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Abstract

Objective: Cognitive impairment (CI) is common in children with epilepsy
and can have devastating effects on their quality of life and that of their family.
Early identification of CI is a priority to improve outcomes, but the current
gold standard of detection with psychometric assessment is resource intensive
and not always available. This paper proposes a novel technique of network
analysis using routine clinical electroencephalography (EEG) to help identify
CI in children with early-onset epilepsy (CWEOE) (0-5 y.o.).

Methods: We analyzed functional networks from routinely acquired EEGs of 51
newly diagnosed CWEOE from a prospective population-based study. Combi-
nations of connectivity metrics (e.g. phase-slope index (PSI)) with sub-network
analysis (e.g. cluster-span threshold (CST)) identified significant correlations
between network properties and cognition scores via rank correlation analy-
sis with Kendall’s 7. Predictive properties were investigated using a 5-fold
cross-validated K-Nearest Neighbor classification model with normal cognition,
mild/moderate CI and severe CI classes.

Results: Phase-dependent connectivity metrics had higher sensitivity to cogni-
tion scores, with sub-networks identifying significant functional network changes
over a broad range of spectral frequencies. Approximately 70.5% of all children
were appropriately classified as normal cognition, mild/moderate CI or severe
CI using CST network features. CST classification predicted CI classes 55%
better than chance, and reduced misclassification penalties by half.
Conclusions: CI in CWEOE can be detected with sensitivity at 85% (with re-
spect to identifying either mild/moderate or severe CI) and specificity of 84%,
by EEG network analysis.
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Significance: This study outlines a data-driven methodology for identifying
candidate biomarkers of CI in CWEOE from network features. Following addi-
tional replication, the proposed method and its use of routinely acquired EEG
forms an attractive proposition for supporting clinical assessment of CI.

Keywords: Network analysis, signal processing, EEG graph networks,
paediatric epilepsy, developmental impairment

Highlights

e EEG network analysis correlates with CI in preschool children
with epilepsy

1 e Classification reveals network features’ predictive potential for CI
identification

e Sensitivity to CI improves with dense networks and phase-based
connectivity measures

> 1. Introduction

3 Epilepsy is a complex disease that can have devastating effects on quality of
+ life [1]. Cognitive impairment (CI), which frequently and severely affects quality
s of life of children and their families, coexists in more than half of children with
s epilepsy [2, B, 4, 5]. Timely identification of CI, particularly in children with
7 early-onset epilepsy (CWEOE; epilepsy onset < 5 years of age) is critical because
s early-life interventions are likely to be more effective, it is the period in which
o childhood epilepsy is most common, and the most severe forms occur during this
o time [0 [7, 8]. An estimated 40% of CWEOE have CI [5]. The urgent need for
n emphasis on early recognition, novel interventions and improved public health
12 strategies for primary and secondary prevention for CI in epilepsy is highlighted
13 in calls to action by august bodies including the International League Against
1w Epilepsy, The Institute of Medicine, and the World Health Organization [9} [10].
15 Therefore, there is a need to understand the causes of CI and find reliable,
16 affordable and non-invasive markers beyond current standard approaches.

Y Identification of CI is especially difficult in CWEOE because the gold stan-
18 dard of diagnosis by psychological assessments may not be readily available [I1],
v it is resource intensive, and can be clinically challenging (e.g. introducing po-
20 tential bias from repeated testing) [II]. Thus, reliable, affordable and rapid
a1 CI screening techniques in clinical care are sought after. Such techniques would
2 help focus further medical investigations and resources onto a smaller subgroup,
3 producing efficiency gains and cost savings. Graph network analysis of standard
2 routine clinical EEG recordings is one such potential technique.

2 Analysis of functional EEG networks offers a data-driven methodology for
s understanding diverse brain conditions through the lens of network (connec-
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Figure 1: Flowchart of data processing chain for an individual child. ICOH = Imaginary part
of coherency, PSI = Phase-slope index, WPLI = Weighted phase-lag index, MST = Minimum
Spanning Tree, CST = Cluster-Span Threshold

o tivity) properties [12) [[3]. Functional networks examined as graphs are well-
s established, and provide advantages in understanding changes in connectivity
2 across the brain, e.g. through exploiting properties like small-world topology,
s connected hubs and modularity [13]. Insights into epilepsy, including the sever-
a1 ity of cognitive disturbances, outcomes of epilepsy surgery, and disease duration
2 have been found to correlate with the extent of changes in these functional net-
13 works [I4]. Recent work has also found network abnormalities can appear in
1 both ictal and interictal states [I4]. This supports that network can be distin-
55 guished in resting-state EEG [14]. Therefore, functional graph analysis is well
s positioned as a potential tool to reveal insights into CI in CWEOE.

37 The aim of this study was to identify a reliable EEG network marker which
;s could help effectively screen for CI in CWEOE. Our hypothesis was two-fold.
s First, informative network abnormalities could be revealed in CWEOE using
w0 graph network analysis on routine clinical EEGs. Second, identified abnormali-
a1 ties could be integrated into a simple machine learning paradigm to demonstrate
«» predictive capabilities with respect to CI. We aimed to utilize a data-driven,
s quantitative approach to identify potential network markers. Then, we could
« integrate their information into a simple classification pipeline, which could be
s readily implemented to support clinical decisions regarding CI. By investigating
s only routine EEG recordings, we hoped to demonstrate that minimal potential
w cost and effort would be required to adopt our proposed technique in a clinical
s setting.

w9 2. Methods

50 The data processing pipeline for each child is summarized in Figure
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si 2.1. Dataset

