variants. Unpaired t test. RAG1 P value 0.002** RAG2 P value 0.0339*.
MRF; mutation rate residue frequency, ns; non-significant.

Allele frequency is generally the single most important filtering method for rare disease

in whole genome (and exome) sequencing experiments. Variants under pressure from

purifying selection are more likely to cause disease than common variants. Based on the

frequency of protein-truncating variants in the general population, RAG1 and RAG2 are
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considered to be tolerant to the loss of one allele, indicated by their low probability of being

loss-of-function intolerant (pLI) scores of 0.00 and 0.01, respectively [21]. Therefore, allele

frequencies of rare variants reported on GnomAD cannot differentially predict the likelihood

of causing disease (Fig. 2 (ii)). This is particularly important for recessive diseases such

as RAG deficiency. As such we find no significant difference between known damaging

variants and those which have not been reported yet as disease-causing, illustrating the

reasoning for our method design (Fig. 2 (ii)). Many non-clinically-reported rare variants

may cause disease; the MRF score identifies the top clinically-relevant candidates.

MRF scores predict functional validation

The functional validation of MRF predictions is presented in Figure 3. We have previously

measured the recombination activity of RAG1 and RAG2 disease-causing variants in several

patients [16]. We have compiled our own and other functional assay data from Lee et al.

[17] and Tirosh et al. [18] to produce a panel of recombination activity measurements for

coding variants in both RAG1 and RAG2. RAG deficiency is measured as the level of

recombination potential produced by the protein complex. Each method of investigation

simulates the efficiency of wild type or mutant proteins expressed by patients for their

ability to produce a diverse repertoire of T-cell receptor (TCR) and B-cell receptor (BCR)

coding for immunoglobulins.

In functional experiments, mutant proteins were assayed for their ability to perform

recombination on a substrate which mimics the recombination signal sequences (RSS) of

TCR and BCR in comparison to wild type protein complex (as % SEM with SD). Our

investigation uses the inverse of these measurements, where 0% activity represents 100%

loss of activity. MRF scores are presented as a percentage of the maximum score per gene

(i.e., for RAG1 MRFmax = 0.043 (100%) and MRFmin = 0.0048 (0%)). We compared

predicted MRFs to assay measurements for 71 and 39 mutant RAG1 and RAG2 plasmids,

respectively.

The accuracy for correctly identifying all disease-causing variants reported to date is

shown per-variant in Figure 3 (i-ii). Best performance was seen for RAG1. We found >80%

accuracy for 21 known variants tested, >50% accuracy for 48 tested and <50% accuracy for
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only 23 tested (Fig. 3 (iii-iv)). If MRF scoring was used in the same cases pre-emptively,

the loss of investment would be minimal; only 8 variants out of 71 mutants tested had an

MRF score above average while being measured as functionally benign (a false positives

rate of 11.27%). RAG2 scored with only 3 variants out of 39 variants (7.69%) with an MRF

above average while functionally benign. However, the measurement of accuracy is limited

in that very few of the most likely clinically relevant variants predicted by MRF scoring

have been tested to date. Figure 4 illustrates the breakdown of functional testing carried

out to date compared to the likelihood of such occurrences in disease cases.
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Figure 3: MRF score versus in vitro loss of protein activity. (i-ii) Predicted likelihood for disease-
presentation (based on maximum and minimum MRF score as a percentage) is shown in red or blue
for RAG1 and RAG2, respectively. In yellow, the functionally measured recombination activity of
each variant where complete loss of protein activity is measured as (its inverse) 100% loss of activity.
(iii-iv) Accuracy of MRF scoring compared to functionally validated recombination activity.
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Top candidate variants require validation

Functionally characterising protein function is both costly and time consuming. RAG1 and

RAG2 have now been investigated by multiple functional assays for at least 110 coding

variants [16–18]. In each case, researchers selected variants in RAG1 and RAG2 which were

potentially damaging or were identified from PID patients as the most probable genetic

determinant of disease. Functional assays for RAG deficiency in these cases, and generally,

measure a loss of recombination activity as a percentage of wild type function (0-100%).

