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ABSTRACT

Mendelian randomization (MR) has been used to estimate the causal effect of body
mass index (BMI) on particular traits thought to be affected by BMI. However, BMI
may also be a modifiable, causal risk factor for outcomes where there is no prior reason
to suggest that a causal effect exists. We perform a MR phenome-wide association
study (MR-pheWAS) to search for the causal effects of BMI in UK Biobank (n=334
968), using the PHESANT open-source phenome scan tool. Of the 20 461 tests
performed, our MR-pheWAS identified 519 associations below a stringent P value
threshold corresponding to a 5% estimated false discovery rate, including many
previously identified causal effects. We also identified several novel effects, including
protective effects of higher BMI on a set of psychosocial traits, identified initially in
our preliminary MR-phe WAS and replicated in an independent subset of UK Biobank.

Such associations need replicating in an independent sample.
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INTRODUCTION

Body mass index (BMI), taken to be a general indicator of adiposity, has been
associated with many traits and diseases ' . These observational associations may be
due to a causal effect of adiposity (as reflected in BMI), a causal effect of the phenotype
on BMI, or confounding. Mendelian randomization (MR) estimates the causal effect of
an exposure on an outcome using genetic variants as an instrumental variable for the
exposure **. To date, MR has been used to assess whether BMI causally affects a vast

6-21

array of phenotypes ° “'. These results suggest that higher BMI leads to an earlier age

at menarche °, a reduction in physical activity °, an increased risk of coronary heart

10,18

. 21 . . . 1
disease %%, cancer and asthma ', a lower risk of Parkinson’s disease '/, and changes

in metabolite concentrations .

Hypothesis-free searching is an established method to identify novel associations, such
as genetic variants associated with a particular phenotype in genome-wide association
studies (GWAS) . In contrast to hypothesis-driven analyses, a hypothesis-free
analysis can identify novel associations where there is no prior expectation that an
association might exist, and should help to avoid publication bias as all results are
published, not just the most “statistically significant”. Phenome scans are a class of
hypothesis-free scan that test the association of a variable of interest with a potentially

large array of phenotypes — the “phenome” **

. Phenome scans commonly seek to
identify phenotypes associated with a genetic variant (phenome-wide association
studies — pheWAS) or an observed phenotype (environment-wide association studies —

EnWAS). A third type of phenome scan, MR-pheWAS, uses MR to search for the

. 5
causal effects of a particular exposure >°.
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To date, only a small number of phenome-wide scans of BMI have been published. We
recently published a MR-PheWAS that searched for the causal effects of BMI in circa
8000 participants in the Avon Longitudinal Study of Parents and Children (ALSPAC)
cohort, across 172 outcomes *. This study confirmed several known associations such
as with leptin levels and blood pressure, and identified potentially novel associations,
such as with a self-worth score. Cronin et al. performed a pheWAS of FTO genetic
variants within electronic health record phenotypes, in circa 25 000 participants, and
identified novel associations *. For instance, a genetic predisposition to a higher BMI
was associated with a higher risk of fibrocystic breast disease and non-alcoholic liver
disease *°.

27

UK Biobank is a prospective cohort of circa 500 000 participants ', and several

hypothesis-driven MR analyses of BMI have been performed in this study, to date
20212829 The large sample size offsets the multiple testing burden of hypothesis-free
analyses, providing an opportunity to search for causal effects with MR-pheWAS.
Recently, we published an open-source tool for performing phenome scans (including
MR-pheWAS) in UK Biobank — the PHEnome Scan ANalysis Tool (PHESANT) *°.,
PHESANT enables comprehensive phenome scans to be performed across a large and
diverse set of phenotypes — all continuous, integer and categorical fields in UK Biobank

— where previously researchers would restrict their analysis to a homogeneous subset

of phenotypes that could be processed in a consistent fashion *°.

In this study we search for the causal effects of adiposity, using the PHESANT tool in

UK Biobank. We use BMI as a surrogate measure of adiposity. In our presentation of
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PHESANT ** we analyzed the initial non-random sample of circa 115 000 participants
that was available in UK Biobank at that time. We found that participants with a genetic
propensity to a higher BMI were less likely to perceive themselves as a nervous person
or to call themselves tense or ‘highly strung’ *°. In this work, we search for the causal
effects of BMI in circa 330 000 participants in UK Biobank satisfying our inclusion
criteria. BMI is a well-studied phenotype, hence this study serves as a model for future
MR-pheWAS that may investigate phenotypes with much weaker priors regarding their

causal effects.

RESULTS

We checked the strength of the association between the BMI allele score and BMI, and
found a standard deviation (SD) increase in BMI allele score was associated with a 0.63

kg/m” increase in BMI (95% confidence interval (CI): 0.62, 0.65, F statistic=6052.88).

Results of MR-pheWAS analysis

The results of our MR-pheWAS include 20 461 tests ranked by P value, given in
Supplementary data file 1. Figure 2 shows the number of fields reaching each stage of
the PHESANT automated pipeline. A QQ plot is given in Figure 3, and the PHESANT-
viz visualization can be found at [http://www.datamining.org.uk/PHESANT/results-
bmi.html]. We identified 519 results at a false discovery rate of 5% (using a P value
threshold of 0.05x519/20461 = 1.27x1073), given in Supplementary table 4, and of
these, 259 results had a P value lower than a stringent Bonferroni corrected threshold

of 2.44x107°(0.05/20461).
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Our MR-pheWAS identified several known effects of BMI. For example, a genetic
predisposition to a higher BMI was associated with an increased risk of diabetes '’
(field ID (FID)=2443), hypertension ** (FID=41204 value 110, and FID=4079), a higher
bone mineral density ® (FID=3148) and an earlier age of puberty in both sexes °
(FIDs={2714, 2375, 2385}). Figure 4 shows that, when restricting to psychosocial
traits, a subset is associated more strongly than would be expected by chance including

several nervousness / anxiety traits.