52 The details on study recruitment and assessments are reported elsewhere
53 [15]. In summary, newly diagnosed CWEOE of mixed epilepsy types and aetiolo-
s« gies were recruited as part of a prospective population-based study of neurode-
55 velopment in CWEOQOE. Parents gave approval for use of the standard, resting-
ss  state, awake 10-20 EEG their child had as part of their routine clinical care. If a
sz child had multiple EEGs, only the first EEG was used to avoid biasing results to-
ss  ward children with multiple recordings. Additionally, it allowed similar selection
so  of resting-state recordings across all children, e.g. awake resting-state. As such,
s 10 EEG recordings of sleep were analysed in this work. All analyses were blinded
61 to any treatment or seizure frequency information. Participants underwent cog-
¢ nitive assessment with age-appropriate standardized tools, e.g. Bayley Scales
63 of Infant and Toddler Development- Third Edition (Bayley-III) and Wechsler
s« Preschool and Primary Scale of Intelligence-Third Edition (WPPSI-III). Chil-
s dren who scored within +1 standard deviation (SD) of the normative mean
o were defined as normal, —1 to —2 SD as having mild/moderate CI, and < —2
o7 SD as having severe CI. The cognition scores from Bayley-III and WPPSI-III
¢ tests were converted into a normalized standard score measure. Clinical details
e were collected by members of the research team using a standardized proforma
7 by direct interview of care-givers, medical records and, where possible, patients
7 themselves when they attended for clinical and/or research study assessment.
72 Table [1| provides the demographic and clinical features for the CWEOE
72 which were included in this study. Given the broad anti-epileptic drug (AED)
=  therapies and aetiologies present in Table [I| potential interactions from AED
s load or specific aetiology were examined with respect to the designated CI classes
75 (e.g. normal, mild/moderate, severe CI). Using a non-parametric version of the
7 two-way ANOVA (Friedman’s test [16]) on data from Table |1} we revealed no
7 significant interactions between any AED load or specific aetiology with respect
7 to any CI classes. This in turn suggests that the results identified via network
so analysis are likely driven mainly by cognitive phenomena, as opposed to epileptic
s syndrome or AED load effects.

8 A retrospective analysis was done on 32-channel, unipolar montage with
ss  average reference captured routine EEGs. EEGs were recorded at 20 scalp
s electrodes (FP1, FP2, FPz, F3, F4, F7, F8, Fz, C3, C4, Cz, P3, P4, Pz, T3,
es T4, T5, T6, 01, 02), eight auxiliary electrodes (AUX1-8), two grounding (A1,
ss  A2) and two ocular electrodes(PG1, PG2).

s 2.2. Pre-processing

88 EEG recordings were pre-processed in MATLAB using the Fieldtrip tool-
» box [I7]. The EEG had a sampling rate of approximately 511 Hz. Recordings
w were re-referenced to a common average reference (CAR), and bandpass fil-
a1 tered between 0.5-45 Hz in Fieldtrip. The resting-state data was split into non-
e overlapping, two second long sub-trials; long enough to pick up any resting-state
o3 network activity, while still fitting at least one full period of the lowest included
w frequency.
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Normal (n =31) Mild/Moderate CI (n =7) Severe CI (n = 13)

Age in months (SD) 36.18 (19.87)7  26.76 (17.06) 20.37 (18.56)]
Male:Female Ratio 20:11 6:1 6:7
Ethnicity

Asian 2 (6%) - 1 (8%)

Black 1 (14%)

White (U.K./European) 29 (94%) 6 (86%) 12 (92%)
Antiepileptic Drugs

None 3 (10%) 1 (14%) -

Monotherapy 26 (84%) 6 (86%) 9 (69%)

Polytherapy 2 (06%) - 4 (31%)
Focal Seizures 12 (39%) 3 (43%) 4 (31%)
Generalized Seizures 18 (58%) 2 (28.%) 9 (69%)
Generalized and Focal 1 (3%) 2 (28.5%) -
Epilepsy aetiology

Cryptogenic 3 (10%) 1 (14%) 5 (38%)

Idiopathic 24 (77%) 4 (57%) 1 (8%)

Symptomatic 3 (10%) 2 (29%) 7 (54%)

Unknown 1 (3%) - -
Cognitive z-score (SD) -0.05 (0.66) -1.41 (0.20) -2.9 (0.27)

Table 1: Demographic and clinical feature information of patients, grouped by CI classes of
normal, mild/moderate CI, and severe CI. Significant differences between groups with respect
to age are indicated by a T (Kruskal-Wallis with post-hoc Mann-Whitney U; H = 6.4697,
p < 0.05, with mean ranks of 30, 23.7143, and 17.6923 for Normal, Mild/Moderate CI and
Severe CI respectively.)

% Prior to data processing, seizure activity in the EEGs were confirmed by
o clinicians. Whole trials which contained seizure activity were excluded from
or  the analysis, rather than excluding only sections of trials with evident seizure
e activity. This helped guarantee that all network trials were derived from a
o minimum of two continuous seconds of seizure-free EEG. The small time window
w0 helped to balance removing large amounts of useful EEG data, while retaining
1w enough data to characterize the frequencies present.

102 Standard EEG artefacts were rejected using a 2-step approach with manual
03 and automatic rejection. Manual artefact rejection first removed clear outliers
s in both trial and channel data based upon high variance values (var > 10°).
s Muscle, jump and ocular artefacts were then automatically identified using strict
s Tejection criteria relative to the Fieldtrip default suggested values [17] (Field-
w7 trip release range R2015-R2016b, z-value rejection level r = 0.4). All trials
s  containing EEG artefacts were excluded from analysis. For subjects, we aver-
w0 aged across all trials at each frequency band, to help reduce potential bias and
no  variance resulting from our selection of a shorter analysis window.

m A narrow band (2-Hz wide) approach was used in analysis of clean EEG
2 data, similar to work done by Miskovic et al. [I8]. Segmenting the frequency
us  range into these narrow bands (e.g. 1-3 Hz, 3-5 Hz,...) provided a data-driven
us approach to interrogate networks across subjects. The a priori nature of the in-
us  vestigation avoided attempts at equivocating the (likely heterogeneous) impact
us  of epilepsy, development, medication etc. on each child’s spectral EEG compo-
u7  sition. While such narrow bands may eschew some physiological interpretations
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us by not adhering to classical frequency bands, the narrow bands promoted iden-
o tification of mainly robust, common network abnormalities across the heteroge-
20 neous CWEOE population. If significant network abnormalities were identified
w1 in these narrow frequency bands (after correction for multiple comparisons, age
122 and spurious correlations) then the identified results were likely a strong effect.

