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Abstract 37 

Background 38 

Cardiovascular disease (CVD) is a leading cause of death among adults with type 2 diabetes 39 

mellitus (T2D). We recently reported that glycemic control in patients with T2D can be significantly 40 

improved through a continuous care intervention (CCI) including nutritional ketosis. The purpose of this 41 

study was to examine CVD risk factors in this cohort. 42 

 43 

Methods 44 

 We investigated CVD risk factors in patients with T2D who participated in a one year open label, 45 

non-randomized, controlled study. The CCI group (n = 262) received treatment from a health coach and 46 

medical provider. A usual care (UC) group (n = 87) was independently recruited to track customary T2D 47 

progression. Circulating biomarkers of cholesterol metabolism and inflammation, blood pressure (BP), 48 

carotid intima media thickness (cIMT), multi-factorial risk scores and medication use were examined.  49 

 50 

Results 51 

The CCI group consisted of 262 patients (baseline mean(SD):  age 54(8) y, BMI 40.4(8.8) 52 

kg/m2). Intention-to-treat analysis (% change) revealed the following at 1-year with P values < 0.0019 53 

indicating statistical significance after adjustment for multiple comparisons: total LDL-particles (LDL-P) 54 

(-4.9%, P=0.02), small LDL-P (-20.8%, P=1.2x10-12), LDL-P size (+1.1%, P=6.0x10-10), ApoB (-1.6%, 55 

P=0.37), ApoA1 (+9.8%, P<10-16), ApoB/ApoA1 ratio (-9.5%, P=1.9x10-7), triglyceride/HDL-C ratio (-56 

29.1%, P<10-16), large VLDL-P (-38.9%, P=4.2x10-15), and LDL-C (+9.9%, P=4.9x10-5). Additional 57 

effects were reductions in blood pressure, high sensitivity C-reactive protein, and white blood cell count 58 

(all P<1x10-7) while cIMT was unchanged. The 10-year atherosclerotic cardiovascular disease (ASCVD) 59 

risk score decreased -11.9% (P=4.9x10-5). Antihypertensive medication use was discontinued in 11.4 % 60 

of CCI participants (P=5.3x10-5). The UC group of 87 patients (baseline mean(SD): age 52(10)y, BMI 61 

36.7(7.2) kg/m2) showed no significant changes. After adjusting for baseline differences when comparing 62 
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CCI and UC groups, significant improvements for the CCI group included small LDL-P, ApoA1, 63 

triglyceride/HDL-C ratio, HDL-C, hs-CRP, and ASCVD score. The CCI group showed a greater rise in 64 

LDL-C. 65 

  66 

Conclusions 67 

A continuous care treatment including nutritional ketosis in patients with T2D improved most 68 

biomarkers of CVD risk after one year. The increase in LDL-cholesterol appeared limited to the large 69 

LDL subfraction. LDL particle size increased, total LDL-P and ApoB were unchanged, and inflammation 70 

and blood pressure decreased. 71 

 72 

Trial registration  73 

Clinicaltrials.gov: NCT02519309. Registered 10 August 2015 74 

 75 

Keywords 76 

ketosis, carbohydrate restriction, type diabetes, cardiovascular disease, risk factor, atherogenic 77 

dyslipidemia, inflammation, blood pressure, antihypertensive medication, continuous remote care 78 

 79 

Background 80 

Despite advances in the prevention and treatment of cardiovascular disease (CVD), it remains the leading 81 

cause of death in adults across the world [1]. Specifically, among those with type 2 diabetes (T2D) in the 82 

U.S., CVD accounts for 44% of mortality [2]. T2D rates have doubled over the past twenty years [3] and 83 

CVD risk increases two to four-fold with a diagnosis of T2D [4], warranting the identification of novel 84 

interventions to combat T2D. Intensive lifestyle interventions with dietary carbohydrate restriction [5-8], 85 

including the recently described continuous remote care model, which helps patients with T2D sustain 86 

nutritional ketosis [9,10], have demonstrated improved glycemic control concurrent with medication 87 
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reduction. However, the long-term sustainability and impact of these interventions on CVD risk and lipid 88 

profiles remains a subject of debate [11,12]. 89 

 90 

Atherogenic dyslipidemia, a known risk factor for CVD [13], is highly prevalent in patients with T2D 91 

[14] and tightly linked to high-carbohydrate diets[15]. The condition is characterized by increased 92 

triglycerides, decreased high-density lipoprotein cholesterol concentration (HDL-C) and increased small 93 

low-density lipoprotein particle number (small LDL-P). Evidence suggests that increased very low-94 

density lipoprotein particle number (VLDL-P), and in particular large VLDL-P, may be one of the key 95 

underlying abnormalities in atherogenic dyslipidemia [14,16-18]. Elevated concentrations of small LDL 96 

are often associated with increased total LDL particle number (LDL-P) and ApoB [19,20].  Particularly in 97 

patients with insulin resistance and T2D, elevated LDL-P and ApoB may exist even with normal to low 98 

LDL-C values [19,21,22]. Reliance on LDL-C for risk assessment in T2D patients may miss the impact of 99 

atherogenic dyslipidemia and elevated LDL-P. It has been proposed that LDL-P or ApoB may be superior 100 

to LDL-C as a predictor of CVD [22-25].  101 

 102 

Previous studies of carbohydrate restriction of up to 1-year found a consistent decrease in triglycerides 103 

and increase in HDL-C, while LDL-C slightly increased or decreased [15,26-28]. Although LDL-C is a 104 

risk factor for CVD, low LDL-C may belie elevations in small LDL, LDL-P or ApoB. Conversely, 105 

increased LDL-C with a low carbohydrate diet may primarily reflect the large LDL subfraction and may 106 

not increase CVD risk if total LDL-P or ApoB concentrations are unchanged or decline.  107 

 108 

Inflammation, as assessed by elevated high-sensitivity C-reactive protein (hsCRP) or white blood cell 109 

count (WBC) [29-32], is an independent CVD risk factor and is involved in all stages of atherogenesis 110 