MRF is not a predictor of pathogenicity, but a likelihood of variation occurring.

Pre-emptively performing functional variant studies benefits those who will be identified

with the same variants in the future, before the onset of disease complications. While over

100 variants have been assayed in vitro, we calculate that only one quarter of those are most

probable candidates for clinical presentation. Figure 4 illustrates that while functional work

targeted “hand picked” variants which were ultimately confirmed as damaging, many of

those may be unlikely to arise based on population genetics data. On the left of Figure 4,

the measured loss of protein activity is accompanied by an MRF heatmap for functionality

validated mutations. To the right, the breakdown of MRF scores of the complete proteins are

shown (i.e., for RAG1; 0.043-0.0048). We predict that only 21 of the top 66 most probable

clinically relevant variants have been tested in RAG1.
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Figure 4: RAG1 and RAG2 MRF score categories and variants assayed to date. On the left, we rank
the in vitro measurement of recombination activity (as its inverse; % loss of activity) by the MRF
score per residue. On the right, the breakdown of MRF score categories are shown per protein. While
many protein residues are critical to protein function, their mutation is less probable than many of the
top MRF candidates. This indicates that pre-emptive clinically-relevant investigations may require
tailoring using variance probability. MRF; mutation rate residue frequency.
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False positives in Transib domains do not negatively impact prediction

Adaptive immunity is considered to have evolved through jawed vertebrates after integration

of the RAG transposon into an ancestral antigen receptor gene [49, 50]. The Transib

transposon is a 600 amino acid core region of RAG1 which targets RSS-like sequences

in many invertebrates. A linked RAG1/RAG2 was shown in the lower dueterosome (sea

urchin), indicating an earlier common ancestor than the invertebrate [51], and more recently,

a recombinatorially active RAG transposon (ProtoRAG) was found in the lower chordate

amphioxus (or lancelet); the most basal extant chordate and a “living fossil of RAG” [52].
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Figure 5: False positives in Transib domains do not worsen probability prediction. The Transib
domains contain critical conserved protein residues. (i) False positives are simulated by scoring
Transib domains MRF without their Boolean conservation weight C. (ii) Allele frequencies on
GnomAD have inversely proportional conservation to simulated false-positive MRF scoring. (iii)
When the Boolean component C is applied in MRF calculation the effect of false positives remains non-
significant, illustrating the non-negative impact of MRF for pathogenicity rate prediction. Unpaired t
test, * P = 0.0195, *** P < 0.0001. MRF; mutation rate residue frequency, ns; non-significant.

A set of conserved motifs in core RAG1 are shared with the Transib transposase,

including the critical DDE residue catalytic triad (residues 603, 711, and 965) [53]. Ten

RAG1 core motifs are conserved amongst a set of diverse species including human [53].

This evolutionarily conserved region is considered as most important to protein function.

Therefore, we chose this region to determine if MRF scoring would have a negative impact

if mutations were falsely predicted as clinically important. To assess the influence of a false

positive effect on prediction, the MRF scores for conserved residues in this group were

compared to GnomAD allele frequencies. Figure 5 (i) plots the MRF (lacking the Boolean
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component C) for conserved Transib motif residues, non-conserved Transib motif residues,

and non-Transib residues. Figure 5 (ii) shows the percentage of these which are reported as

mutated on GnomAD. Removing reported variants by applying C, the resulting effect on

incorrectly scoring MRF in the conserved Transib motifs remains neutral.