13 2.8. Network Coupling Analysis

124 The processed data was analyzed using functional EEG graph analysis, based
125 on ‘functional links’ connecting any pair of EEG channels ¢ and j, derived from
126 the cross-spectrum of the data. Appendix A provides the detailed, formal def-
127 initions for the cross-spectrum and the network analysis methods described
128 below. A summary of these definitions are included here for clarity. In brief,
o this study selected several measures of dependencies in EEG recordings, cre-
1o ated graph networks based on these measures and characterized the created
1 networks to identify candidate biomarkers for classification and identification of
12z Cl in CWEOE.

133 This study investigates three connectivity analysis methods building from
w the cross-spectrum viz: (1) the imaginary part of coherency (ICOH) [19], (2)
155 phase-slope index (PSI) [20], and (3) weighted phase-lag index [21] 22].

136 ICOH is a standard measure in functional network analysis [19]. ICOH is
137 well documented, and has been shown to provide direct measures of true brain
s interactions from EEG while eliminating self-interaction and volume conduction
o effects [I9]. A weakness of ICOH, however, is its dependence on phase-delays,
wo resulting in identifying functional connections only at specific phase differences
1 between signals, while completely failing for others [21], 22| 23].

142 The PSI [20] was selected as a complementary alternative to ICOH for anal-
s ysis. In practice, the PSI examines causal relations (temporal order) between
w  two sources for signals of interest, e.g. s; and s; [20]. PSI exploits the phase
us  differences between the sources to identify the ‘driving’ versus ‘receiving’ re-
us lationship between the sources [20]. Their average phase-slope differences are
w7 used to identify functional links [20]. Importantly, unlike ICOH, the PSI is
us equally sensitive to all phase differences from cross-spectral data [20]. However,
us the PSI equally weights contributions from all phase differences, meaning even
150 small phasic perturbations are equal to the (defining) large perturbations.

151 Therefore the weighted phase-lag index (WPLI) was included as a third com-
152 parative measurement for analysis [21] 22]. The standard phase-lag index (PLI)
153 [21] is a robust measure derived from the asymmetry of instantancous phase
154 differences between two signals, resulting in a measure which is less sensitive to
155 volume conduction effects and independent of signal amplitudes [21]. The PLI
156 ranges between 0 and 1, where PLI of zero indicates no coupling (or coupling
157 with a specific phase difference; see [2I] for details), while a PLI of 1 indicates
s perfect phase locking [2I]. The PLI’s sensitivity to noise, however, is hindered
159 as small perturbations can turn phase lags into leads and vice versa [22].

160 A weighted version of the PLI was introduced (weighted PLI; WPLI) [22]
11 to counter this effect. The WPLI adds proportional weighting based on the
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e imaginary component of the cross-spectrum [22]. The proportional weighting
163 alleviates the noise sensitivity in PLI. The WPLI, like the PSI, helps capture
1« potential phase-sensitive connections present in EEG networks from another
165 perspective.

w6 2.4. Adjacency Matrices and Sub-Networks

167 The estimated functional connectivity between channel pairs ¢ and j com-
168 prising the weighted functional network of a subject can be represented by an
1o adjacency matrix. The functional connections found for the ICOH, PSI, and
wo  WPLI measures were therefore represented via adjacency matrices in the analy-
i sis below. A set of adjacency matrices for a representative normal and impaired
12 cognition child in the range of 5-9 Hz are included in Apppendix B, Figures
w3 and respectively.

174 Methodological choices associated with constructing and comparing graphs
s from the adjacency matrix can introduce bias in the network analysis (see [24]
ws 25 [26] for details). Therefore, we used two methods for defining unbiased sub-
17 networks of the functional EEG for comparison and analysis: the Minimum
s Spanning Tree (MST) [24] and the Cluster-Span Threshold (CST) [27].

179 The MST is an acyclic, sub-network graph which connects all nodes (elec-
o trodes) of a graph while minimizing link weights (connectivity strength) based
;1 on applying Kruskal’s algorithm on the weighted network [24], 28]. In brief, the
12 algorithm orders the link weights in a descending manner (i.e. from strongest
13 connection to weakest), constructing the MST by starting with the largest link
1 weight and adding the next largest link weight until all nodes, NV, are connected
s in an acyclic sub-network with a fixed density of M = N — 1 [24]. After con-
s struction of the sub-network, all weights are assigned a value of one [24]. In this
w7 manner, the MST is able to efficiently capture a majority of essential properties
s underlying a complex network in an unbiased sub-network [24].

189 Exploiting the properties of the MST is a standard technique common in
wo recent publications exploring brain networks [24]. However, since the MST
11 naturally leads to sparse networks in the data due to its acyclic nature, and that
12 in some occasions more dense networks may be preferable, there is potentially
13 real brain network information lost in the MST based EEG graph analysis [29].
104 By contrast, the CST creates a similar sub-network, but balances the pro-
s portion of cyclic ‘clustering’ (connected) and acyclic ‘spanning’ (unconnected)
s structures within a graph (for details see [27]). This balance thus retains nat-
1wz urally occurring ’loops’ which can reflect dense networks without potential in-
s formation loss [29] while still producing an unbiased sub-network for analysis.
o Figure [2] illustrates a topographical example of EEG channels connected via
200 MST and CST networks for a randomly selected child. Differences in sparsity
20 between the acyclic MST and the cyclic CST sub-networks can readily be seen
22 in Figure[2] Both the MST and CST are binary sub-networks, which have addi-
203 tional advantages over weighted networks, e.g. the adjacency matrix [24] 27, [29).
204 For each combination of sub-networks and connectivity definitions above
25 (e.g. MST-ICOH, CST-ICOH, MST-PSI, etc.) four network metrics were in-
26 vestigated for correlation to the cognition standard score measures. To help
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Figure 2: Illustrative examples of the MST and CST sub-network graphs of ICOH, PSI and
WPLI for a randomly selected child. EEG channels are displayed as nodes, with functional
connections displayed for each combination of sub-network and connectivity measure.
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27 reduce potential selection bias, network metrics for analysis were agreed upon a
208 priori. Metrics were chosen to account for distinct network properties (e.g. the
200 shape of the network, the critical connection points in the network etc.) with
20 (relatively) little inter-correlation. Due to the natural exclusion/inclusion of cy-
an cles, the network metrics differ for the MST and CST, respectively. However, all
212 metrics across sub-networks were selected to be comparable regarding network
a3 properties. Pictorial examples of the selected network metrics, alongside short
a1 definitions, are outlined in Figure