PHESANT sensitivity analysis

Our tests of association of assessment centre with the BMI genetic score found that,
while adjusting for the genetic principal components attenuated the association, an
association remained (likelihood ratio test P values of 6.49x1072°, 4.44x10"" and
6.15x10°° when adjusting for age and sex only, and additionally the first 10 and first 40
genetic principal components, respectively). Supplementary figure 1 compares the
results of our main MR-pheWAS analysis, adjusting for age, sex and the first 10 genetic
principal components, with our sensitivity analysis, additionally adjusting for
assessment centre and genetic batch. Large differences between these results often
occurred for categorical outcomes with small numbers in a certain category (for
multinomial logistic model this can cause a zero P value when the likelihood of the

model increases to a limit *'; see examples in Supplementary table 5).

Detailed follow-up of potentially novel results
Our hypothesis-free scan found that a genetic predisposition to a higher BMI was

associated with a decreased reporting of being a nervous person (FID=1970,
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p=2.92x10"*), being tense or ‘highly strung’ (FID=1990, p=4.47x10"'?), suffering from
‘nerves’ (FID=2010, p=5.47x10""%), or being a worrier (FID=1980, p=4.42x10"). Table
1 and Supplementary figures 2 and 3 present the causal effects of BMI on these
nervousness traits, estimated using two-stage instrumental variable analyses. A 1kg/m’
increase in BMI caused a 6.1% [95% CI: -7.2%, -5.0%] decrease in risk of reporting as
a ‘nervous’ person. Each 1 kg/m” increase in BMI was observationally associated with
a3.6% [95% CI: -3.8%, -3.4%] decrease in risk of self-reporting as a ‘nervous’ person.
Adjusting for age, sex and the first 40 genetic principal components did not
meaningfully affect the results (see Supplementary table 6). Furthermore, causal
estimates using the discovery subsample of UK Biobank (used in our initial
presentation of PHESANT *°) and replication subsample (comprising additional
participants used in this study) were consistent for these four nervousness/anxiety

phenotypes.

As a sensitivity analysis, we estimated causal effects of BMI using two-sample MR
methods. Supplementary figures 4 and 5 show the MR-Egger regression and simulation
extrapolation (SIMEX) plots, respectively. We found little evidence of directional
pleiotropy, as all confidence intervals for intercept estimates of MR-Egger included
zero. While there was evidence that the ‘NO Measurement Error’ (NOME) assumption
was not fully satisfied (IZ statistic = 0.893), estimates using MR-Egger with and

without SIMEX were highly consistent.

Supplementary figures 6 and 7 show the smoothed empirical densities of the SNP effect
estimates using mode-based estimator (MBE) smoothing parameter ¢ values of 0.5,

0.75 and 1. We choose to use ¢=0.75 as this provided sufficient smoothing while still


https://doi.org/10.1101/236182
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/236182; this version posted December 19, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

allowing multiple peaks to be captured. The effect estimates across IV methods — IV
probit regression, and the two-sample approaches; MR-Egger, weighted median and
MBE - were broadly consistent. We did, however, see a difference between the
estimates of the IV probit regression and weighted MBE for reporting ‘being a worrier’
(FID=1980), where a 1 SD higher BMI was associated with a 12.7% [95% CI: -17.1%,
-8.0%] decrease in the risk of reporting ‘being a worrier’ using IV probit regression,
but a 6.5% [95% CI: -5.2%, 19.7%] increase in risk of reporting ‘being a worrier’ using
the weighted MBE (¢=0.75). Furthermore, the causal estimates using the 95 SNP score
versus a BMI-associated SNP in FTO (“FTO SNP”) were broadly consistent for the

outcomes in our follow-up analysis, except for reporting ‘being a worrier’ (FID=1980).

The results of these four nervousness/anxiety traits do not provide a form of replication
for each other because these traits are highly correlated (see Supplementary table 7; all
accuracy between 57.59% and 83.49%) and so are more likely to agree compared to

tests using independent traits or a replication on an independent dataset.

We searched for other nervousness related traits by searching for the terms: “worr”,

9 ¢ 2 ¢

“nerv”, “tens”, “anxi”, in our results listing, to determine if other related traits were
tested and an association not identified, to assess the strength of the evidence when
considering results for all similar phenotypes. This identified three self-reported
phenotypes describing: 1) whether the participant has seen a psychiatrist for nerves,
anxiety, tension or depression, (FID=2100; estimated odds ratio of 1.009 [95% CI:
0.994, 1.023]), 2) whether the participant has seen doctor (GP) for nerves, anxiety,

tension or depression" (FID=2090; estimated odds ratio of 1.006 [95% CI: 0.994,

1.017]), and 3) the frequency of tenseness / restlessness in last 2 weeks (FID=2070; not
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at all versus several days or more; estimated odds ratio of 0.984 [95% CI: 0.973,

0.996)).

DISCUSSION

In this study we used the PHESANT phenome scan tool to search for the causal effects
of BMI — a MR-pheWAS analysis — in a sample of circa 330 000 participants in UK
Biobank, across over twenty thousand diverse phenotypes. This systematic approach
helps to avoid biases associated with hypothesis-driven analyses, where a researcher
might try several tests of association until a desired result is found, and should help to
avoid publication bias as all results are published, not just the most “statistically

significant” **.

Our results include associations consistent with previous MR studies, such as adverse
effects of higher BMI on risk of diabetes '* and hypertension *°, a higher bone mineral
density ® and an earlier age of puberty in both sexes °. Consistent with our preliminary
results *°, we identified an association with a set of nervousness phenotypes, where a
genetic predisposition to a higher BMI was associated with a person being less likely
to call themselves a nervous person, tense or highly strung, a worrier, or to report they
suffer from ‘nerves’. We followed up this analysis to estimate the causal effect and
found that each 1 kg/m? decrease in BMI caused a 6.1% [95% CI: 5.0%, 7.2%] increase
in likelihood of self-reporting being a nervous person. The causal estimates were more

extreme than the observational estimates for three of these outcomes. Furthermore,
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causal estimates using the discovery and replication subsamples of UK Biobank were

consistent for these four nervousness/anxiety phenotypes.

