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Abstract

In Mendelian randomization (MR), genetic variants are used to construct instru-
mental variables, which enable inference about the causal relationship between a phe-
notype of interest and a response or disease outcome. However, standard MR inference
requires several assumptions, including the assumption that the genetic variants only
influence the response through the phenotype of interest. Pleiotropy occurs when a ge-
netic variant has an effect on more than one phenotype; therefore, a pleiotropic genetic
variant may be an invalid instrumental variable. Hence, a naive method for construct-
ing instrumental variables may lead to biased estimation of the causality between the
phenotype and the response. Here, we present a set of intuitive methods (Constrained
Instrumental Variable methods [CIV ]) to construct valid instrumental variables and
perform adjusted causal effect estimation when pleiotropy exists, focusing particularly
on the situation where pleiotropic phenotypes have been measured. Our approach
includes an automatic and valid selection of genetic variants when building the instru-
mental variables. We also provide details of the features of many existing methods,
together with a comparison of their performance in a large series of simulations. CIV
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methods performed consistently better than many comparators across four different
pleiotropic violations of the MR assumptions. We analyzed data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) Mueller et al. (2005) to disentangle causal
relationships of several biomarkers with AD progression. The results showed that CIV
methods can provide causal effect estimates, as well as selection of valid instruments
while accounting for pleiotropy.

1 Introduction

1.1 Mendelian Randomization

Mendelian randomization is a method for estimating the causal effect of a modifiable ex-
posure (X) on a disease (Y) by using measured genetic variation (G) as an instrument to
eliminate bias from unmeasured confounding factors (U). The Mendelian inheritance pat-
terns of genetic data, from parents to children, can be viewed as comparable to a randomized
controlled trial. The reason is, if the choice of mate is not associated with genotype, the geno-
types distribution (of the offspring) should be unrelated to any confounding factors. From a
statistical perspective, Mendelian randomization is an application of instrumental variable
methods using genetic information, as instruments (Smith and Ebrahim, 2004; Didelez and
Sheehan, 2007; Lawlor et al., 2008; Wehby et al., 2008) for the exposure of interest X, as
illustrated in Figure 1. In order to obtain valid results from instrumental variable analysis,
several important assumptions about the relationships between the genotype instruments, G
(usually single nucleotide polymorphisms (SNPs)), and the other variables must hold. When
working with a structural equation modeling (SEM) set-up, the assumptions for Mendelian
randomization are:

(A1) G is associated with the exposure X (i.e. G 6⊥ X, or G and X are not indepen-
dent).

(A2) G and Y are independent conditional on exposure X and unmeasured confound-
ing factors U (i.e. G ⊥ Y|X,U).

(A3) G and confounders U must be independent (i.e. G ⊥ U).

If linear models are assumed for the dependencies among the G,X,Y, then “independent”
in the assumption can be relaxed to “uncorrelated”, and “associated” can be replaced with
“correlated”. In the following we assume linear relationship for causal dependencies.

These assumptions may be violated in some contexts (Didelez and Sheehan, 2007; Lawlor
et al., 2008). For example, linkage disequilibrium, which refers to the association of alleles
at different loci in the population, may lead to violations of condition (A2). If the genetic
variant of interest, G1, is in linkage disequilibrium with another genetic variant, G2, which
has a direct or indirect influence on the disease Y, then (A2) is not satisfied for G1. It is
often believed that genotypes will not be associated with the socioeconomic and behavioral
characteristics that confound X and Y, however, careful assessment of possible violations of
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Figure 1: A directed acyclic graph (DAG) representing a situation where Mendelian ran-
domization using genetic variants G as instruments can be useful for inferring whether a
phenotype X is causally related to an outcome Y. U represents unmeasured confounding
factors.

(A3) is still necessary in some situations (Lawlor et al., 2008). Often most the problematic
assumption is (A2), since genetic variants often have effects on cell functioning that are not
well understood and could plausibly act through many mechanisms.

1.2 Challenges Arising from Pleiotropy

Pleiotropy–when more than one phenotype is influenced by the same group of genotypes–
may violate assumption (A2) if all these phenotypes are themselves on the causal pathway
for the response Y. Two kinds of pleiotropy can be defined (Solovieff et al., 2013): biological
pleiotropy (Stearns, 2010; Wagner and Zhang, 2011) refers to associations involving multiple
phenotypes sharing the common genetic pathways. For example, a gene variant in PTPN22
is known to be associated with immune related disorders such as Type 1 diabetes (Todd
et al., 2007) and Crohn’s disease (Barrett et al., 2008). This variant has been shown to
interfere with the function of various T cells (Rieck et al., 2007) and affect the removal of
autoreactive B cells (Menard et al., 2011). Hence, the impact of T cell levels on the risk
of diseases will be confounded by the alternative causal pathway through reactive B cells,
and vice versa. In contrast, mediated pleiotropy refers to direct causal impacts between
phenotypes, such that the genotypes of interest have direct/indirect causal impact on both
phenotypes. For example Thorgeirsson et al. (2008) reported a common variant in the
nicotinic acetylcholine receptor gene cluster that affects both nicotine dependence (ND) and
the smoking quantity (SQ). Both of these phenotypes (ND and SQ) are associated with the
risk of lung cancer (Hung et al., 2008; Lamin et al., 2014) and yet smoking quantity can
affect nicotine dependence. On the other hand, it is also believed that the most important
factor for smoking persistence is nicotine dependence. The relationship between ND and
SQ (Figure 2) depends on the duration of smoking and magnitude of craving (Donny et al.,
2008). Therefore, in order to estimate the magnitude of the effect of nicotine dependence
alone on lung cancer, one would need to appropriately account for the effect of smoking
quantity. Methods to clarify such complex relationship are essential.