as 2.5, Statistical Analysis

216 Statistical analysis was done using Matlab 2015a. Correlation between in-
27 dividual network metrics and the cognition standard score was measured using
28 Kendall’s tau (1) [30]. Kendall’s 7 calculates the difference between concor-
20 dant and discordant pairs[30} [3T], and is ideal for describing ordinal or ranking
20 properties, like the normalized cognition standard score. Its design is also rela-
21 tively robust to false positive correlations from data outliers [30, B1I], providing
22 additional mitigation to spurious correlations in the results. Furthermore, as
»3  Kendall’s 7 is a non-parametric hypothesis test it did not rely on any underly-
24 ing assumptions about the distribution of the data. Therefore our correlation
»s analysis was robust to any potential ceiling, floor or skewed distribution effects
26 present in the reported cognition standard score measures.

27 Correlation trends are reported both as uncorrected p < 0.05 values, and
»s  with multiple comparison (Bonferroni) corrections, similar in style to previous
20 literature [32]. For each frequency bin (2-Hz wide) and network, we compared
20 and corrected for the 4 separate graph measures using the Bonferroni technique
o (i.e. we set p=0.05/4 = 0.0125 as the threshold for significance). Dependency
2 was assumed across the small 2-Hz frequency bins, similar in principle to [32],
23 and as such we do not include the frequency bins in the Bonferroni correction.
24 Correlations which are found to be potentially significant under this assumption
235 are indicated by the { symbol for Bonferroni corrections.

a6 2.0. Classification

237 A multi-class classification scheme was devised using the Weka toolbox [33]
2 [34]. Class labels of normal, mild/moderate CI, and severe CI were applied.
239 Primary feature selection included all correlations identified by the statistical

20 analysis, thereby allowing potential interpretation of the retained network fea-
2n tures. Then, a second feature selection phase using nested 5-fold cross-validation
22 selected prominent features via bi-directional subspace evaluation [35]. Within
23 this nested cross-validation, features identified as important in > 70% of the
24 folds were selected for use in classification.

245 Due to natural skew of the data (towards normalcy), and the context of
26 the classification problem (e.g. misclassifying different classes has various im-
27 plications), a cost-sensitive classifier was developed [36]. In order to properly
s develop such a classifier, an appropriate cost matrix needed to be identified.
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MST CST

Diameter: The longest 'shortest | Clustering Coefficient:
path' from any two nodes Formed 'clustering' triangles out of
all possible triangle clusters (max)

Max Degree: The node with Average Degree: The
the largest number of connecting | average degree of all graph nodes
edges 2 2 2 2

Leaf Fraction: The fraction of | Variance Degree: The

the total nodes with degree = 1 variance of all degree values in a
graph 2 2

3 =1/2

1

Betweenness Centrality: Betweenness Centrality:
Measures 'centrality' of nodes with | Measures 'centrality' of nodes with
respect to various shortest paths respect to various shortest paths

Figure 3: Illustration of all graph analysis metrics for the Minimum Spanning Tree (MST)
and Cluster-Span Threshold (CST) networks using simple example graphs. Nodes (dots)
represent EEG channel electrodes. Edges (lines) represent functional interactions between
EEG channels identified by a connectivity measure, e.g. ICOH/PSI/WPLI.
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Multi-class Classification Cost Matrix
CI-Predicted Class
Normal Mild/Mod. Severe

Normal 0 2.5 2.5
g'Tme Mild/Mod. 5 0 1
ass Severe 5 1 0

Table 2: Weighted cost matrix for misclassification of cognitive impairment (CI) for normal
(£1 SD), mild/moderate (—1 to —2 SD) and severe (< —2 SD) classes. Rows represent true
class labels, with columns as the predicted classification labels.

20 Using guidelines outlined in literature [36], the cost matrix in Table [2f was de-
0 veloped, with predicted classes on the rows and real classes on the columns.
251

250 The defined matrix satisfies several key concerns in multi-class cost-matrix
253 development [36]. The weights on misclassification were carefully selected to
4 reflect probable clinical concerns in classification with guidance from paediatric
25 neurologists (RC, JS). The cost for incorrectly classifying an impaired child
6 as normal was twice as heavy compared to misclassifying a normal child into
s either impaired group, which was still significantly more punishing than cor-
s rectly identifying impairment and only misclassifying between mild/moderate
50 or severe impairments. These weighted values prioritized correctly including as
%0 many ‘true positive’ CWEOE with CI, i.e. increasing sensitivity, followed by a
s secondary prioritization upon being able to discern the level of CI. These bound-
x%2  aries provide a more clinically relevant classification context in the analysis.

263 Using the selected features and developed cost-sensitive matrix, a nested
26 H-fold cross-validation trained a simple K-Nearest Neighbour (KNN) classifier,
s with NV = 3 neighbours and Euclidean distance to minimize the above costs.
%6 By demonstrating our proof-of-concept results with a simple classifier first, e.g.
27 KNN, we aimed to highlight that network response found from our analysis
s pipeline was likely robust. A repeated ‘bagging’ (Boostrap Aggregation [37])
%0 approach was used to reduce variance in the classifier at a rate of 100 iter-
zo ations/fold. Results were evaluated upon their overall classification accuracy
on and total penalty costs (e.g. sum of all mistakes based on the cost matrix).