[33]. Inflammation is often observed in T2D concurrent with atherogenic dyslipidemia [34] and 111 

represents an additional CVD risk even in individuals with low to normal LDL-C [35,36]. Hypertension is 112 

an additive risk factor in this patient population. Tighter blood pressure control has been associated with 113 
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reduction in the risk of deaths related to diabetes.  This included decreased CVD, stroke and 114 

microvascular complications [37].  115 

 116 

For this open label, non-randomized, controlled, before-and-after study, we investigated the effects of a 117 

continuous care intervention (CCI) on CVD risk factors. The CCI included individualized digital support 118 

with telemedicine, health coaching, education in nutritional ketosis, biometric feedback, and an online 119 

peer-support community. Given the multi-faceted pathophysiology of CVD, we assessed the one-year 120 

responses in several biomarkers related to cholesterol and lipoprotein metabolism, blood pressure, and 121 

inflammation, as well as carotid intima media thickness (cIMT) and medication use. Some results were 122 

previously reported in relation to glycemic control [10] and are presented here as they pertain to CVD 123 

risk.  124 

 125 

 126 

Methods 127 

Intervention 128 

 129 

As previously described [9,10], we utilized a prospective, longitudinal study design with a cohort of 130 

patients with T2D from the greater Lafayette, Indiana, USA, region who self-selected to participate in the 131 

CCI (Clinicaltrials.gov Identifier NCT02519309). Patients in the CCI were provided access to a web-132 

based software application (app) for biomarker reporting and monitoring including body weight, blood 133 

glucose and blood betahydroxybutyrate (BHB; a marker of ketosis). The remote care team consisted of a 134 

health coach and physician or nurse practitioner who provided nutritional advice and medication 135 

management, respectively. Patients were guided by individualized nutrition recommendations to achieve 136 

and sustain nutritional ketosis. CCI participants self-selected to receive education via either an onsite 137 
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group setting (CCI-onsite) or via the app (CCI-web). Social support was provided via an online peer 138 

community. This study was approved by the Franciscan Health Lafayette Institutional Review Board, and 139 

participants provided written informed consent.  140 

Glycemic control medication management was previously described [9,10]. For participants with a 141 

history of hypertension, a home automatic sphygmomanometer was supplied. Participants reported their 142 

home readings in the app daily to weekly depending on recent control and instruction from the 143 

supervising physician.  Antihypertensive prescriptions were adjusted based on home readings and 144 

reported symptoms. Health coaches responded to patient app reported readings of systolic blood pressure 145 

less than 110 mmHg with specific questions about symptoms of hypotension. Following resolution of 146 

hypertension, diuretics were the first antihypertensive medications to be discontinued, followed by beta 147 

blockers, unless the participant had a history of coronary artery disease. Angiotensin-converting-enzyme 148 

inhibitors (ACEs) and angiotensin II receptor blockers (ARBs) were generally continued due to known 149 

renal protection with diabetes [38,39]. Statin medications were adjusted when appropriate to maintain a 150 

goal of LDL-P under 1000 nmol·L-1 or participant preference after full risk-benefit discussion. 151 

To track T2D progression in the same geography and health system as the CCI, an independent cohort of 152 

patients with T2D who received usual care (UC) were recruited. These patients were referred to registered 153 

dietitians providing dietary advice according to American Diabetes Association guidelines [40].  154 

Outcome Measures 155 

 156 

Anthropometrics and vital signs for the CCI group were obtained at baseline, 70 days, and one year. A 157 

stadiometer was used to assess height and used in the calculation of body mass index. A calibrated scale 158 

in the clinic measured weight to the nearest 0.1 lb (Model 750, Detecto; Webb City, MO, USA) and 159 

values were converted to kg. Participants were provided a cellular-connected home scale for daily weight. 160 

Blood pressure was obtained manually by trained staff after participants rested in a seated position for 161 
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five minutes. Adverse events were reported and reviewed by the Principal Investigator and the 162 

Institutional Review Board. 163 

 164 

Fasting blood draws for the CCI group were collected at baseline, 70 days, and one-year follow-up 165 

(ranging from 11 - 15 months). Blood analytes were determined via standard procedures at a Clinical 166 

Laboratory Improvement Amendment (CLIA) accredited laboratory on the day of sample collection or 167 

from stored serum. Serum aliquots were stored at -80°C and thawed for determination of ApoB, ApoA1, 168 

total cholesterol, triglycerides, and direct HDL-C concentrations by FDA approved methods (Cobas c501, 169 

Roche Diagnostics; Indianapolis, IN, USA). LDL was calculated using the Friedewald equation [41]. 170 

Lipid subfractions were quantified using clinical NMR LipoProfile® (LabCorp, Burlington NC, USA; 171 

[42]). The LipoProfile3 algorithm used in the present investigation was used previously to relate lipid 172 

subfractions to CVD risk [35,43,44]. The NMR-derived lipoprotein insulin resistance score (LP-IR) is 173 

proposed to be associated with the homeostasis model assessment of insulin resistance (HOMA-IR) and 174 

glucose disposal rate (GDR) [45]. The multifactorial 10-year atherosclerotic cardiovascular disease 175 

(ASCVD) risk score was also computed [46]. 176 

Anthropometrics, vital signs and fasting blood draws for the UC group were obtained at baseline and one 177 

year as described above using the same clinical facilities and laboratory and data collection methods. 178 

Home biometrics for the UC group were not tracked and 70-day outcomes were not measured. 179 

 180 

Carotid ultrasonography for cIMT measure was performed at baseline and one year in CCI and UC 181 

groups to characterize atherosclerotic risk. Ultrasound technicians were trained according to protocols 182 

that were previously tested and used to assess subclinical atherosclerosis [47,48]. The right and left 183 

common carotid arteries were imaged one cm distal to the carotid bulb using a L12-3 multi-frequency 184 

linear-array transducer attached to a high-resolution ultrasound system (Phillips EPIQ 5, Amsterdam, 185 

Netherlands). Longitudinal images were captured in three imaging planes: anterior, lateral, and posterior. 186 
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Digital images were analyzed using edge-detection software (Carotid Analyzer for Research; Medical 187 

Imaging Application, Coralville, IA) to trace the lumen-intima and intima-medial boundaries of the 188 

artery. Analyses were performed by the same blinded investigator to obtain right and left mean arterial 189 

diameter and mean cIMT.  190 

Statistics 191 

 192 

JMP software (version 5.1, SAS Institute; Cary, SC, USA) was used for all statistical analyses except 193 

multiple imputation. Multiple imputation, conducted with Stata software (version 11, StataCorp; College 194 

Station, TX, USA), was used to estimate means and standard errors describing the variability between 195 

imputations. Seven hundred imputations from multivariate normal regression were run to estimate the 196 

missing values (4% missing at baseline and 22% missing at one year). Two-sample t-tests were used to 197 

test for significance of the differences in baseline biomarker values between groups. Two-sample t-tests 198 

were also used to test for differences between one-year changes between groups. Paired t-tests and 199 

analysis of covariance (ANCOVA) when adjusted for baseline covariates (sex, age, baseline BMI, and 200 