We searched our results for other nervousness traits to determine the strength of the
evidence in the context of the results of related phenotypes, which, while not a form of
replication, provides an unbiased view of the evidence using the UK Biobank cohort.
We identified two phenotypes detailing treatment by a psychiatrist or a doctor,
respectively, for nerves, anxiety, tension or depression, but we did not find evidence of
a causal effect of BMI on these phenotypes. A third result, the frequency of tenseness /
restlessness in the last 2 weeks, was weakly associated in a direction consistent with
the other nervousness associations we identified, although it did not pass the P value

threshold corresponding to an estimated FDR of 5%.

Several previous observational studies have reported the association of anxiety and
BMI. The prevalence of anxiety has been shown to be higher in obese compared with

47 although Vainik et al. found no correlation between BMI and

non-obese people
neuroticism **. The few instrumental variable studies estimating the causal effect of
BMI on anxiety that have been performed to date (one specifically looking at phobic
anxiety * and the other using an anxiety measure defined using the Hospital Anxiety
and Depression Scale (HADS) %), did not find evidence of a causal effect, although

#39 Two recent MR studies provided

this may be due to insufficient statistical power
evidence that an increase in BMI adversely affects risk of depression symptoms °' and

major depressive disorder >*. Furthermore, it has been shown that the mechanism

through which BMI-associated genetic variants affect risk of obesity may involve

10
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regions of the brain such as the basal ganglia >, which are plausibly involved in

. 54
emotional processes .

The associations we identified with self-reported nervousness should be further
investigated and replicated in an independent sample. These associations may reflect a
true causal effect of BMI. Alternative explanations for these results include chance, or
because some variants in the BMI genetic score have horizontal pleiotropic effects and
are thus invalid instruments for BMI. We assessed the possibility that our instrument is
invalid by comparing the estimates of two independent genetic instruments (i.e. F70
SNP versus the remaining genetic variants), and using alternative approaches that
estimate the causal effects under differing assumptions of instrument validity — MR-
Egger, weighted median and MBE. While we found little evidence of directional
pleiotropy, we did find evidence of non-directional pleiotropy for the ‘being a worrier’
outcome, indicated by different estimates using the 95 SNP score versus 70 SNP, and

also different estimates using I'V probit regression compared to the weighted MBE.

UK Biobank is a highly-selected sample of the UK population, having a response rate
of 5.5% >, that is not representative of the UK general population *°. For example, UK
Biobank participants have, on average, a lower BMI, and fewer self-reported health
conditions, compared with the general population *°. Hence, our estimates may be
biased if selection into the sample is affected by BMI°’. Also, if selection is additionally
dependent on a given outcome (e.g. self-reported nervousness), associations may be
biased by a particular form of collider bias — selection induced collider bias **. In
general, collider bias may occur when two variables (A and B) independently affect a

third variable (C) and variable C is conditioned upon in analyses. Selection induced

11
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collider bias may occur when variable C represents whether a person is selected into
the sample, i.e. variables A and B both independently affect participation in the study.
Hence, estimates of association between two phenotypes — such as our BMI genetic
score and a given outcome in our study — can be biased, if inclusion in the study is

affected by both phenotypes.

We found that our BMI genetic score was associated with assessment centre, even after
adjustment for the first 40 principal components. This may indicate that the genetic
principal components are not fully accounting for genetic population differences.
However, this may also be due to selection induced collider bias, because both BMI
and location are related to selection into the sample *°. If both BMI and assessment
centre affect participation in the study, then an association may be induced between the
BMI genetic score and assessment centre. For example, the South West region had the
highest participation rate of the regions sampled, such that living in this region is
associated with a higher chance of participating compared to the other regions >°. Since
BMI is negatively associated with participation in UK Biobank, we would expect
(under most realistic assumptions about the association between BMI, location and
participation in UK Biobank) to see a positive association between the BMI genetic risk
score, and participating in the South West region compared to other regions if collider
bias is the cause, and (using attendance at the Bristol assessment centre as a proxy for
region of residence) this is indeed what we see (see illustration shown in Supplementary
figure 8). Furthermore, the West Scotland region has the lowest participation rate, and
attending the Glasgow assessment centre compared to other centres is associated with
a lower BMI genetic risk score, which is expected if this relationship is due to selection

induced collider bias.

12
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We now discuss some further limitations of this work. PHESANT uses a rule-based
method to automatically determine how to test each outcome, and it is possible that this
may deal with some variables inappropriately. Also, PHESANT tests the linear
association of the genetic score with the set of outcomes, and it is possible that non-
linear associations may exist. For instance, it is possible that BMI has a non-linear effect
on nervousness/anxiety (for example low and high BMI may cause higher levels of
anxiety compared with those in the normal range) and in follow-up analyses this should
be investigated. Ranking the associations means that we should expect the true strength
of the associations to be less than we reported due to the winner’s curse. We used
stringent P value thresholds, which, although reducing the type I error rate, is likely to
also increase the type II error rate. We used BMI as a surrogate measure for adiposity,
but the effect of adiposity estimated using observational data is not the true effect of an
intervention that modifies BMI, because this will depend on the particular intervention
used. The causal effects we have estimated may be the result of changes of other aspects
of BMI in addition to or instead of changes in adiposity (e.g. changes in lean mass
versus fat mass) *°. Similarly, our BMI genetic score is an instrument for life-long BMI,
hence we cannot say that it is BMI at a specific age (e.g. the age of the UK Biobank
cohort) that affects an outcome. However, searching for potential causal effects using
MR is useful to identify outcomes that may be modified through interventions on

modifiable determinants of adiposity (e.g. diet or physical activity) .

PHESANT is the first tool to perform comprehensive phenome scans, where previously

the set of outcomes tested would be restricted to a homogeneous subset *°. In this study,

we have presented the first comprehensive phenome scan, using the PHESANT tool to
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search for the causal effects of BMI. This MR-pheWAS confirmed several established
effects of BMI, and also identified potentially interesting novel results, such as a
potential causal effect of BMI on feelings of nervousness. This work demonstrates how
MR-pheWAS can be applied in UK Biobank and can serve as a model for future studies.
There is much potential to use MR-pheWAS to search for the causal effects of
phenotypes where, compared to BMI, much weaker priors regarding their causal
effects. Phenome-wide scans are a hypothesis generation approach and hence identified

associations should be followed-up in an independent sample.