72 Random classification and naive classification (e.g. only choosing a single
a3 class for all subjects) were included for comparison. In this study, random clas-
aa  sification refers to classification of any 'true’ class label to a randomly selected
as predicted’ class label. Based on the distribution of subjects into the classes, a
o ‘chance’ level for each class is used to assign the ’predicted’ label at random.
o7 Naive classification (e.g. single-class classification), assumes that all subjects
s belong to only one class. Classification accuracy and misclassification penalties
2o are then calculated based on the presumed (single) class assignment. This study
20 looked at naive classification for each class label, and have reported comparisons
21 to each possible naive classification.
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2 3. Results

283 Of 64 children enrolled into the parent study, 13 were excluded from the
284 current study due to corrupted EEG data and inconsistent or incompatible EEG
25 acquisition parameters. There were data available for analysis on 51 children
26 (32:19 male-to-female ratio, mean age and SD of 30.85 £ 20.08 months). On
27 average approximately 455 + 325 two second trials were used for each child in
s the analysis, totalling 15.16 &+ 11.87 minutes of resting-state EEG data for each
280 child. Thirty-one children had normal cognition, 7 had mild/moderate CI, and
20 13 had severe CL.

2 8.1. Correlation Analysis

202 Each combination of functional link analysis (ICOH/PSI/WPLI) and sub-
23 network selection (MST/CST) techniques uncovered likely correlations between
204 at least one network metric (outlined in Figure [3]) and the cognition standard
205 score measures. A summary of the significant correlations between the MST
s metrics and the standard scores are shown in Table Bl All MST correlations
27 were in the medium to high frequency range, 9 — 31 Hz, with no significant
208 results in lower frequencies. Activity above approximately 9 Hz is outside of the
20 expected range for the delta, theta and alpha bands in young children [38] [39].
w0 Sets of contiguous frequency bands with significant correlations were found in
sn the ICOH and PSI connectivity measures, and are reported together as a single
s frequency range. Overlapping correlations retained at significant levels after
w3 partial correlation correcting for age are also reported for the MST using a
s+ modified Kendall’s 7.

305 Similarly, significant correlations between the CST metrics and the cogni-
ws tion standard scores are shown in Table[dl Several significant CST metrics exist
a7 in the lower frequency range (< 9 Hz), indicating a potential sensitivity of the
s CST to lower frequencies. No sets of continuous frequency bands were discov-
w0 ered, but several sets were trending towards this phenomenon within ICOH.
s Multiple overlapping correlations remaining after partial correlation correction
su  for age from the modified 7 in the CST at lower frequencies indicate additional
312 sensitivity.

313 Both the MST and CST demonstrate high sensitivity in the phase-dependent
su  measures (PSI, WPLI) compared to the standard ICOH.

sis 3.2. KNN Classification

316 Based upon CST’s sensitivity, a preliminary classification scheme assessed
siz  the potential predictive qualities of the CST network metrics in identifying CI
ais  classes. The relative quality of the classifications are examined using classifica-
a0 tion accuracy and total ‘cost’ (i.e. penalty for misidentification) [36].

320 The subset of CST metrics for classification, identified from significant cor-
;21 relations and chosen via cross-validated feature selection, included five network
;22 metrics across the three connectivity measures. For ICOH, the identified subset
223 selected was the betweenness centrality at ranges 11-13 and 19-21 Hz along-
s24  side the clustering coeflicient at a range of 15-17 Hz. The subset also included
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MST analysis of cognition standard score measures

Network Type | Network Measurement | Frequency Range(s) (Hz) | Correlation (7 + SD)

ICOH Diameter - -

ICOH Maximum Degree - -

ICOH Leaf Fraction - -

ICOH Betweenness Centrality 13-17 Hz —0.231 £ 0.001
PSI Diameter 9-19 Hz 0.239 + 0.0327
PSI Maximum Degree 11-13 Hz —0.232 £+ 0.000*
PSI Maximum Degree 15-17 Hz —0.258 & 0.000"*
PSI Maximum Degree 21-23 Hz —0.219 £+ 0.000
PSI Leaf Fraction 11-13 Hz —0.201 £ 0.000
PSI Leaf Fraction 15-19 Hz —0.246 £+ 0.003
PSI Betweenness Centrality 9-13 Hz —0.218 £ 0.012*
PSI Betweenness Centrality 17-19 Hz —0.259 & 0.0007*

WPLI Diameter - -

WPLI Maximum Degree 29-31 Hz —0.310 £ 0.000"*

WPLI Leaf Fraction - -

WPLI Betweenness Centrality 23-25 Hz 0.223 + 0.000

Table 3: Summary of Kendall’s 7 correlation trends between various graph metrics and the
cognition standard scores using the Minimum Spanning Tree (MST). For all values |7| was
between 0.201 and 0.310; mean = 0.239 £ 0.0278 and uncorrected p < 0.05. Significant values
across contiguous narrow-band frequencies have been grouped together for ease of interpreta-
tion.

T Significant with Bonferroni correction at the level of frequencies.

* Significant after partial correlation correction to age of subjects, via modified 7 with uncor-
rected p < 0.05.

w5 the PSI average degree at 13-15 Hz and the WPLI variance degree from 1-3
s Hz. These results indicate specifically which network metrics, from a machine-
sz learning perspective, contributed the most information for building an accurate
w8 classification model. As such, the classifier was trained specifically, and only,
29 using these 5 key metrics. An illustrative example of these 5 selected network
;0 metrics (e.g. features) are shown in Figure 4] as scatter plots. When training
sn  the classifier, these network features are used to identify the underlying patterns
s not readily observed, and are incorporated into guiding the machine learning
;3 algorithm.

334 It bears repeating that Kendall’s 7 is a non-parametric significance test,
15 which means it does not rely on an underlying assumption of a specific type of
335 distribution in the data. Therefore, Kendall’'s 7 correlation was robust to the
s apparent flooring effect seen in the severe CI class, as it utilizes concordant and
138 discordant pairs. Therefore our choice of features from the statistical analysis
;9 remains unaffected.