African-American race) were used to test for significance of within-group changes. To reduce skewness 201 

before testing for significance, triglyceride, triglyceride/HDL-C ratio and hsCRP were first log-202 

transformed, however aside from P values, the tables present results from the untransformed data. Percent 203 

change in a given biomarker was calculated as the mean difference value divided by the mean baseline 204 

value. The standard error of percent change of a given biomarker was calculated as the standard error of 205 

the change divided by the mean baseline value. Significant changes in proportions (e.g. medication use) 206 

were tested using McNemar’s test with continuity correction in completers, and linear regression of the 207 

changes in the dichotomous states when missing outcome data were imputed.  208 

 209 

Throughout the manuscript, standard deviations are presented within parentheses and standard errors are 210 

presented following “±” symbol. Nominal significance levels (P) are presented in the tables; however, a 211 
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significance level of P<0.0019 ensures simultaneous significance at P<0.05 for a Bonferroni adjustment 212 

for the 26 variables examined. Unless otherwise noted, results presented are intention-to-treat analyses 213 

(all starters) with missing values estimated by imputation. Some results are designated as completer 214 

analyses (excluding participants who withdrew or lacked biomarkers at one year). 215 

 216 

Results 217 

 218 

Baseline characteristics of participants 219 

 220 

The baseline characteristics of the 262 T2D participants who began the CCI are shown in Table 1. There 221 

were no significant differences in baseline characteristics between groups self-selecting web-based (CCI-222 

web) and onsite education (CCI-onsite) (Supplementary Table 1) nor were there significant differences in 223 

biomarker changes at one year between the groups (Supplementary Table 2). Therefore, results for the 224 

two groups were combined for further analyses. 225 

 226 

The baseline characteristics of participants with measurements at both baseline and one year were not 227 

significantly different from dropouts and participants with missing data after correcting for multiple 228 

comparisons (Supplementary Table 1). 229 

 230 

An independently recruited UC group of 87 T2D participants, which provided an observational 231 

comparison group from the same geography and health system, showed no significant differences from 232 

the CCI group in baseline characteristics except mean body weight and BMI were higher in the CCI 233 

versus the UC group (Table 1, P<0.001).  234 

 235 

Changes in biomarkers of CVD risk at one year 236 
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 237 

Two-hundred eighteen (83%) participants remained enrolled in the CCI group at one year. One-year 238 

changes in CVD biomarkers are detailed in Table 2 and percent changes from baseline are shown in 239 

Figure 1. The within-CCI group changes in the following lipids and lipoproteins were all statistically 240 

significant after adjusting for multiple comparisons (P<0.0019), reported here as mean percent difference 241 

from baseline: ApoA1 (+9.9%), ApoB/ApoA1 ratio (-9.5%), triglycerides (-24.4%), LDL-C (+9.6%), 242 

HDL-C (+18.1%), triglyceride/HDL-C ratio (-29.1%), large VLDL-P (-38.9%), small LDL-P (-20.8%), 243 

LDL-particle size (+1.1%), total HDL-P (+4.9%), and large HDL-P (+23.5%). There were no significant 244 

changes after adjusting for multiple comparisons in total LDL-P (-4.9%, p=0.02) or ApoB (-1.6%, 245 

p=0.37). 246 

 247 

The CCI group experienced significant reductions in systolic BP (-4.8%), diastolic BP (-4.3%), hs-CRP (-248 

39.3%) and WBC count (-9.1%). Significant reductions were observed in overall use of antihypertensive 249 

medication (-11.4%) and diuretics (-9.6%) whereas changes in ACE or ARB (0.7%) and statin (-3.3%) 250 

use were not significant. Significant reductions were observed in both multivariate metrics: 10-year 251 

ASCVD risk (-11.9%) and LP-IR (-19.6%). There was no significant change in cIMT (averaged right and 252 

left values). In addition, changes in cIMT were not significantly correlated with baseline LDL-P or LDL-253 

C, or changes in LDL-P or LDL-C (all p≥0.33). 254 

 255 

One-year results from the UC group are provided in Table 2 and Figure 1. Within the UC group, after 256 

adjustment for multiple comparisons there were no significant changes at one year. After adjusting for 257 

differences in baseline characteristics and multiple comparisons, the changes observed at one year for the 258 

following biomarkers were significantly different between the CCI and UC groups (mean ∆CCI – mean 259 

∆UC, where ∆ is one year minus baseline):  small LDL-P (-178 nmol·L-1), ApoA1 (+16 mg·dL-1), 260 

triglyceride/HDL-C ratio (-3.1), LDL particle size (+0.31 nm), HDL-C (+8 mg·dL-1), LDL-C (+22 mg·dL-261 

1), hs-CRP (-4.0 mg·dL-1), and LP-IR (-12).  262 
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 263 

Range of outcomes 264 

 265 

The distribution and range of intervention response for the CCI and UC groups were compared for LDL-266 

P, small LDL-P, large VLDL-P, ApoB, ApoA1, ApoB/ApoA1 ratio, and TG/HDL-C ratio 267 

(Supplementary Figure 1). Ranges of change observed in the CCI group were within the ranges observed 268 

in the UC group for increases in LDL-P, small LDL-P, ApoB and ApoB/ApoA1 ratio. There were two 269 

CCI participants (2/203, 1.0%) whose change in large VLDL-P exceeded the maximum observed in the 270 

UC group (15.2 nmol·L-1). There was one CCI participant (1/185, 0.5%) whose change in ApoA1 was 271 

less than the minimum observed in the UC group (58 mg·dL-1) and one CCI participant (1/186, 0.5%) 272 

whose change in triglyceride/HDL-C ratio was higher than the maximum observed in the UC group 273 

(64.9). 274 

 275 

Discussion 276 

 277 

This study demonstrates that a CCI utilizing remote physician and health coach support with nutritional 278 

ketosis beneficially altered most CVD risk factors in patients with T2D at one year.  Changes included: 279 

decreased small LDL-P, triglycerides, blood pressure and antihypertensive medication, hsCRP, and WBC 280 

count; increased HDL-C and LDL particle size; no change in LDL-P, ApoB, and cIMT and an increase in 281 

LDL-C. Combined with the previously reported improvements in glycemic control and reduction in 282 

obesity [10], which reduce CVD risk [49], these results demonstrate multiple additional benefits of the 283 