Conserved residues with the highest MRF for both RAG1 and RAG2 are mapped onto

the protein structure in Figure 6. Structural mapping frequently shows high MRF scores

at DNA contact points and protein-protein interaction sites; such residues have a logical

involvement with protein function.
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Figure 6: The RAG1 (blue) and RAG2 (grey) protein structure with top candidate MRF scores. (i)
Protein dimers and (ii=iv) monomers illustrating the three highest category MRF scores for predicted
clinically-relevant variants. Increasing in score the top three MRF categories (illustrated in Figure
4) for each protein are highlighted; yellow, orange, red. DNA (green) is bound by the RAG protein
complex at recombination signal sequences. DNA contact points are integral to protein function.
(PDB:3jbw)
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Combined Annotation Dependent Depletion (CADD) scoring [54] is an important

bioinformatics tool. While CADD is a valuable scoring method its purpose is not to predict

likelihood of variation. Similarly, MRF scoring is not a measure of pathogenicity. MRF

scoring may be complemented by tools for scoring variant deleteriousness. We compare

MRF to the PHRED-scaled RAG1 CADD scores for all possible SNV positions in RAG1

(Fig. 7) illustrating that pathogenicity prediction cannot account for mutation probability.

Figure 7: RAG1 PHRED-scaled CADD score versus GnomAD conservation rate and MRF score.
Allele frequency conservation rate (top) is vastly important for identifying critical structural and
functional protein regions. The impact of mutation in one of these conserved regions is often estimated
using CADD scoring (middle). CADD score heatmap is aligned by codon and separated into
three layers for individual nucleotide positions. The MRF score (bottom)(visualised using the 75th

percentile with 1% averaging) highlights protein regions which are most likely to present clinically
and may require pre-emptive functional investigation.
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MRF predicts RAG deficiency amongst PID patients harbouring rare variants

By gathering confirmed RAG deficiency cases, we compiled the MRF scores for 43 damag-

ing RAG1 variants in 77 PID cases and 14 damaging RAG2 variants in 21 PID cases (MRF

scores spanning over 22 categories). To test our method against a strong control group,

we identified coding variants in patients with PID where RAG deficiency due to coding

variants has been ruled out as the cause of disease. We obtained RAG1/2 variants in 558 PID

patients who had their genomes sequenced as part of the NIHR BioResource - Rare Diseases

study [16]. Filtering initially identified 32 variants in 166 people. This set was trimmed to

contain only rare variants; 29 variants over 26 MRF scoring categories from 72 cases of

non-RAG-deficient PID. Linear regression on this control group produced slopes which

were either negative or close to zero for RAG1 and RAG2, respectively. The same analysis

for known-damaging mutations in disease cases had a significant prediction accuracy for

RAG1. Analysis for RAG2 was not significant. However, the sample size to date may be

too small to significantly measure RAG2 MRF scoring although a positive correlation is

inferred in Figure 8 [55]. R source and raw data can be found in supplemental material.
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Figure 8: A linear regression model of RAG1/2 MRF scoring in cases of primary immune deficiency.
MRF prediction correlates with disease. Damaging variants identified in confirmed RAG deficiency
cases. Non-damaging variants sourced from cases of PID with rare variants but not responsible
for disease. (Slopes of RAG1: Damaging: 0.0008* (± 0.0004) P<0.05, intercept 5.82e-05 ***,
Non-damaging: -0.0007 (± 0.001). Slopes of RAG2; Damaging: 0.0023 (± 0.0018), intercept 0.0312
*, Non-damaging 0.0001 (± 0.0008). Source data and script in supplemental material).
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Discussion

Determining disease-causing variants for functional analysis typically aims to target con-

served gene regions. On GnomAD 55.99% of RAG1 (approx. 246,000 alleles) has no

reported variants. Functionally validating unknown variants in genes with this level pu-

rifying selection is generally infeasible. Conserved regions are likely high importance

regions, yet determining the likelihood of patients presenting with mutations in these clus-

ters requires a scoring mechanism. An example of such clustering of highly scoring MRFs

occurred in the RAG1 catalytic RNase H (RNH) domain at p.Ser638-Leu658 which is

also considered a conserved Transib motif. Targeting clearly defined regions with high

MRF scores allows for functional validation studies tailored to the most clinically-relevant

protein regions. Weighting data may also be applied to this model to amplify the selectivity.