340 The resulting confusion matrix from the 5-fold cross-validated, cost-sensitive
sa  classification analysis is seen in Table 5] with key summary
342 The overall classification accuracy was defined as the number of true label

a3 classes correctly predicted by the classifier, e.g. the true positive diagonal of
s Table Presently, approximately 36 of the 51 children’s cognitive class (e.g.
1 normal, mild/moderate CI, severe CI) were correctly predicted, giving a total
us accuracy of the classifier at 70.6%. Using Table[2] an overall ‘cost-penalty’ value
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CST analysis of cognition standard score measures

Network Type | Network Measurement | Frequency Range(s) (Hz) | Correlation (7 + SD)
ICOH Clustering Coefficient 15-17 Hz —0.290 £+ 0.000™
ICOH Average Degree - -

ICOH Variance of Degree 13-15 Hz —0.200 £+ 0.000
ICOH Variance of Degree 21-23 Hz —0.203 4 0.000
ICOH Betweenness Centrality 11-13 Hz —0.273 + 0.0001*
ICOH Betweenness Centrality 15-17 Hz —0.241 £+ 0.000
ICOH Betweenness Centrality 19-21 Hz —0.203 £ 0.000
PSI Clustering Coefficient - -
PSI Average Degree 13-15 Hz —0.210 £ 0.000
PSI Variance of Degree 15-17 Hz —0.277 & 0.000"*
PSI Variance of Degree 21-23 Hz —0.217 £ 0.000
PSI Betweenness Centrality 5-7 Hz 0.204 £+ 0.000*
PSI Betweenness Centrality 15-17 Hz —0.248 £+ 0.000
WPLI Clustering Coefficient 1-3 Hz —0.236 &+ 0.000*
WPLI Clustering Coefficient 17-19 Hz 0.287 £ 0.0001*
WPLI Average Degree - -
WPLI Variance of Degree 1-3 Hz —0.236 £ 0.000*
WPLI Betweenness Centrality - -

Table 4: Summary of Kendall’s 7 correlation trends between various graph metrics and the
cognition standard scores using the Cluster-Span Threshold (CST).For all values || was be-
tween 0.201 and 0.290; mean = 0.237 £ 0.033, and uncorrected p < 0.05. Significant values
across contiguous narrow-band frequencies have been grouped together for ease of interpreta-
tion.

T Significant with Bonferroni correction at the level of frequencies.

* Significant after partial correlation correction to age of subjects, via modified 7 with uncor-
rected p < 0.05.

Confusion Matrix from Classification Results
CI-Predicted Class
Normal Mild/Mod. Severe

Normal 26 2 3
gf'Tme Mild/Mod. 2 3 2
ass Severe 1 5 7

Table 5: Resulting confusion matrix from the 5-fold cross-validated, cost-sensitive classifica-
tion scheme for all n = 51 children based on costs in Table @ Rows represent true class labels,
with columns as the predicted labels from the classification. Bold values along the diagonal
show true positive classification results, where actual and predicted cognitive classes were ac-
curately identified. Italicized values indicate children predicted to have CI, i.e. mild/moderate
or severe class, by the classification scheme.
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Figure 4: Scatter plot displaying the distribution of children for each of the 5 features used in
training the KNN classification. Each panel displays network values on the y-axis, with the
normalized cognition standard score (z-score) on the x-axis. Children classified into normal,
mild/moderate CI and severe CI classes are displayed in red, green and blue respectively.
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Classification Scheme
Network Analysis Random Naive Class Naive Value
Total Accuracy 70.6% (36/51) 45.4%(~23/51) Normal Cognition  60.8% (31/51)
Mild/Moderate CI  13.7% (7/51)
Severe CI 25.5% (13/51)
Total Cost Penalty | 38 pts ~65 pts Normal Cognition 100 pts
Mild/Moderate CI ~ 90.5 pts
Severe CI 84.5 pts

Table 6: Summary table of overall classification accuracies and total cost penalty for the pro-
posed network analysis, random classification, and naive (single class) classification. Naive
classification is split to show overall classification accuracy and cost penalties if all children
were assigned as normal cognition, mild/moderate CI or severe CI classes. Total accuracy in-
cludes the approximate number of children with true positive predictions, out of total number
of children evaluated.

a7 was calculated at 38 points, based on the children who were misclassified, i.e.
us  their cognitive class was not correctly predicted.

349 The expected random classification accuracy is based on the distribution
0 of individuals belonging to each class, i.e. 31, 7 and 13 children for the nor-
1 mal, mild/moderate and severe classes respectively. Random accuracy would
2 be expected at 45.4%, with cost-penalty varying depending on misclassification
53 distributions. Using the average misclassification penalty and the percentage of
3 misidentified children (approximately 28 of the 51 subjects), the cost-penalty
5 would be at least 65 points.

356 Naive, or one-class classification assumes all subjects belong to a single class
7 only. For example, if all children were considered to only belong to the ‘normal’
s cognition class (i.e. naively classified as normal), then exactly 31 of the 51
30 children (those whose true class is ‘normal’-the first row of Table [5) would be
0 correctly identified, giving a naive classification accuracy of 60.8%. Repeating
s1  this naive classification scheme for mild/moderate and severe classes provides
sz naive classification accuracies of 13.7% (7/51), and 25.5% (13/51) respectively.
3 Similarly, the total cost-penalty for each naive classification would be 100, 90.5
s« and 84.5 points respectively, using the same procedure and the penalty costs
s from Table 2

366 Overall, the results indicate gains in classification accuracy and a reduced
7 total penalty as compared to both random and naive classification. This is
s summarized in Table [6

0 4. Discussion

370 The main finding of this study is the development of novel methods towards
sn  identifying a potential computational biomarker for CI in CWEOE. The auto-
sz mated and quantitative nature of the processing chain, ability to appropriately
sz predict CI classes, and its use of routinely acquired EEG data make the pro-
s posed methods an attractive proposition for clinical applications. Our results
w5 indicate a substantial pool of potential characteristics might be identified using
s the proposed methods with several network analysis and filtering combinations.
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sz The breadth of these combinations emphasizes the general suitability of EEG
s networks in identifying possible CI markers in CWEOE.