CCI with the exception of increased LDL-C. 284 

 285 

Studies of dietary carbohydrate restriction, with a presumed increase in saturated fat intake, have shown 286 

modest changes in LDL-C levels [15,26-28,50]. The mean 10 mg/dL change observed in the CCI group in 287 
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this study is numerically higher than the upper range of values reported by meta-analysis of lipid changes 288 

over one year related to carbohydrate restriction (-7 mg/dl to +7 mg/dl) [51]. Higher LDL-C is related to  289 

increased CVD risk [52,53], but also is inversely correlated with mortality in two large prospective 290 

studies and a systemic review [54-56]. Additionally, there is no evidence that increasing or decreasing 291 

LDL-C with diet interventions has any impact on mortality.  LDL-C increased in the current study but 292 

both ApoB and LDL-P, measures found to be better predictors of CVD risk, did not change significantly 293 

[20-23,25,57]. In addition, the reduction in small LDL-P, increase in LDL size, and decrease in large 294 

VLDL-P that occurred in the present investigation are also associated with reduced CVD risk [58-60]. 295 

 296 

While mean response of CCI participants demonstrated an improvement in most lipid biomarkers and 297 

CVD risk factors other than LDL-C, we investigated whether a minority of participants might have 298 

unfavorable responses to the intervention. Our results suggest that a small number of participants (≤ 1%) 299 

demonstrated changes at one year outside the range of what was observed in a usual care population 300 

(Supplementary Figure 1). Thus, these results counter the concern that a significant portion of participants 301 

may have an extremely adverse reaction to the CCI (due to presumed increase in saturated fat intake) as 302 

compared to UC.  303 

 304 

Inflammation is directly involved in all aspects of the pathogenesis of CVD [33]. High-sensitivity CRP 305 

and WBC count are widely accepted markers of inflammation and risk factors for CVD [29-32]. In 306 

addition to reducing cholesterol, reduction in inflammation may be a secondary mechanism of statins in 307 

lowering CVD risk [61-63]. The present study demonstrated a 39% reduction of hsCRP and 9% reduction 308 

in WBC count in the CCI, indicating a significant reduction in inflammation at one year. This response 309 

may be due in part to suppression of the NLRP3 inflammasome by BHB [64]. 310 

 311 

The reduction of blood pressure with concurrent reduction in antihypertensive medication was also 312 

significant. Blood pressure goals were recently reduced [65] and strong evidence exists that elevated 313 
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blood pressure is a primary cardiovascular risk factor [66]. An analysis of a large T2D population 314 

suggested that antihypertensive medication may have limited effectiveness in reducing the prevalence of 315 

hypertension in these patients [67], whereas a study of weight loss interventions showed that a decrease in 316 

blood pressure predicted regression of carotid vessel wall volume [68]. Thus, additional lifestyle 317 

interventions that can augment blood pressure reduction such as the CCI described here may reduce CVD 318 

events.  Additionally, the antihypertensives that were primarily decreased in the current study were shown 319 

to increase the risk for diabetes [69]. Their removal may represent further metabolic benefit. 320 

 321 

Carotid intima media thickness (cIMT) is a non-invasive measure of subclinical atherosclerosis that is 322 

significantly associated with CVD morbidity and mortality [47,48,70,71]. However, a recent meta-323 

analysis in 3,902 patients with T2D found that cIMT progression over an average of 3.6 years did not 324 

correlate with CVD events [70]. We found no significant change in cIMT from baseline to one year in 325 

either the CCI or UC groups. Progression or regression of cIMT may take multiple years to manifest and 326 

may require a larger cohort to achieve statistical significance [71]. In summary, the cIMT results from this 327 

study provide no evidence of vascular harm or benefit from one year of nutritional ketosis in patients with 328 

T2D. 329 

 330 

Strengths and limitations of the study 331 

 332 

Prior studies have demonstrated favorable improvements in atherogenic dyslipidemia with minimal or no 333 

change in LDL-C and LDL-P following managed ketogenic diets in small short-term randomized trials. 334 

This study’s strengths include its larger cohort with high retention, prospective design and one-year 335 

duration. The study was the first to assess ApoB and ApoA1 in a T2D population adhering to a ketogenic 336 

diet. This study also has real-world application due to the outpatient setting without the use of meal 337 

replacements or food provisions. 338 

 339 
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Limitations of this study include the lack of randomization between the CCI and UC groups. In addition, 340 

the intervention provided to CCI participants was of greater intensity than UC. This was a single site 341 

study and the racial composition of study participants was predominantly Caucasian. The study was not 342 

of sufficient size and duration to determine significant differences in CVD morbidity or mortality. Since 343 

the intervention led to concurrent weight loss and improvements in cardiovascular health, it is difficult to 344 

conclude how much of the improvement can be attributed to weight loss versus other simultaneous 345 

metabolic changes. Future trials could include a longer multi-site, randomized controlled trial to allow for 346 

hard end point evaluation. Greater racial and ethnic diversity, a broader age range, and greater disease 347 

severity could also be evaluated. 348 

 349 

Conclusions 350 

 351 

A T2D intervention combining technology-enabled continuous remote care with individualized plans 352 

encouraging nutritional ketosis has demonstrated diabetes status improvement while improving many 353 

CVD risk factors including atherogenic dyslipidemia, inflammation and blood pressure while decreasing 354 

use of antihypertensive mediations.  Ongoing research will determine the continued safety, sustainability, 355 

and effectiveness of the intervention. 356 

 357 

List of abbreviations 358 

 359 

ACE: angiotensin-converting-enzyme inhibitors 360 

ApoA1: apolipoprotein A1 361 

ApoB: apolipoprotein B 362 

ARB: angiotensin II receptor blockers 363 

ASCVD risk score: 10-year atherosclerotic cardiovascular disease risk score  364 
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  616 

Figure Legends 617 

 618 

Figure 1. Change in biomarkers for CCI group. 619 

Bars indicate CCI group mean percent change in biomarkers based on the intention-to-treat analysis with 620 

missing values imputed. Percent change is computed as the change in mean values from baseline to one 621 

year divided by the mean baseline value. Percent change = 100*[(1 year value -  baseline 622 

value)/(baseline)]. Negative values indicate a decrease from baseline to one year while positive values 623 

indicate an increase. The ** symbol after the biomarker label indicates a statistically significant within 624 

group change from baseline (P<0.0019, P adjusted for multiple comparisons). Error bars represent ± SE. 625 

SE as Percent =  100*[(1 year value SE)/(baseline)] 626 

 627 

Figure 2.  Change in biomarkers for UC group. 628 

Bars indicate UC group mean percent change in biomarkers based on the intention-to-treat analysis with 629 

missing values imputed. Percent change is computed as the change in mean values from baseline to one 630 

year divided by the mean baseline value. Percent change = 100*[(1 year value -  baseline 631 

value)/(baseline)]. Negative values indicate a decrease from baseline to one year while positive values 632 

indicate an increase. (None of the within group changes were statistically significant, i.e.  all P>0.0019, P 633 

adjusted for multiple comparisons.) Error bars represent ± SE. SE as Percent =  100*[(1 year value 634 