METHODS

Study population

UK Biobank sampled 503 325 men and women in the UK aged between 37-73 years
(99.5% were between 40 and 69 years) >'. This cohort includes a large and diverse range

of data from blood, urine and saliva samples and health and lifestyle questionnaires *’.

Of the 487 406 participants with genetic data, we removed 373 with genetic sex
different to reported sex, and 471 with sex chromosome aneuploidy (identified as
putatively carrying sex chromosome configurations that are not either XX or XY). We
found no outliers in heterozygosity and missing rates, which would indicate poor
quality of the genotypes. We removed 78 309 participants not of white British ancestry
2. We removed 73 277 participants who were identified as being related, having a

kinship coefficient denoting a third degree (or closer) relatedness *>. We removed 8

14
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individuals with withdrawn consent, giving a sample of 334 968 participants. A

participant flow diagram is given in Figure 1.

BMI allele score

We created an allele score from 96 genetic variants previously found to be associated
with BMI, in a recent GWAS meta-analysis by the GIANT consortium >>. The score
was calculated as a sum of the number of BMI-increasing alleles, weighted by the effect
size as reported in the GIANT GWAS (reported as a SD change of BMI per dosage
increase) ** (see Supplementary table 1), such that a higher allele score corresponds to

a higher BMI, and was standardized to have a mean of zero and SD of 1.

Outcomes

The Biobank data showcase allows researchers to identify variables based on the field

type (http://biobank.ctsu.ox.ac.uk/showcase/list.cgi). At the time of initial data

download there were 2143 fields of the following types: integer, continuous, categorical
(single) and categorical (multiple) (identified in March 2016, and updated in November

2017 for fields where data accrual was still underway).

We excluded 70 fields a priori, given in Supplementary table 2, for the following
reasons. We removed one field denoting the assessment centre. We removed 2 fields
described by UK Biobank as ‘polymorphic’, containing values with mixed data types.
We removed 14 fields that, although listed in the data showcase, were not currently

available. We removed 13 genetic descriptor fields, 1 sex field and 4 age fields. We

15
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removed 17 variables describing the assessment centre environment. We removed 18

categorical (single) fields with more than one value recorded per person.

We assigned 92 outcomes that denote adiposity or some aspect of weight, fat mass or
height as ‘exposure phenotypes’ — to be included in our MR-pheWAS analysis so that
we can assess the strength of outcome associations in relation to these, while this a
priori assignment means they will not contribute to the multiple testing burden (see

Supplementary table 3).

This resulted in a set of 1981 UK Biobank fields (263 integer, 969 continuous, 649
categorical (single) and 100 categorical (multiple)), referred to hereafter as the outcome
dataset (because they are tested as an outcome irrespective of whether this is

biologically plausible).

Observed BMI

Weight and height were measured at the initial UK Biobank assessment centre — weight

in light clothing and unshod was measured using Tanita BC418MA body composition

analyser to the nearest 100g, and height to the nearest cm using at Seca 202 device.

These were used to calculate BMI (kg/m?).

Covariates

We include age and sex as covariates in our models to reduce the variation in our

outcomes. Age when participants attended the UK Biobank assessment centre was

16


https://doi.org/10.1101/236182
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/236182; this version posted December 19, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

derived from their date of birth and the date of their assessment centre visit. Sex was
self-reported during the touchscreen questionnaire (and validated using the genome-
wide data). We adjust for the first 10 genetic principal components to control for
confounding via population stratification. Genetic variants are set at conception, and
after conception they cannot be affected by traditional confounding factors, therefore

we did not adjust for any further covariates.

Statistical methods

PHESANT MR-pheWAS

We test the direct association of the BMI genetic score with each of the outcome
variables using the PHESANT package (version 0.10). A description of PHESANT’s
automated rule-based method is given in detail elsewhere *°. In brief, the decision rules
start with the variable field type and use rules to categorize each variable as one of four
data types: continuous, ordered categorical, unordered categorical or binary. Variables
with the continuous and integer field type are usually assigned to the continuous data
type, but some are assigned to ordered categorical if, for instance, there are only a few
distinct values. Variables of the categorical (single) field type are assigned to either the
binary, ordered categorical or unordered categorical, depending on whether the field
has two distinct values, or has been specified as ordered or unordered in the PHESANT
setup files. Variables of the categorical (multiple) field type are converted to a set of

binary variables, one for each value in the categorical (multiple) fields.

PHESANT estimates the bivariate association of the BMI genetic score with each

outcome variable. The BMI genetic score and outcome variables are the independent
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(exposure) and dependent (outcome) variables in the regression model, respectively.
Outcome variables with continuous, binary, ordered categorical and unordered
categorical data types, are tested using linear, logistic, ordered logistic, and multinomial
logistic regression, respectively. Prior to testing, an inverse normal rank transform is
applied to variables of the continuous data type, to ensure they are normally distributed.

All analyses are adjusted for covariates as described above.

We correct for multiple testing by controlling for the expected proportion of false
positive results. After ranking the results by P value, we identify the largest rank
position with a P value less than Pipesnoia = 0.05Xrank/n, where n is the total
number of tests in the phenome scan. Py esiois 1S the P value threshold resulting in a
false discovery rate of 5% >*. We also calculate a stringent Bonferroni corrected P-value
threshold, by dividing 0.05 by the number of tests performed, which assumes each test

is independent.

Results visualization with PHESANT-viz
We use PHESANT-viz, a D3 Javascript visualization tool included in the PHESANT
package, to visualize our results as a graph, using the Biobank assigned category

structure (http://biobank.ctsu.ox.ac.uk/showcase/label.cgi). This enables interpretation

of the identified associations with consideration of the results for related variables. For
example, the estimated effects of BMI on depression are grouped with the results of

other psychosocial phenotypes.

PHESANT sensitivity analysis
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We re-run our phenome scan to assess residual confounding, additionally adjusting for

both assessment centre and genetic batch.

Testing for residual population stratification

We test the extent that genetic principal components account for genetic differences
across the population. We test the association of assessment centre with the BMI
genetic score (as the independent and dependent variables, respectively), adjusting for:
1) Age and sex.
2) Age, sex and the first 10 genetic principal components.