379 Flexibility in sensitivity and robustness of particular networks to features
s of interest is an advantage of this analysis. For instance, the sensitivity of
s phase-dependent connectivity measures, e.g. PSI and WPLI, was more preva-
s2  lent compared to standard ICOH. This is not surprising as phase-oriented mea-
w3 sures were developed to improve upon phase ambiguities in traditional ICOH
s« measurements [20, 23]. In addition, the sensitivity of PSI in picking up signifi-
;s cant correlations can be attributed in part to its equal treatment of small phase
s differences in leading and lagging signals [20]. Such small phase differences con-
s7  tribute equally in PSI, while counting for proportionally less in the WPLI by
ss  definition [22] 2T]. By construction, the WPLI results are substantially more
s robust to noise and small perturbations in phase, through proportionally reflect-
w0 ing phase differences in network connections with appropriate weights, providing
s results for only large phase differences. Together these measures reflect trade-off
s choices between sensitivity and robustness for network analysis.

303 Of interest for paediatric populations is the CST’s capability to identify low
su  frequency correlations in phase-dependent coherency measures. Both the PSI
s and WPLI demonstrate sensitivity to lower frequencies, not present in the ICOH
w6 or MST in general. This is critical considering that in preschool children lower
s frequencies typically contain the bands of interest present in adult EEGs, e.g.
s the delta/theta/alpha bands [38] [39]. During development these bands shift to
30 higher frequencies [40], reflecting a large scale reorganization of the endogenous
w0 brain electric fields and suggesting a transition to more functionally integrated
w0 and coordinated neuronal activity [I8]. The (low) chance of all such significant
a2 findings being spurious is of less detriment than the potential loss of impact
w3 for disregarding the findings if at least one of them is true. The sensitivity to
ws  detect network disruptions already present in these critical bands in CWEOE
a5 provide high value in adjusting potential therapeutic and treatment strategies
w6 for clinicians.

407 The identified subset of metrics for classification provide additional informa-
w8 tion. All of the features in the subset reflected distribution measures of hub-like
a0 mnetwork structures in the brain, relating to the balance between heterogene-
a0 ity and centrality within the network. The implicated metrics, other than the
a1 variance degree, corresponded to measures identifying local, centralized ‘criti-
a2 cal’ nodes in a network. Their negative correlation to the cognition standard
a3 scores imply that children with more locally centralized brain networks, and
e consequently with less well distributed hub-like structures, are more likely to
a5 have corresponding cognitive impairment. This is reasonable, since if there ex-
a6 ists a small set of central, critical hubs responsible for communication across the
a7 brain, disruption of these critical points (e.g. due to seizure activity) would have
s severely negative effects on communication connections. This is also supported
a0 by the negative correlation in the variance degree metric in the WPLI. The vari-
w0 ance degree can be interpreted as a measure of a network’s heterogeneity [41].
w2 As such, the negative variance degree in the low (1-3 Hz) frequency range may
a2 reflect stunted cognitive development, as normal maturation is associated with
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w3 reduced activation in low frequencies [42] [38, 43} [39] [44], implying a decrease
24 in local connectivity and heterogeneity of the networks. This compliments the
s above conclusions, suggesting a sensitivity in the likely well-centralized networks
a6 to significant disruptions by epilepsy. The disrupted networks may then be re-
a2 flected by the continued heterogeneity and local connectivity of low frequency
a8 structures in impaired children.

20 Being able to predict the likely extent of CI using the identified markers could
a0  provide an advantageous tool for clinicians. Specifically, being able to pair spe-
a1 cific network features to an effective prediction of CI would allow clinicians to
42 retain the interpretability of the chosen network features while providing a tool
a3 to quickly and objectively separate similar cases. To this end, the cost-sensitive,
« simple KNN classifier explored in this work illustrates an early step towards
a5 this aim. Evaluating the network-based classifier results show the analysis was
a6 successful at two levels. First, the proposed classifier was able to generally
a7 identify cognitively normal children from impaired children, when grouping the
se  mild/moderate CI and severe CI classes. This is seen in the first column of
a0 Table [b| where only three impaired children are misidentified as ‘normal cogni-
w  tion’, giving a sensitivity of 85%. In other words, 17 of the 20 actual impaired
w1 children were correctly identified as belonging to either the mild/moderate or
a2 severe CI classes, demonstrating that the proposed network analysis and clas-
w3 sifier was largely successful with respect to predicting children with some form
ws  of impaired cognition, based on using the standard score definition. Similarly,
ws only five normal children were misidentified as generally impaired (i.e. classified
us  to either the mild/moderate or severe CI classes; top row of Table , giving a
w7 specificity of approximately 84% (26/31) for appropriately identifying children
ws  in the range of normal cognition. In addition, the network coupled classifier
s was able to separate out cases of mild/moderate impairment from severe im-
w0 pairment decently, with > 50% of impaired children correctly predicted. Thus,
w1 the proposed classifier and associated methods provide considerable sensitivity
w2 (85%) and specificity (84%) for clinicians in determining potential CI, while still
s3  remaining relatively accurate in separating CI according to severity.