SE)/(baseline)] 635 

 636 

Supplementary Figure 1. Distribution of changes in selected biomarkers for CCI and UC 637 

completers  638 
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Histograms of changes at one year for CCI (blue) and UC (gray) are overlaid. Very few (≤1%) CCI 639 

participants demonstrated changes in an undesirable direction at one year that was outside the range of 640 

changes observed in the UC group for key lipid and lipoprotein particles. (A) Apolipoprotein B (B) 641 

Apolipoprotein A1 (C) Apolipoprotein B/Apolipoprotein A1 ratio (D) LDL-P (E) Small LDL-P (F) Large 642 

VLDL-P (G) Triglyceride/HDL-C ratio 643 

  644 
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Table 1.  Baseline characteristics Continuous Care Intervention (CCI) and Usual Care (UC) groups. 

  All Completers with data 

  N Mean (SD) or 
±SE N Mean (SD) or 

±SE 

Age (years)         

CCI-all education1 262 54 (8) 218 54 (8) 

Usual care1 87 52 (10) 78 52 (10) 

CCI-all vs. usual care2 
 

1 ± 1 
 

2 ± 1* 

Female (%) 
    

CCI-all education1 262 66.8 ± 2.9 218 65.1 ± 3.2 

Usual care1 87 58.6 ± 5.3 78 60.3 ± 5.5 

CCI-all vs. usual care2 
 

8.2 ± 6.0 
 

4.9 ± 6.4 

Smokers (%) 
    

CCI-all education1 211 3.8 ± 1.3 176 4.0 ± 1.5 

Usual care1 87 14.9 ± 3.8 78 14.1 ± 3.9 

CCI-all vs. usual care2 
 

-11.2 ± 4.0† 
 

-10.1 ± 4.2* 

Weight-clinic (kg) 
    

CCI-all education1 257 116.5 (25.9) 184 115.4 (24.6) 

Usual care1 83 105.6 (22.2) 69 106.8 (22.2) 

CCI-all vs. usual care2 
 

10.9 ± 2.9‡ 
 

8.6 ± 3.2† 

BMI (kg·m-2) 
    

CCI-all education1 257 40.4 (8.8) 184 39.9 (7.9) 

Usual care1 83 36.7 (7.3) 69 37.1 (7.6) 

CCI-all vs. usual care2 
 

3.7 ± 1.0‡ 
 

2.7 ± 1.1† 

Hemoglobin A1c (%) 
    

CCI-all education1 262 7.60 (1.50) 204 7.49 (1.40) 

Usual care1 87 7.64 (1.76) 72 7.74 (1.82) 

CCI-all vs. usual care2 
 

-0.04 ± 0.21 
 

-0.25 ± 0.24 
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Systolic blood pressure (mmHg) 
    

CCI-all education1 260 132 (14) 187 133 (15) 

Usual care1 79 130 (14) 67 129 (13) 

CCI-all vs. usual care2 
 

2 ± 2 
 

4 ± 2* 

Diastolic blood pressure (mmHg) 
    

CCI-all education1 260 82 (8) 187 82 (8) 

Usual care1 79 82 (9) 67 81 (8) 

CCI-all vs. usual care2 
 

0 ± 1 
 

0 ± 1 

ApoB (mg·dL-1) 
    

CCI-all education1 248 105 (29) 186 103 (28) 

Usual care1 79 107 (28) 59 106 (30) 

CCI-all vs. usual care2 
 

-2 ± 4 
 

-2 

ApoA1 (mg·dL-1) 
    

CCI-all education1 248 146 (28) 185 146 (29) 

Usual care1 79 149 (22) 59 148 (21) 

CCI-all vs. usual care2 
 

-3 ± 3 
 

-2 ± 3 

ApoB/ApoA1 ratio 
    

CCI-all education1 248 0.74 (0.23) 185 0.73 (0.23) 

Usual care1 79 0.73 (0.23) 59 0.73 (0.25) 

CCI-all vs. usual care2 
 

0.01 ± 0.03 
 

0.00 ± 0.04 

Triglycerides (mg·dL-1) 
    

CCI-all education1 247 197 (143) 186 201 (153) 

Usual care1 79 283 (401) 59 297 (458) 

CCI-all vs. usual care2 
 

-86 ± 46* 
 

-97 ± 61 

LDL-C (mg·dL-1) 
    

CCI-all education1 232 103 (33) 172 100 (33) 

Usual care1 70 102 (36) 48 100 (38) 
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CCI-all vs. usual care2 
 

1 ± 5 
 

0 ± 6 

HDL-C (mg·dL-1) 
    

CCI-all education1 247 42 (13) 186 42 (14) 

Usual care1 79 38 (11) 59 37 (11) 

CCI-all vs. usual care2 
 

5 ± 2† 
 

5 ± 2† 

Triglycerides/HDL-C ratio 
    

CCI-all education1 247 5.9 (7.1) 186 6.1 (7.9) 

Usual care1 79 10.5 (23.2) 59 11.5 (26.5) 

CCI-all vs. usual care2 
 

-4.6 ± 2.6 
 

-5.4 ± 3.5 

Large VLDL-P (nmol·L-1) 
    

CCI-all education1 259 10 (8) 203 9 (8) 

Usual care1 83 12 (12) 68 12 (13) 

CCI-all vs. usual care2 
 

-2 ± 1 
 

-2 ± 2 

Total LDL-P (nmol·L-1) 
    

CCI-all education1 259 1300 (465) 203 1296 (476) 

Usual care1 83 1289 (511) 68 1243 (484) 

CCI-all vs. usual care2 
 

11 ± 63 
 

52 ± 68 

Small LDL-P (nmol·L-1) 
    

CCI-all education1 259 774 (377) 203 778 (378) 

Usual care1 83 719 (322) 68 699 (326) 

CCI-all vs. usual care2 
 

55 ± 42 
 

789 ± 48 

LDL-particle size (nm) 
    

CCI-all education1 259 20.30 (0.55) 201 20.3 (0.55) 

Usual care1 83 20.33 (0.56) 68 20.32 (0.55) 

CCI-all vs. usual care2 
 

-0.03 ± 0.07 
 

-0.03 ± 0.08 

Total HDL-P (μmol·L-1) 
    

CCI-all education1 259 31.3 (6.4) 203 31.7 (6.4) 