3) Age, sex and the first 40 genetic principal components.

We use a likelihood ratio test to determine the strength of the association of the
assessment centres collectively, with the genetic score. An association between the
assessment centres and the BMI genetic score, after adjusting for the genetic principal
components, may indicate that the genetic principal components are not fully

accounting for population stratification.

Follow-up analysis of identified associations

We identified associations with a related set of psychosocial traits and generate a QQ-
plot restricting to the psychosocial UK Biobank category only (category ID=100059),
to determine whether these results have an association stronger than expected by
chance, given the results of related phenotypes. We perform a formal instrumental
variable analysis for a set of binary outcomes, using two-stage [V probit regression (the
Stata ivprobit command, with conditional maximume-likelihood estimation),

adjusting for age, sex and the first 10 genetic principal components. We also adjust for
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age, sex and the first 40 genetic principal components, as a sensitivity analysis. We take
the exponent of 1.6 times the estimates, to approximate the association in terms of the
change of odds . We also test the observational association of BMI with each

phenotype using logistic regression (Stata 1ogistic command).

We compare estimates within the initial discovery sample (used in our initial
presentation of PHESANT °°), with estimates using the additional participants used in
this study, as a replication. We remove all participants from our replication sample who
were identified as being related to a participant in the discovery sample, having a

kinship coefficient denoting a third degree (or closer) relatedness.

Follow-up sensitivity analyses

We performed sensitivity analyses to investigate whether our genetic score, and its
constituent genetic variants, may be invalid instruments for BMI. First, we compared
the effect estimates using two independent instrumental variables: 1) SNP rs1558902
(the SNP most strongly associated with BMI, at the 70O locus), and 2) the remaining

95 genetic variants.

Second, we also estimated causal effects using three alternative MR approaches — MR-
Egger °°, weighted median *” and MBE **. These methods estimate effects consistent
with the true causal effect under more relaxed assumptions of instrument validity,
compared with IV probit regression where for example, including just one genetic
variant with pleiotropic effects could bias estimates. These methods are performed
using two sample MR, using estimates of association of each genetic variant on BMI,

and estimates of association of each genetic variant on a given outcome, respectively,
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estimated in different populations. We use the SNP-BMI estimates from the GIANT
GWAS ** (that did not include UK Biobank), and estimate the SNP-outcome
associations on our UK Biobank sample, adjusting for age, sex and the first 10 genetic

principal components.

The MR-Egger, weighted median and MBE approaches are complementary, each
depending on distinct assumptions about instrument validity. Estimates from MR-
Egger are not biased by horizontal pleiotropy, where a genetic variant affects several
traits through separate pathways, under the assumption that the association of each
genetic variant with the exposure is independent of any horizontal pleiotropic effect —
referred to as the InSIDE (Instrument Strength Independent of Direct Effects)
assumption *°. This approach can test for directional pleiotropy, which is when the
horizontal pleiotropic effects of the genetic variants are not balanced about the null *°,
Directional pleiotropy is identified where the intercept estimate is not consistent with
the null. MR-Egger assumes that the SNP-exposure associations are measured without
error, known as the NOME assumption . We determine the degree to which the
NOME assumption is violated, using the IZ statistic, which is an adaption of the I*
statistic used in the field of meta-analysis **. The IZ statistic ranges between 0 and 1,
and captures the uncertainty in the estimated SNP-exposure associations relative to the
heterogeneity across the true underlying SNP-exposure associations. It is recommended
that results of MR-Egger should be treated with caution when IZ; < 0.9
Furthermore, we performed an MR-Egger analysis with bias adjustment using SIMEX,
to estimate the causal effect when the NOME assumption is violated *°. In brief, SIMEX
works by learning models with increasing violations of the NOME assumption (i.e.

increasing error in the SNP-exposure associations). The estimates from these models
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are then treated as a set of data points and a model is learnt across these. This ‘meta’
model is then used to extrapolate back to the estimate that would have occurred if the

NOME assumption was satisfied.

The weighted median approach estimates a consistent causal effect under the
assumption that less than 50% of the genetic variants are invalid instruments *’. The
simple version of MBE assumes that the mode of the smoothed empirical density
function of SNP estimates is consistent with the true causal effect, even if the majority
of the SNP estimates are not consistent — known as the ZEro Mode Pleiotropy
Assumption (ZEMPA) **. We also test using a weighted version of the MBE, which
instead assumes that the mode of the inverse-variance weighted empirical density
function is consistent with the true causal effect. The MBE method uses a bandwidth
parameter ¢, which determines the amount of smoothing of the empirical density. We
generate the smoothed empirical density using a range of ¢ values, and choose a ¢ value
that provides an appropriate amount of smoothing (a degree of smoothing that allows
multi-modal distributions to be identified while not overfitting to the estimated values).

We test the simple and weighted versions of the MBE using our chosen ¢ value.

Analyses are performed in R version 3.2.4 ATLAS, Matlab r2015a or Stata version 14,

and code is available at [https://github.com/MRCIEU/PHESANT-MR-pheWAS-BMI].

Git tag v0.2 corresponds to the version presented here.

22


https://doi.org/10.1101/236182
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/236182; this version posted December 19, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

REFERENCES

10.

11.

12.

13.

14.

15.

16.

17.

Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-
mass index and incidence of cancer: a systematic review and meta-analysis of
prospective observational studies. Lancet 371, 569-578 (2008).

Must, A. et al. The disease burden associated with overweight and obesity.
JAMA 282, 15231529 (1999).

Visscher, T. L. S. & Seidell, J. C. The Public Health Impact of Obesity. Annu.
Rev. Public Health 22, 355-375 (2001).

Davey Smith, G. & Ebrahim, S. ‘Mendelian randomization’: can genetic
epidemiology contribute to understanding environmental determinants of
disease? Int. J. Epidemiol. 32, 1-22 (2003).

Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for
causal inference in epidemiological studies. Hum. Mol. Genet. 23, R§9-R98
(2014).

Richmond, R. C. et al. Assessing causality in the association between child
adiposity and physical activity levels: a Mendelian randomization analysis.
PLoS Med. 11, 1001618 (2014).