Genome wide, this might included phenotypically derived weights to target candidate genes

or tissue-specific epigenetic features. While many hypothetical variants with low MRF

scores could be found as functionally damaging, our findings suggest that human genomic

studies will benefit by first targeting variants with the highest probability of occurrence

(gene regions with high MRF). Table S1 lists the values for calculated MRFs for RAG1 and

RAG2.

We have presented a basic application of MRF scoring for RAG deficiency. Future

implementation of the MRF method can include genome-wide application with a process

common in the study of information retrieval; term frequency, inverse document frequency

(tf − idf ). In this case the “term” and “document” are replaced by amino acid residue r

and gene g , respectively such that,

rf − igfr,g = rfr,g × igfr (1)

We may view each gene as a vector with one component corresponding to each residue

mutation in the gene, together with a weight for each component that is given by (1).

Therefore, we can find the overlap score measure with the rf − igf weight of each term in

g, for a query q;

Score(q, g) =
∑
r∈q

rf-igfr,g.
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We expand here briefly on the technical description of this method. Log weighting may offer

clearer disease-causing variant discovery depending on the scoring method. In respect to

MRF scoring, this information retrieval method might be applied as follows; the rf − igf

weight of a term is the product of its rf weight and its igf weight (Wr,g = rfr,g× log N
gfr

)

or (Wr,g = (1+log rfr,g)× log N
gfr

). That is, firstly, the number of times a residue mutates

in a gene (rf = rfr,g). Secondly, the rarity of the mutation genome-wide in N number of

genes (igf = N/gfr). Finally, ranking the score of genes for a mutation query q by;

Score(q, g) =
∑

r∈q∩g

rf-igfr,g

The score of the query (Score(q, g)) equals the mutations (terms) that appear in both the

query and the gene (r ∈ q ∩ g). Working out the rf − igf weight for each of those variants

(rf.igfr,g) and then summing them (
∑

) to give the score for the specific gene with respect

to the query.

During clinical investigations using personalised analysis of patient data, further scoring

methods may be applied based on disease features. A patient with autoinflammatory features

may require weighting for genes such as MEFV and TNFAIP3, whereas a patient with mainly

immunodeficiency may have weighted scoring for genes such as BTK and DOCK8. A

patient phenotype can contribute a weight based on known genotype correlations separating

primary immunodeficiencies or autoinflammatory diseases [6]. However, validation of these

expanded implementations requires a deeper consolidation of functional studies than is

currently available. A method with similar possible applications for human health mapping

constrained coding regions has been recently developed by Havrilla et al. [56]. Their study

employed a method which included weighting by sequencing depth. Similarly, genome-

wide scoring may benefit from mutation significance cut-off, which is applied for tools such

as CADD, PolyPhen-2, and SIFT [57]. We have not included an adjustment method as our

analysis was gene-specific but implementation is advised when calculating genome-wide

MRF scores.

The MRF score was developed to identify the top most probable variants that have

potential to cause disease. It is not a predictor of pathogenicity. However, MRF may

contribute to pathogenicity prediction as a component of Bayesian probability. While
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beyond the scope of this investigation, we can outline the implementation of this approach

here. A clinician may ask for the likelihood of RAG deficiency (or any Mendelian disease

of interest) for a patient given a set of gene variants P (H|E) using Bayes’ theorem,

P (H|E) =
P (E|H)P (H)

P (E)

where P (H) is the probability of a patient having RAG deficiency, P (E|H) is the probabil-

ity of RAG deficiency due to a set of variants that have been pre-emptively assayed, and

P (E) is the probability of having a set of gene variants.

P (H) is known since the rate of RAG deficiency is estimated at an incidence of

1:181,000 [58], SCID at a rate of 1:330,000 [2], and we also recently show the rate of

RAG deficiency in adults with PID [16]. Being a recessive disease, P (E) must account

for biallelic variants and is the most difficult value to determine. This may be found from

population genetics data for (i) the rate of two separate, compound heterozygous variants,

(ii) the rate of a homozygous variant or potential consanguinity, (iii) the rate of de novo

variation [21]. P (E|H) would be identified where all variants are functionally validated.