Usual care1 83 29.9 (5.8) 68 30.2 (6.0) 
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CCI-all vs. usual care2 
 

1.4 ± 0.8 
 

1.5 ± 0.9 

Large HDL-P (μmol·L-1) 
    

CCI-all education1 259 4.3 (2.5) 203 4.2 (2.5) 

Usual care1 83 3.8 (2.1) 68 3.8 (2.1) 

CCI-all vs. usual care2 
 

0.4 ± 0.3 
 

0.4 ± 0.3 

LP-IR score 
    

CCI-all education1 259 72 (17) 203 72 (18) 

Usual care1 83 75 (16) 68 74 (17) 

CCI-all vs. usual care2 
 

-3 ± 2 
 

-2 ± 2 

C-reactive protein (mg·L-1) 
    

CCI-all education1 249 8.5 (14.5) 193 9.0 (16.1) 

Usual care1 85 8.9 (8.6) 70 9.1 (9.0) 

CCI-all vs. usual care2 
 

-0.3 ± 1.3 
 

-0.1 ± 1.6 

WBC 
    

CCI-all education1 260 7.2 (1.9) 204 7.1 (1.8) 

Usual care1 86 8.1 (2.4) 72 8.3 (2.4) 

CCI-all vs. usual care2 
 

-0.9 ± 0.3† 
 

-1.2 ± 0.3§ 

10-year ASCVD risk (%) 
    

CCI-all education1 198 11.1 (9.1) 135 12.1 (9.3) 

Usual care1 72 11.8 (10.8) 55 11.4 (10.8) 

CCI-all vs. usual care2 
 

-0.6 ± 1.4 
 

0.8 ± 1.6 

CIMT-average (mm) 
    

CCI-all education1 236 0.681 (0.108) 144 0.692 (0.113) 

Usual care1 84 0.681 (0.116) 68 0.680 (0.111) 

CCI-all vs. usual care2 
 

-0.001 ± 0.014 
 

0.013 ± 0.016 

Statin (%) 
    

CCI-all education1 262 50.0 ± 3.1 218 51.8 ± 3.4 

Usual care1 87 58.6 ± 5.3 73 54.8 ± 5.8 
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CCI-all vs. usual care2 
 

-8.6 ± 6.1 
 

-3.0 ± 6.7 

Any antihypertensive medication (%) 
    

CCI-all education1 262 67.2 ± 2.9 218 68.4 ± 3.2 

Usual care1 87 52.9 ± 5.4 73 50.7 ± 5.9 

CCI-all vs. usual care2 
 

14.3 ± 6.1* 
 

17.7 ± 6.7† 

ACE or ARB (%) 
    

CCI-all education1 262 29.4 ± 2.8 218 28.0 ± 3.0 

Usual care1 87 18.4 ± 4.2 73 16.4 ± 4.3 

CCI-all vs. usual care2 
 

11.0 ± 5.0* 
 

11.5 ± 5.3* 

Diuretics (%) 
    

CCI-all education1 262 40.8 ± 3.0 218 41.3 ± 3.3 

Usual care1 87 29.9 ± 4.9 73 24.7 ± 5.0 

CCI-all vs. usual care2 
 

11.0 ± 5.8 
 

16.6 ± 6.1† 
1Mean and standard deviations for continuous variables, percents and standard errors for 

categorical variables 
2Difference between means or percentages  ± 1 standard error of the difference.  Significant 

baseline difference between means or percentages at 0.05≤P<0.01 (*); 0.01≤P<0.001 (†); 

0.001≤P<0.0001 (‡); and P<0.0001 (§). 
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Table 2.  One-year Biomarker Change Continuous Care Intervention compared to Usual Care groups.        

  Completers 
All starters 

(Dropouts imputed)4 

  N   Unadjusted Adjusted for baseline3 Unadjusted 

    One Year 
Mean ±SE 

Difference 
(SD) or 
±SE 

Signif- Difference 
±SE 

Signif- One Year 
Mean ±SE 

Difference 
±SE 

Signif- 

icance5 icance5 icance5 

∆Weight-clinic (kg) 
         

CCI-all education1 184 101.2 ± 1.6 -14.2 
(10.3) <10-16 -13.8 ± 0.6 <10-16 102.7 ± 1.5 -13.8 ± 0.7 <10-16 

Usual care1 69 106.8 ± 2.7 0.04 (5.9) 0.95 -1.1 ± 1.1 0.29 107.3 ± 2.6 -0.2 ± 0.8 0.85 

CCI-all vs. usual care2 
  

-14.3 ± 1.0 <10-16 -12.7 ± 1.3 <10-16 
 

-13.7 ± 1.1 <10-16 

∆Hemoglobin A1c (%) 
         

CCI-all education1 204 6.20 ± 0.07 -1.29 
(1.32) <10-16 -1.32 ± 

0.09 <10-16 6.29 ± 0.07 -1.30 ± 
0.09 <10-16 

Usual care1 72 7.94 ± 0.22 0.20 (1.35) 0.21 0.22 ± 0.16 0.17 7.84 ± 0.19 0.20 ± 0.15 0.18 

CCI-all vs. usual care2 
  

-1.49 ± 
0.18 4.4x10-16 -1.54 ± 

0.19 4.4x10-16 
 

-1.50 ± 
0.17 <10-16 

∆Systolic blood pressure 
(mmHg)          
CCI-all education1 187 126 ± 1 -7 (16) 1.3x10-8 -7 ± 1 1.6x10-7 126 ± 1 -6 ± 1 1.3x10-8 

Usual care1 67 129 ± 2 0 (18) 0.91 0 ± 2 0.83 129 ± 2 -1 ± 2 0.67 

CCI-all vs. usual care2 
  

-7 ± 2 0.005 -6 ± 3 0.02 
 

-5 ± 2 0.02 

∆Diastolic blood pressure 
(mmHg)          
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CCI-all education1 187 78 ± 1 -4 (9) 1.4x10-7 -4 ± 1 6.2x10-7 79 ± 1 -4 ± 1 7.2x10-8 

Usual care1 67 81 ± 1 0 (10) 0.92 0 ± 1 0.75 81 ± 1 -1 ± 1 0.45 

CCI-all vs. usual care2 
  

-3 ± 1 0.01 -3 ± 1 0.03 
 

-3 ± 1 0.06 

∆ApoB (mg·dL-1) 
         

CCI-all education1 186 103 ± 2 -1 (24) 0.69 -0 ± 2 0.82 104 ± 2 -2 ± 2 0.37 

Usual care1 59 107 ± 5 2 (37) 0.75 1 ± 4 0.9 106 ± 4 0 ± 4 0.95 

CCI-all vs. usual care2 
  

-2 ± 5 0.66 -1 ± 5 0.83 
 

-2 ± 5 0.67 

∆ApoA1 (mg·dL-1) 
         