Wiirtz, P. et al. Metabolic signatures of adiposity in young adults: Mendelian
randomization analysis and effects of weight change. PLoS Med. 11, e1001765
(2014).

Timpson, N. J., Sayers, A., Davey-Smith, G. & Tobias, J. H. How Does Body
Fat Influence Bone Mass in Childhood? A Mendelian Randomization
Approach. J. Bone Miner. Res. 24, 522-533 (2009).

Mumby, H. S. ef al. Mendelian randomisation study of childhood BMI and
early menarche. J. Obes. 2011, 180729 (2011).

Brennan, P. ef al. Obesity and cancer: Mendelian randomization approach
utilizing the FTO genotype. Int. J. Epidemiol. 38, 971-975 (2009).

Kivimiki, M. ef al. Lifetime body mass index and later atherosclerosis risk in
young adults: examining causal links using Mendelian randomization in the
Cardiovascular Risk in Young. Eur. Heart J. 29, 2552—-60 (2008).

Welsh, P. ef al. Unraveling the directional link between adiposity and
inflammation: a bidirectional Mendelian randomization approach. J. 95, 93-99
(2010).

Hubacek, J. A. et al. The FTO gene polymorphism is associated with end-stage
renal disease: two large independent case—control studies in a general
population. Nephrol. Dial. Transplant. 27, 1030-1035 (2011).

Freathy, R. M. ef al. Common Variation in the FTO Gene Alters Diabetes-
Related Metabolic Traits to the Extent Expected Given Its Effect on BMI.
Diabetes 57, 1419—-1426 (2008).

Frayling, T. M. ef al. A common variant in the FTO gene is associated with
body mass index and predisposes to childhood and adult obesity. Science 316,
889-94 (2007).

Nordestgaard, B. G. et al. The Effect of Elevated Body Mass Index on
Ischemic Heart Disease Risk: Causal Estimates from a Mendelian
Randomisation Approach. PLoS Med. 9, 1001212 (2012).

Noyce, A. J. et al. Estimating the causal influence of body mass index on risk
of Parkinson disease: A Mendelian randomisation study. PLoS Med. 14,
€1002314 (2017).

23


https://doi.org/10.1101/236182
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/236182; this version posted December 19, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

available under aCC-BY 4.0 International license.

Benn, M., Tybjerg-Hansen, A., Davey Smith, G. & Nordestgaard, B. G. High
body mass index and cancer risk—a Mendelian randomisation study. Eur. J.
Epidemiol. 31, 879-892 (2016).

Corbin, L. J. et al. Body mass index as a modifiable risk factor for type 2
diabetes: Refining and understanding causal estimates using Mendelian
randomisation. Diabetes 65, 3002—3007 (2016).

Tyrrell, J. et al. Height, body mass index, and socioeconomic status: mendelian
randomisation study in UK Biobank. BMJ 352, 1582 (2016).

Skaaby, T. et al. Estimating the causal effect of body mass index on hay fever,
asthma, and lung function using Mendelian randomization. Allergy (2017).
doi:10.1111/all.13242

Lyall, D. M. et al. Association of Body Mass Index With Cardiometabolic
Disease in the UK Biobank: A Mendelian Randomization Study. JAMA
Cardiol. 2, 882889 (2017).

Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five Years of
GWAS Discovery. Am. J. Hum. Genet. 90, 7-24 (2012).

Denny, J. C., Bastarache, L. & Roden, D. M. Phenome-Wide Association
Studies as a Tool to Advance Precision Medicine. Annu. Rev. Genomics Hum.
Genet. 17, 353-373 (2016).

Millard, L. A. C. et al. MR-PheWAS: hypothesis prioritization among potential
causal effects of body mass index on many outcomes, using Mendelian
randomization. Sci. Rep. 5, 16645 (2015).

Cronin, R. M. et al. Phenome-wide association studies demonstrating
pleiotropy of genetic variants within FTO with and without adjustment for
body mass index. Front. Genet. 5,250 (2014).

Sudlow, C. ef al. UK Biobank: An Open Access Resource for Identifying the
Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS
Med. 12, 1001779 (2015).

Lyall, D. M. et al. Body-mass index and cardiometabolic disease: a Mendelian
randomisation study of UK Biobank participants. Lancet 388, S9 (2016).
Klarin, D., Emdin, C. A., Natarajan, P., Conrad, M. F. & Kathiresan, S.
Genetic Analysis of Venous Thromboembolism in UK Biobank Identifies the
ZFPM2 Locus and Implicates Obesity as a Causal Risk Factor. Circ.
Cardiovasc. Genet. 10, (2017).

Millard, L. A. C., Davies, N. M., Gaunt, T. R., Davey Smith, G. & Tilling, K.
PHESANT: a tool for performing automated phenome scans in UK Biobank.
Int. J. Epidemiol. (2017).

Allen, N. et al. UK Biobank: Current status and what it means for
epidemiology. Heal. Policy Technol. 1, 123-126 (2012).

Bycroft, C. et al. Genome-wide genetic data on ~500,000 UK Biobank
participants. bioRxiv (2017).

Locke, A. E. et al. Genetic studies of body mass index yield new insights for
obesity biology. Nature 518, 197-206 (2015).

Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 57,
289-300 (1995).

Rassen, J. A., Schneeweiss, S., Glynn, R. J., Mittleman, M. A. & Brookhart, M.
A. Instrumental Variable Analysis for Estimation of Treatment Effects With
Dichotomous Outcomes. Am. J. Epidemiol. 169, 273-284 (2008).

Bowden, J., Smith, G. & Burgess, S. Mendelian randomization with invalid

24


https://doi.org/10.1101/236182
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/236182; this version posted December 19, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

available under aCC-BY 4.0 International license.

instruments: effect estimation and bias detection through Egger regression. Int.
J. Epidemiol. 44, 512-525 (2015).

Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent
Estimation in Mendelian Randomization with Some Invalid Instruments Using
a Weighted Median Estimator. Genet. Epidemiol. 40, 304-314 (2016).
Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary
data Mendelian randomization via the zero modal pleiotropy assumption. /nt. J.
Epidemiol. 28, 3042 (2017).