This requires a major investment, however the MRF score provides a good approximation.

Predicting the likelihood of discovering novel mutations has implications in genome-

wide association studies (GWAS). Variants with low minor allele frequencies have a low

discovery rate and low probability of disease association [59]; an important consideration

for rare diseases such as RAG deficiency. An analysis of the NHGRI-EBI catalogue data

highlighted diseases whose average risk allele frequency was low [59]. Autoimmune

diseases had risk allele frequencies considered low at approximately 0.4. Without a method

to rank most probable novel disease-causing variants, it is unlikely that GWAS will identify

very rare disease alleles (with frequencies <0.001). It is conceivable that a number of rare

immune diseases are attributable to polygenic rare variants. However, evidence for low-

frequency polygenic compounding mutations will not be available until large, accessible

genetics databases are available, exemplified by the NIHR BioResource Rare Diseases study

[16]. An interesting consideration when predicting probabilities of variant frequency, is

that of protective mutations. Disease risk variants are quelled at low frequency by negative

selection, while protective variants may drift at higher allele frequencies [60].

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2018. ; https://doi.org/10.1101/272609doi: bioRxiv preprint 

https://doi.org/10.1101/272609
http://creativecommons.org/licenses/by-nc-nd/4.0/


The cost-effectiveness of genomic diagnostic tests is already outperforming traditional,

targeted sequencing [1]. Even with substantial increases in data sharing capabilities and

adoption of clinical genomics, rare diseases due to variants of unknown significance and low

allele frequencies (<0.0001) will remain non-actionable until reliable predictive genomics

practices are developed. Bioinformatics as a whole has made staggering advances in the field

of genetics [61]. Challenges which remain unsolved, hindering the benefit of national or

global genomics databases, include DNA data storage and random access retrieval [62], data

privacy management [63], and predictive genomics analysis methods. Variant filtration in

rare disease is based on reference allele frequency, yet the result is not clinically actionable

in most cases. Development of predictive genomics tools may provide a critical role for

single patient studies and timely diagnosis [23].

Conclusion

We provide the amino acid residue list for RAG1 and RAG2 which have not been reported

to date but are most likely to present clinically as RAG deficiency. This method may be

applied to other diseases with hopes of improving preparedness for clinical diagnosis.

Methods

Population genetics

GnomAD (version r2.0.2) [21] was queried for the canonical transcripts of RAG1 and RAG2

from population genetics data of approximately 146,000 alleles;

ENST00000299440 (RAG1) 1495 variants (including filtered: 1586),

GRCh37 11:36532259-36614706 and ENST00000311485 (RAG2) 786 variants (including

filtered: 831), GRCh37 11:36597124 - 36619829. However, any source of population-scale

data can be substituted here. Data was filtered to contain the identifiers: frameshift, inframe

deletion, inframe insertion, missense, stop lost, or stop gained. Reference transcripts were

sourced from Ensembl in the FASTA format amino acid sequence; transcript: RAG1-201

ENST00000299440.5 [HGNC:9831] and transcript: RAG2-201
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ENST00000311485.7 [HGNC:9832]. These sequences were converted to their three-letter

code format using One to Three from the Sequence Manipulation Suite [64].

Input sets used GnomAD variant allele frequencies and reference sequences processed

as csv files, cleaned and sorted to contain only coding amino acid residues, amino acid code,

residue number, alternate variants, allele frequencies of variants, and a score (C) of 0 or 1

where 1 represented no reported variants. A score was also given where multiple alternate

variants existed. A separate statistics report was generated from this processed input data.

Statistics and calculation steps are listed in order in Table S1 [Raw data calculation]. The

percentage of conserved residues was calculated (55.99% of amino acids contained no

reported variants in RAG1, 55.98% in RAG2). The count of variants per residue was found

for both proteins. The ratio was also found per residue conservation rate / mutation rate.