CCI-all education1 185 160 ± 3 14 (24) 8.9x10-16 14 ± 2 4.4x10-16 160 ± 2 14 ± 2 <10-16 

Usual care1 59 145 ± 3 -3 (19) 0.18 -2 ± 3 0.55 147 ± 3 -2 ± 3 0.37 

CCI-all vs. usual care2 
  

18 ± 3 4.7x10-9 16 ± 4 2.2x10-5 
 

17 ± 3 1.4x10-7 

∆ApoB/ApoA1 
         

CCI-all education1 185 0.67 ± 0.02 -0.06 
(0.17) 1.8x10-6 -0.06 ± 

0.02 0.003 0.67 ± 0.02 -0.07 ± 
0.01 1.9x10-7 

Usual care1 59 0.76 ± 0.04 0.03 (0.29) 0.42 0.02 ± 0.03 0.5 0.74 ± 0.03 0.02 ± 0.03 0.58 

CCI-all vs. usual care2 
  

-0.09 ± 
0.04 0.02 -0.08 ± 

0.03 0.02 
 

-0.09 ± 
0.03 0.01 

∆Triglycerides (mg·dL-1) 
         

CCI-all education1 186 151 ± 11 -49 (168) 5.6x10-5 -50 ± 16 0.001 148 ± 12 -48 ± 13 <10-16 

Usual care1 59 327 ± 65 30 (301) 0.44 31 ± 29 0.27 305 ± 48 28 ± 32 0.43 

CCI-all vs. usual care2 
  

-80 ± 41 0.05 -81 ± 33 0.02 
 

-76 ± 35 9.9x10-7 

∆LDL-C (mg·dL-1) 
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CCI-all education1 172 111 ± 3 11 (32) 7.7x10-6 11 ± 3 2.6x10-5 113 ± 3 10 ± 2 4.9x10-5 

Usual care1 48 90 ± 4 -11 (38) 0.05 -11 ± 5 0.03 90 ± 5 -11 ± 5 0.02 

CCI-all vs. usual care2 
  

22 ± 6 0.0003 22 ± 6 0.0002 
 

21 ± 5 9.9x10-5 

∆HDL-C (mg·dL-1) 
         

CCI-all education1 186 50 ± 1 8 (12) <10-16 7 ± 1 <10-16 50 ± 1 8 ± 1 <10-16 

Usual care1 59 35 ± 2 -2 (9) 0.15 -1 ± 2 0.69 37 ± 2 -1 ± 1 0.41 

CCI-all vs. usual care2 
  

9 ± 1 1.7x10-10 8 ± 2 9.9x10-6 
 

9 ± 2 1.2x10-8 

∆Triglycerides/HDL-C 
ratio          
CCI-all education1 186 4.3 ± 0.6 -1.8 (9.4) <10-16 -1.9 ± 0.9 <10-16 4.1 ± 0.6 -1.6 ± 0.7 <10-16 

Usual care1 59 12.5 ± 2.7 0.9 (16.1) 0.1 1.2 ± 1.6 0.16 11.2 ± 2.1 1.0 ± 1.7 0.24 

CCI-all vs. usual care2 
  

-2.8 ± 2.2 3.1x10-10 -3.1 ± 1.8 5.5x10-7 
 

-2.6 ± 1.8 4.5x10-9 

∆Large VLDL-P (nmol·L-

1)          
CCI-all education1 203 6 ± 1 -4 (7) 5.6x10-15 -4 ± 1 1.6x10-14 6 ± 1 -4 ± 1 4.2x10-15 

Usual care1 68 12 ± 2 0 (8) 0.71 0 ± 1 0.60 12 ± 1 0 ± 1 0.77 

CCI-all vs. usual care2 
  

-3 ± 1 0.001 -3 ± 1 0.002 
 

3 ± 1 0.0007 

∆Total LDL-P (nmol·L-1) 
         

CCI-all education1 203 1234 ± 30 -62 (375) 0.02 -57 ± 29 0.05 1235 ± 29 -64 ± 26 0.02 

Usual care1 68 1196 ± 60 -47 (491) 0.43 -67 ± 53 0.21 1231 ± 57 -57 ± 56 0.31 

CCI-all vs. usual care2 
  

-15 ± 65 0.82 10 ± 62 0.87 
 

-7 ± 62 0.91 

∆Small LDL-P (nmol·L-1) 
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CCI-all education1 203 614 ± 22 -164 (332) 2.2x10-12 -161 ± 24 4.1x10-11 613 ± 21 -161 ± 23 1.2x10-12 

Usual care1 68 724 ± 44 25 (370) 0.57 16 ± 45 0.71 740 ± 41 18 ± 42 0.67 

CCI-all vs. usual care2 
  

-189 ± 51 0.0002 -177 ± 52 0.0007 
 

-179 ± 48 0.0002 

∆LDL-particle size (nm) 
         

CCI-all education1 201 20.53 ± 0.04 0.23 (0.54) 1.7x10-9 0.23 ± 0.04 8.9x10-9 20.53 ± 0.04 0.23 ± 0.04 6.0x10-10 

Usual care1 68 20.25 ± 0.07 -0.08 
(0.53) 0.24 -0.08 ± 

0.07 0.25 20.25 ± 0.07 -0.07 ± 
0.06 0.25 

CCI-all vs. usual care2 
  

0.30 ± 0.07 4.4x10-5 0.31 ± 0.08 0.0002 
 

0.30 ± 0.07 3.8x10-15 

∆Total HDL-P (µmol·L-1) 
         

CCI-all education1 203 33.2 ± 0.5 1.5 (4.9) 1.2x10-5 1.5 ± 0.4 2.1x10-5 32.8 ± 0.4 1.5 ± 0.3 5.6x10-6 

Usual care1 68 29.4 ± 0.8 -0.8 (4.7) 0.15 -0.8 ± 0.6 0.23 29.2 ± 0.7 -0.7 ± 0.6 0.23 

CCI-all vs. usual care2 
  

2.3 ± 0.7 0.0004 2.3 ± 0.7 0.003 
 

2.2 ± 0.7 0.0008 

∆Large HDL-P (µmol·L-1) 
         

CCI-all education1 203 5.3 ± 0.2 1.0 (2.2) 2.5x10-11 1.0 ± 0.2 4.1x10-11 5.3 ± 0.2 1.0 ± 0.2 1.2x10-11 