Bowden, J. et al. Assessing the suitability of summary data for two-sample
Mendelian randomization analyses using MR-Egger regression: the role of the
[(2) statistic. Int. J. Epidemiol. 45, 1961-1974 (2016).

Timpson, N. J. et al. Does greater adiposity increase blood pressure and
hypertension risk? Mendelian randomization using the FTO/MC4R genotype.
Hypertension 54, 84-90 (2009).

White, I. R., Daniel, R. & Royston, P. Avoiding bias due to perfect prediction
in multiple imputation of incomplete categorical variables(). Comput. Stat.
Data Anal. 54, 2267-2275 (2010).

Sterne, J. A. C. & Davey Smith, G. Sifting the evidence—what’s wrong with
significance tests? Another comment on the role of statistical methods. BMJ
322,226-231 (2001).

Gariepy, G., Nitka, D. & Schmitz, N. The association between obesity and
anxiety disorders in the population: a systematic review and meta-analysis. Int.
J. Obes. 34,407-419 (2010).

Bodenlos, J. S., Lemon, S. C., Schneider, K. L., August, M. A. & Pagoto, S. .
Associations of mood and anxiety disorders with obesity: Comparisons by
ethnicity. J. Psychosom. Res. 71,319-324 (2011).

Strine, T. W. et al. Depression and Anxiety in the United States: Findings From
the 2006 Behavioral Risk Factor Surveillance System. Psychiatr. Serv. 59,
1383-1390 (2008).

Bjerkeset, O., Romundstad, P., Evans, J. & Gunnell, D. Association of Adult
Body Mass Index and Height with Anxiety, Depression, and Suicide in the
General Population: The HUNT Study. Am. J. Epidemiol. 167, 193-202
(2007).

Zhao, G. et al. Depression and anxiety among US adults: associations with
body mass index. Int. J. Obes. 33, 257-266 (2009).

Vainik, U. et al. Neurobehavioural Correlates of Obesity are Largely Heritable.
bioRxiv (2017). doi:10.1101/204917

Walter, S. et al. Do genetic risk scores for body mass index predict risk of
phobic anxiety? Evidence for a shared genetic risk factor. Psychol. Med. 45,
181-191 (2015).

Bjerngaard, J. H. et al. Association of Body Mass Index with Depression,
Anxiety and Suicide—An Instrumental Variable Analysis of the HUNT Study.
PLoS One 10, 0131708 (2015).

van den Broek, N. et al. Causal Associations Between Body Mass Index and
Mental Health: A Mendelian Randomization Study. bioRxiv (2017).

Wray, N. R. & Sullivan, P. F. Genome-wide association analyses identify 44
risk variants and refine the genetic architecture of major depression. bioRxiv
(2017).

Ghosh, S. & Bouchard, C. Convergence between biological, behavioural and
genetic determinants of obesity. (2017).

25


https://doi.org/10.1101/236182
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/236182; this version posted December 19, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

54.

55.

56.

57.

58.

59.

available under aCC-BY 4.0 International license.

Lanciego, J. L., Luquin, N. & Obeso, J. A. Functional Neuroanatomy of the
Basal Ganglia. Cold Spring Harb. Perspect. Med. 2, a009621 (2012).
Swanson, J. M. The UK Biobank and selection bias. Lancet 380, 110 (2012).
Fry, A. et al. Comparison of Sociodemographic and Health-Related
Characteristics of UK Biobank Participants With Those of the General
Population. Am. J. Epidemiol. (2017). doi:10.1093/aje/kwx246

Hughes, R. A., Davies, N. M., Davey Smith, G. & Tilling, K. Selection bias in
instrumental variable analyses. bioRxiv (2017). doi:10.1101/192237

Munafo, M. R., Tilling, K., Taylor, A. E., Evans, D. M. & Davey Smith, G.
Collider Scope: When selection bias can substantially influence observed
associations. Int. J. Epidemiol. dyx206 (2017).
doi:https://doi.org/10.1101/079707

Hernan, M. A. & Taubman, S. L. Does obesity shorten life? The importance of
well-defined interventions to answer causal questions. /nt J Obes 32, S8-S14

26


https://doi.org/10.1101/236182
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/236182; this version posted December 19, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ACKNOWLEDGEMENTS

This work was supported by the University of Bristol and UK Medical Research
Council [grant numbers MC _UU 12013/1, MC _UU 12013/8 and MC _UU _12013/9].
LACM is funded by a University of Bristol Vice-Chancellor’s Fellowship. This
research has been conducted using the UK Biobank Resource under Application
Number 16729.

AUTHOR CONTRIBUTIONS

LACM contributed to the design of the study, performed all analyses, wrote the first
version of the manuscript, critically reviewed and revised the manuscript and approved
the final version of the manuscript as submitted. NMD contributed to the design of the
study, critically reviewed and revised the manuscript and approved the final version of
the manuscript as submitted. KT contributed to the design of the study, critically
reviewed and revised the manuscript and approved the final version of the manuscript
as submitted. TRG critically reviewed and revised the manuscript and approved the
final version of the manuscript as submitted. GDS conceptualized the study, contributed
to the design of the study, critically reviewed and revised the manuscript and approved
the final version of the manuscript as submitted.

COMPETING FINANCIAL INTERESTS STATEMENT

The authors declare no competing financial interests.

27


https://doi.org/10.1101/236182
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/236182; this version posted December 19, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

FIGURES

Figure 1: Participant flow diagram
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Figure 2: Variable processing flow diagram showing logic from defined field type in UK Biobank data to test of association, with
number of variables reaching each stage of processing flow
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Triangular nodes at top of figure are field types defined by UK Biobank. Rectangular nodes show processing logic used to determine the data type assignment (oval), either continuous, ordered
categorical, unordered categorical or binary, and hence finally, the type of test used: linear, ordinal logistic, multinomial logistic or logistic regression, respectively. Diamond nodes show points
where variables may be removed.
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Figure 3: QQ plot of 20,461 MR-pheWAS results
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Green dashed line: Bonferroni corrected threshold (p=2.44x10°). Red dash-dotted line: FDR threshold (p= 1.27x107). Blue dotted line: actual = expected.