Basic protein statistics were generated using reference canonical transcript sequences of

RAG1 and RAG2 with the Sequence Manipulation Suite [64]. The residue frequency was

calculated based on the respective polypeptide chain length.

The calculated mutation rate value and residue frequency score together produce the

mutation rate residue frequency as shown in Table S1. Our investigation used the Boolean

C score of 0 or 1 to weight mutation rate residue frequencies. An important consideration

for future application is whether to use this Boolean score or a frequency score. In the

clinical setting, the likelihood of de novo mutations versus inherited mutations have different

impact on recessive and dominant diseases. The likelihood of a patient presenting with a

particular (predicted) variant is more likely if the variant exists even at a very low frequency

in the patient’s ancestral population. Therefore, an allele frequency may be used to replace

C in many investigations, particularity when considering variants that exist at low rates.

Data visualisation

For our visualisation of MRF scores, small clusters of high MRF were of more significance

than individual highly conserved residues. Therefore, we applied a 1% average filter

where values were averaged over a sliding window of N number of residues (10 in the

case of RAG1, 6 in the case of RAG2). However, when using Boolean scoring C, this

method should be applied before C. Alternatively, if using allele frequency scoring, this
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visualisation method can be applied subsequently. Lastly, for a clear distinction of MRF

clusters a cut-off threshold was applied at the 75th percentile (0.0168 in RAG1).

A gene map for coding regions in RAG1 and RAG2 were populated with (1) Boolean C

score from population genetics data, (2) raw MRF scores, and (3) MRF clusters with 1%

average and cut-off threshold. GraphPad Prism was used for heatmaps. The data used for

heatmaps is also available in the Supplemental zip “RAG MRF map” (Table S1 simplified)

for automatic loading in the associated R source file to allow for alternative visualisations.

An example of alternative output for non-R users is shown in Figure S1. Adobe Adobe

Illustrator and Photoshop were used for protein domain illustrations.

The crystal structure of DNA bound RAG complex was produced with data from RCSB

Protein Data Bank (3jbw.pdb) [65]. Structures were visualised using the software VMD

from the Theoretical and Computational Biophysics Group [66]. Imaged with Tachyon

rendering [67] and colour mapped using MRF scores.

Validation of MRF against functional data

The recombination activity of RAG1 and RAG2 was previously measured on 44 known

pathogenic variants [16, 68]. Briefly, the pathogenicity of variants in RAG1 and RAG2 are

measured functionally in vitro by expression of RAG1 and RAG2 in combination with a

recombination substrate plasmid containing RSS sites which are targeted by RAG complex

during normal V(D)J recombination. Recombination events are assessed by quantitative

real-time PCR using comparative CT. The inverse score of recombination activity (0-100%)

is used to quantify pathogenicity of variants in our study. Comparison between known

pathogenicity scores and MRF was done by scaling MRF scores from 0-100% (100% being

highest probability of occurring as damaging).
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Supplemental

Table S1: MRF data tables. (1) MRF for RAG1 and RAG2 shows the complete amino acid residue
MRF scores along with the known pathogenic variant residues used for calculations. Colour coding:
MRF and 1% average - green heatmap; raw MRF before Boolean score - red heatmap; residue
number, wild type amino acid, and variant reported - red indicates reported in general population and
blue indicates a conserved site; sites with multiple variants are marked in beige [21]. (2) Raw data
calculation lists all of the raw values used to calculate MRF score in ordered steps; (i) Percentage of
mutated vs. unmutated variants, (ii) Number of times each residue is mutated, (iii) Ratio that each
residue is mutated, (iv) Residues sorted by conservation rate, (v) Basic statistics using SMS2 [64],
(vi) MRF per amino acid.
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Figure S1: An alternative visualisation of MRF scores for RAG1 and RAG2 proteins. This figure is
the output from the compressed “R source RAG MRF map” file. The data from Table S1 in column
“Average over 1%” is displayed on both the y-axis and colour scale. An analysis-friendly long form
csv of the Table S1 data is also provided in the compressed supplemental as file “Table S1 simplified”.
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