Usual care1 68 3.9 ± 0.3 0.1 (1.6) 0.69 0.2 ± 0.3 0.44 3.9 ± 0.3 0.1 ± 0.2 0.74 

CCI-all vs. usual care2 
  

0.9 ± 0.3 0.0002 0.8 ± 0.3 0.01 
 

0.9 ± 0.3 0.0004 

∆LP-IR score 
         

CCI-all education1 203 58 ± 2 -14 (18) <10-16 -14 ± 1 <10-16 58 ± 1 -14 ± 1 <10-16 

Usual care1 68 74 ± 2 -1 (16) 0.73 -2 ± 2 0.41 75 ± 2 -1 ± 2 0.74 

CCI-all vs. usual care2 
  

-13 ± 2 3.8x10-9 -12 ± 3 6.2x10-6 
 

-13 ± 2 6.2x10-9 

∆C-reactive protein 
(mg·L-1)          
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CCI-all education1 193 5.7 ± 0.5 -3.3 (13.4) <10-8 -3.1 ± 1.0 <10-16 5.6 ± 0.6 -3.6 ± 1.1 <10-16 

Usual care1 70 10.4 ± 1.8 1.3 (13.3) 0.94 0.9 ± 1.7 0.88 10.3 ± 1.6 1.3 ± 1.5 0.93 

CCI-all vs. usual care2 
  

-4.7 ±1.9 1.2x10-6 -4.0 ± 2.0 3.0x10-5 
 

-4.9 ± 1.8 9.3x10-7 

∆WBC (k·mm-3) 
         

CCI-all education1 204 6.5 ± 0.1 -0.7 (1.4) 2.1x10-11 -0.7 ± 0.1 2.1x10-11 6.6 ± 0.1 -0.7 ± 0.1 3.2x10-11 

Usual care1 72 8.3 ± 0.3 -0.1 (1.6) 0.76 -0.1 ± 0.2 0.74 8.1 ± 0.3 -0.1 ± 0.2 0.76 

CCI-all vs. usual care2 
  

-0.6 ± 0.2 0.003 -0.6 ± 0.2 0.004 
 

-0.6 ± 0.2 0.003 

∆10-year ASCVD risk 
(%)          
CCI-all education1 135 10.5 ± 0.7 1.6 (5.4) 0.0004 -1.5 ± 0.6 0.01 9.6 ± 0.5 -1.3 ± 0.3 4.9x10-5 

Usual care1 55 12.7 ± 1.5 1.4 (9.3) 0.28 1.1 ± 1.0 0.27 12.9 ± 1.2 1.2 ± 0.9 0.17 

CCI-all vs. usual care2 
  

03.0 ± 1.3 0.03 -2.6 ± 1.2 0.03 
 

-2.6 ± 1.0 0.008 

∆CIMT-average (mm) 
         

CCI-all education1 144 0.695 ± 0.009 0.002 
(0.055) 0.63 0.003 ± 

0.004 0.45 0.685 ± 0.010 0.002 ± 
0.004 0.65 

Usual care1 68 0.680 ± 0.013 0.004 
(0.041) 0.37 0.002 ± 

0.006 0.74 0.680 ± 0.013 0.001 ± 
0.006 0.87 

CCI-all vs. usual care2 
  

-0.002 ± 
0.007 0.74 0.001 ± 

0.008 0.87 
 

0.001 ± 
0.007 0.88 

∆Statin (%) 
         

CCI-all education1 218 48.2 ± 3.4 -3.7 (34.4) 0.12 -3.6 ± 2.4 0.13 46.7 ± 3.2 -3.3 ± 2.3 0.15 

Usual care1 73 64.4 ± 5.6 9.6 (37.9) 0.03 9.5 ± 4.3 0.03 67.4 ± 5.4 8.8 ± 4.3 0.04 

CCI-all vs. usual care2 
  

-13.3 ± 5.0 0.008 -13.2 ± 5.0 0.009 
 

-12.1 ± 4.9 0.01 

∆Any antihypertensive 
medication (%)          
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CCI-all education1 218 56.4 ± 3.4 -11.9 
(42.3) 3.2x10-5 -11.9 ± 2.9 3.6x10-5 55.8 ± 3.3 -11.4 ± 2.8 5.3x10-5 

Usual care1 73 60.3 ± 5.8 9.6 (41.4) 0.05 9.6 ± 5.1 0.06 61.2 ± 5.6 8.3 ± 4.8 0.09 

CCI-all vs. usual care2 
  

-21.5 ± 5.6 0.0002 -21.6 ± 6.0 0.0004 
 

-19.7 ± 5.6 0.0004 

∆ACE or ARB (%) 
         

CCI-all education1 218 28.9 ± 3.1 0.9 (27.1) 0.62 1.5 ± 1.9 0.42 30.0 ± 2.9 0.6 ± 1.9 0.76 

Usual care1 73 21.9 ± 4.9 5.5 (28.3) 0.1 3.7 ± 3.3 0.27 23.4 ± 4.7 5.0 ± 3.3 0.13 

CCI-all vs. usual care2 
  

-4.6 ± 3.8 0.23 -2.1 ± 3.9 0.59 
 

-4.4 ± 3.8 0.24 

∆Diuretics (%) 
         

CCI-all education1 218 31.7 ± 3.2 -9.6 (41.3) 0.0006 -9.5 ± 2.7 0.0004 31.3 ± 3.1 -9.7 ± 2.7 0.0004 

Usual care1 73 30.1 ± 5.4 5.5 (32.9) 0.16 5.2 ± 4.8 0.28 33.0 ± 5.3 3.2 ± 4.1 0.44 

CCI-all vs. usual care2 
  

-15.1 ± 4.8 0.001 -14.7 ± 5.6 0.009 
 

-12.8 ± 4.9 0.009 
1 Means (standard deviations) are presented.  Sample sizes, means, and significance levels refer to subjects with baseline and one-year measurements for 
completers, and to 349 subjects (262 intervention and 87 usual care) for all starters. Significance levels for completers refer to one-sample t-test with or 
without adjustment.  Untransformed triglyceride and C-reactive protein values are presented, however, their statistical significances were based on their 
log-transformed values.  All CC refers to the CCI-web and CCI-onsite combined. 
2 Mean differences ± one standard error.  Significance levels refer to two-sample t-test or analysis of covariance for the differences. 
3 Adjusted for sex, age, baseline BMI, baseline insulin use (user vs. non-user), and African-American race. 
4 Imputed values based on 700 iterations from multivariate normal regression. 
5 A significance level of P<0.0019 ensures overall simultaneous significance of P≤0.05 over the 26 variables using Bonferroni correction. 
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