Purple points: results of tests performed in MR-pheWAS. Red stars: results with P values < 9.88x107*,
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Figure 4: QQ plot of results in UK Biobank field category ‘psychosocial factors’
(ID 100059)
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(0.05/59 = 8.47 x 10™). Blue dotted line: actual = expected.

Purple points: results of tests performed in MR-pheWAS.
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TABLES

Table 1: Results of follow-up analysis of nervousness / worrying traits

Nervous person (FID=1970) | Being a worrier (FID=1980) Tense / highly strung Suffering from nerves
(FID=1990) (FID=2010)
N 325,552 325,523 324,146 322,236

OBSERVATIONAL ESTIMATES’

- T - 3
Observational association ~ *

0.964 [0.962, 0.966]

0.981 [0.980, 0.983]

0.983 [0.981, 0.985]

0.993 [0.991, 0.994]

CAUSAL ESTIMATES

Estimates using two-stage IV probit regression *

Effect estimate with 96 SNP score '

-0.039 [-0.047, -0.032]

-0.018 [-0.025, -0.011]

-0.028 [-0.036, -0.020]

-0.024 [-0.032, -0.017]

Effect estimate with 96 SNP score —
approximate change of odds * *

0.939[0.928, 0.950]

0.972[0.961, 0.983]

0.956 [0.944, 0.968]

0.962 [0.950, 0.974]

Effect estimate with 96 SNP score, in
terms of SD change of BMI °

-0.186 [-0.221, -0.151]

-0.085 [-0.117, -0.052]

-0.134 [-0.172, -0.096]

-0.115 [-0.152, -0.079]

Effect estimate with 96 SNP score, in
terms of SD change of BMI,
approximate change of log odds °*

-0.297 [-0.354, -0.241]

-0.135[-0.188, -0.083]

-0.214 [-0.275, -0.154]

-0.185 [-0.243, -0.127]

Effect estimate with 95 SNP score
(excluding FTO SNP) !

-0.040 [-0.048, -0.032]

-0.022 [-0.030, -0.015]

-0.032 [-0.040, -0.023]

-0.027 [-0.035, -0.019]

Effect estimate with FTO SNP !

-0.031 [-0.050, -0.012]

0.012 [-0.006, 0.029]

-0.004 [-0.025, 0.017]

-0.008 [-0.027, 0.012]

Estimates using MR-Egger

Causal effect estimate *

-0.183 [-0.405, 0.040]

-0.036 [-0.223, 0.150]

-0.123 [-0.364, 0.119]

-0.170 [-0.400, 0.060]

Intercept estimate

-0.002 [-0.008, 0.004]

-0.002 [-0.007, 0.003]

-0.002 [-0.009, 0.004]

0.000 [-0.006, 0.007]

12y statistic

0.893

Bias adjusted causal effect estimate ° '

-0.204 [-0.452, 0.043]

-0.039 [-0.248, 0.170]

-0.135[-0.405, 0.135]

-0.193 [-0.449, 0.064]

Estimates using weighted median *

Weighted median effect estimate

-0.220 [-0.315, -0.125]

-0.087 [-0.166, -0.009]

-0.172 [-0.269, -0.075]

-0.087 [-0.180, 0.007]

Estimates using mode based estimate >

Simple, ¢=0.75 *

-0.086 [-0.317, 0.146]

-0.161 [-0.453,0.131]

-0.273 [-0.600, 0.055]

-0.019 [-0.303, 0.266]
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Weighted, 9=0.75 * [ -0.158[-0.286,-0.031] | 0.063 [0.053, 0.180] [ 0.114[-0272,0043] |  -0.048 [-0.182, 0.085]
DISCOVERY AND REPLICATION ESTIMATES *'°

?Cl(ff: very effect estimate with 96 SNP -0.041 [-0.055, -0.027] -0.022, [-0.035, -0.008] -0.035 [-0.051, -0.020] 20.029 [-0.044, -0.014]
Discovery Effect estimate with 96 SNP 0.936 [0.915, 0.958] 0.966 [0.946, 0.987] 0.945 [0.922, 0.968] 0.955 [0.933, 0.978]
score — approximate change of odds ™ *

iﬂl‘ian"“ effect estimate with 96 SNP -0.040 [-0.049, -0.031] -0.015 [-0.023, -0.006] 20.024 [-0.034, -0.014] 20.023 [-0.033, -0.014]
Replication Effect estimate with 96 SNP 0.938 [0.925, 0.952] 0.977 [0.964, 0.990] 0.963 [0.948, 0.978] 0.963 [0.949, 0.978]
score — approximate change of odds ™ *

BMI: body mass index; FID: field identifier; SD: standard deviation; IV: instrumental variable.

' Coefficient [95% confidence interval] from instrument variable probit models (ivprobit Stata command), for a 1 kg/m* higher BMI.

* Two sample analyses use the SNP-BMI associations from Locke GWAS **, and SNP-outcome associations estimated in UK Biobank (adjusted for and first 10 genetic
principal components).

> Estimate of the odds ratio of outcome for a 1 kg/m” increase in BMI.

* Estimate of the odds ratio of outcome for a 1 kg/m” increase in BMI, calculated by taking the exponent of 1.6 times the probit estimate *°.

> Bias adjusted causal effect estimate using MR-Egger with SIMEX.

% Effect estimate for SD change in BMI and logistic approximation, for comparison with two-sample approaches, as these use the BMI standardised SNP associations from
the GIANT GWAS *.

7 Adjusted for age and sex.

¥ Adjusted for age, sex and first 10 genetic principal components (see Supplementary table 6 for results of sensitivity analysis, adjusting for age, sex and first 40 genetic
principal components).

° Discovery results are estimated on the UK Biobank sample used in the PHESANT application note usage example *°.

10 Sample size for discovery samples: Field 1970: 83,843; Field 1980: 83,795; Field 1990: 83,445; Field 2010: 82,925.
Sample size for replication samples: Field 1970: 216,311; Field 1980: 216,301; Field 1990: 215,435; Field 2010: 214,152.

" Estimates are in terms of change of log odds of outcome variable for a 1 SD higher BMI.
* Estimates are in terms of odds ratio of outcome variable for a 1 kg/m* higher BMI.
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