454 Statistical analysis in this manuscript was utilized as a first-pass means to
s reduce the potential feature space for classification. Through identifying po-
w6 tentially significant networks of interest, the number of features to test in the
ss7  classification step was substantially reduced. Through the statistical filter, we
s were able to select pertinent features from a relevant and manageable feature
s space. Future endeavours could refine such features, based on different choices
wo for the statistical analysis. Using a more rigid/flexible analysis could lead to
w1 further culling/relaxation of the feature space and provide an adjustable frame-
w2 work for examining network property changes in CWEOE. Other future work
w3 could include alternative narrow-band frequency binning and less strict auto-
s mated rejection methods. Significant correlations across sets of consecutive (and
ws nearly consecutive) frequency bands indicate likely targets for potential follow-
w6 up studies. Further development of a more complex classification scheme could
w7 help improve the second tier discrimination of the proposed classifier, at the
ws level of discerning between the cognitive impairment types (e.g. mild/moderate
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w0 CI from severe CI). A thorough investigation into incorporating and comparing
a0 additional classifiers is also a potential avenue for expansion of this research.
an The NEUROPROFILE cohort was advantageous in that formal neuropsy-
sz chological testing was coupled with EEG recordings, making it ideal for this
a3 investigation. However, there are study limitations. Although this novel study
aa used routine clinical EEGs used in the diagnosis of incidence cases of CWEOE,
w5 the three classes of normal, mild/moderate and severe impairment were unbal-
as  anced; this occurred naturally. The majority of the sample was taken from a
a7 population-based cohort, and mitigating potential influences from imbalanced
a8 data was taken into account as much as possible when conducting the research,
a9 e.g. through cost-sensitive analysis. Imbalanced data is not uncommon, but
w0 the unbalanced distribution of CI in the current study reflects findings in a true
w1 population-based cohort [45]. Furthermore, trialling this methodology in older
w2 children with epilepsy may be an avenue for future studies, to provide further
s3  insights as to the relationship between aetiology and CI, as well as provide
s additional replications of the proposed techniques.

w5 5. Limitations

486 Within the studied cohort of CWEOE, the epilepsy type and aetiologies were
w7 heterogenous. Thus we are unable to determine if the model and methods used
w8 have greater or lesser predictive value in specific subsets. Testing in a larger,
a0 more homogeneous sample would provide clarification.

490 A gender disparity was noted within the normal cognition and mild/moderate
a1 CI groups. Although this study reflects a true population, further studies are
w2 needed to investigate this phenomena.

403 Note that the spectral components in the very low frequency narrow band
ws  (e.g.1-3 Hz) may not be fully reliable due to the small epoch length, i.e. two
w5 seconds. Information gained from the very low frequency band needs to be
w6 interpreted with some care, as spurious connections are more likely to be present.
a7 Again, however, the large number of trial epochs averaged for each child helped
w8 mitigate these potential spurious connections.

499 We recognize a limitation in our assumption of dependency between the
so frequency bins. While there is likely a strong local family dependency between
s the narrow bins, the endpoints on our frequency spectrum may not have as
s2  strong of a relation. Therefore, significance at these level should be considered
so3 carefully as they are more likely to be a false positive. However, the robust
se nature of 7 and our choice of features from a machine-learning perspective help
s to moderate potential impacts from this assumption on our results.

506 The use of a data-driven, narrow band approach in our analysis had a trade-
sor  off of not using patient-specific frequency ranges for each child. Future studies
sos could be done to investigate how individualized frequencies, e.g. using individ-
s0 ual alpha frequencies (IAF), could be aligned, interpreted and correlated when
sio  assessing network abnormalities in the CWEOE population.
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su 6. Conclusions

512 This study introduced a novel processing chain based on network analysis for
si3 identifying markers of CI in CWEQE for the first time. Results from the study
su  demonstrate these network markers in identifying critical structures of CWEOE
sis. - with CI and illustrate their potential predictive abilities using preliminary clas-
sis  sification techniques. Replication of the identified methods using other datasets,
si7 - with alternative narrow-band frequency binning, less strict automated rejection
s methods, and including correlations with brain MRI abnormalities may bolster
si0 the generalizability and applicability of the proposed techniques.
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s Appendix A. Network Coupling Definitions

786 Appendix A outlines the key network definitions and details for the presented
77 analysis. For in-depth reviews see [46] [13], and for further reading [12] [47, [48].

s Cross-spectrum

Functional EEG connections are established through measures of interde-
pendency between signals s; and s; [48] for any pair of EEG channels ¢ and
j. A common measurement for examining this interdependency is the cross-
spectrum function S;;(f) [49, 19, 48]. Formally, let x;(f) and x;(f) be the
complex Fourier transforms of the time series signals s, and s; for any pair (4, j)
of EEG channels. Then the cross-spectrum can be calculated as

Sii () = (@i Hz}(f) (A.1)

70 where T indicates the complex conjugation, and () refers to the expectation value
w0 (also written as E{}) [19].

w1 Imaginary Part of Coherency (ICOH)
Coherency is defined as the normalized cross-spectrum[19]:

Si; (f)

Ci i = A.
D= Sans, e 2
Therefore, the imaginary part of coherency is defined as [19]

ICohsj(f) = Im{Ci;(f)} (A.3)

72 where I'm{} refers to taking the imaginary part of the complex coherency mea-
793 Sure.

w4 Phase-Slope Index (PSI)
The PSI is defined as:

Ui (f) = Im{ Y CL(HCy(f +61)} (A.4)

feF

95 where C;;(f) is as defined in equation 1 indicates the complex conjugation,
w6 0f is the frequency resolution, and f € F is the set of frequencies over which
77 the phase-slope is calculated (see [20] for details).

ws Phase-Lag Index
The PLI is defined as: [21], 22]

©ij = [E{sign(Im{Ci;(f)})}| (A.5)

199 where E{} is the expectation, sign is the positive or negative sign, and Im{C;;(f)}
so is the same as ICOH (see equation [A.3)).
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sn  Weighted Phase-Lag Index (WPLI)
The weighted PLI (WPLI) is defined as: [22]

_ 1B X sign(Im{X))}]
B = i x]

sz where X = Im{C;;(f)} = ICoh;;(f).
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23 Appendix B. Supplementary Figures
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Figure B.5: Adjacency matrices for a representative ‘normal cognition’ child calculated by
ICOH, PSI and WPLI between the 5-9 Hz frequency range.
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WPLI

Figure B.6: Adjacency matrices for a representative ‘impaired cognition’ child calculated by
ICOH, PSI and WPLI between the 5-9 Hz frequency range.
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