The motivation for this work is derived from two straightforward questions:

(B1) In many applications, researchers may have access to large data collections includ-
ing many phenotypes. Although some are of primary interest for their causal effects,
others could be considered of secondary interest – yet may be influenced by some of
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G
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Figure 2: Diagram representing pleiotropy in smoking studies. G: genotypes. ND: nicotine
dependence. SQ: smoking quantity. LC: lung cancer (risk). A bidirectional arrow between
SQ and ND reflects multiple dependencies. For simplicity we omit possible confounding
factors here.

the same genetic variants. What is the best way to use data from these additional
phenotypes and perform inference on causal effects?

(B2) Does the solution for (B1) select genetic variants that only affect the phenotype
of primary interest?

Many different statistical methods have been proposed to address challenges arising
from pleiotropy. In section 2 we introduce notation and review several of the popular meth-
ods. Then in section 3, we propose a novel instrumental variable approach for Mendelian
randomization in the presence of potential pleiotropic phenotypes. First, we describe our
instruments, which are based on a weighted combination of the original genetic information
and maximize the association between G and X under a set of constraints. We then show
that approximate sparse solutions for these weights can be obtained, and furthermore that
we can select approximately valid instruments as a result. In section 4, we compare all these
methods against each other in simulated data, and in section 5 we analyze an Alzheimer’s
disease dataset ADNI to demonstrate the performance of our CIV method as well as other
instrumental variable methods.

2 Context of the Problem and Review of Existing Methods

For each individual i ∈ {1, ..., n}, let Yi be the response of interest and let Gi ∈ Rp represents
the genotypes that have been collected for ith observation, where p is the number of all
genotypes available. Let Xi ∈ R,Zi ∈ Rk be the phenotypes that have been measured for
this individual; Xi is the phenotype of interest and Zi are phenotypes that may be affected by
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elements of Gi. We denote Y = (Y1, .., Yn)>,X = (X1, ...,Xn)> ∈ Rn×1,Z = (Z1, ...,Zn)> ∈
Rn×k and G = (G1, ...,Gn)> ∈ Rn×p to be n-dimensional vectors while each individual is
assumed to be observed in an i.i.d. fashion. We assume linear structural equation models:

Z = Gαz + ζzU + εz (1a)

X = Gαx + Zγzx + ζxU + εx (1b)

Y = Xβ + Zη + ζyU + εy (1c)

Or

X = Gαx + ζxU + εx (2a)

Z = Gαz + Xγxz + ζzU + εz (2b)

Y = Xβ + Zη + ζyU + εy (2c)

where αx and αz are the association parameters between genotypes G and phenotypes X,Z.
β is the causal effect parameter of interest, and η is the pleiotropic causal effect of Z on Y.
ζx, ζz, ζy represent the impact (coefficient) of unmeasured confounding factors U on X,Z
and Y respectively. We use γzx and γxz to denote the direct causal impact of Z on X and
X on Z respectively. Note that at least one of γzx and γxz should be 0. Let εx, εz, εy be
independent errors for X,Z and Y respectively.

 G

 Z

 X

 Y

 U

αz

αx

⋎XZ

η

β

⋎ZX

Figure 3: General diagram representing pleiotropic influences in Mendelian randomization
studies. G: genotypes. X: phenotype of interest. Z: pleiotropic phenotypes. Y: response
of interest. αx, αz are the genetic association parameters between X ∼ G and Z ∼ G. β is
the causal effect of interest (X on Y). η: the pleiotropic pathways of Z on Y. γxz and γzx
represent the possible causal effects of X on Z and Z on X respectively.

Figure 3 lays out the general pleiotropic structure of this model. We assume that geno-
types G, phenotypes of interest X, the response Y and potential pleiotropic phenotypes
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Z have all been measured for each individual in the study. The parameter of interest is
assumed to be β, the causal effect of X on Y. Unobserved confounders are indicated by U.
The relationships between phenotypes of interest X, pleiotropic phenotypes Z, and outcomes
Y may vary from one situation to another, i.e. not all of the edges or arrows in Figure 3
need to be present in any particular example. However, if X has a direct causal relationship
with Y, then β must be nonzero.

Three different types of relationship between X and Z can be assumed:

i X and Z are conditionally independent given G and U (γzx = γxz = 0).

ii direct causal impact of X on Z (γxz 6= 0 and γzx = 0).

iii direct causal impact of Z on X (γzx 6= 0 and γxz = 0).

It is worth noting that only (i) and (iii) can be referred to as pleiotropy (by definition) when
αz 6= 0. For (ii) even valid instruments (with αz = 0) are still associated with Z due to the
path G→ X→ Z and the total causal effect for X would be β + γxzη.

The term “endogenous” variable describes the factors that are explained by the genotype-
phenotype relationships and have impact on response Y. Common endogenous variables
include health-related behaviors and risk-related phenotypes. X and Z in Figure 3 are
both endogenous since they are both determined by genotypes and have impact on response,
albeit with different functions. Variables such as age and sex that are not associated with the
genotype-phenotype causal pathways of interest are termed “exogenous” variables; normally
it is possible to adjust for these variables in a straightforward way in data analysis.

2.1 One Sample and Two Sample Mendelian Randomization

MR can be conducted with one sample of subjects, where individual level data (G ,X,
Y) or summary statistics (G-X associations and G-Y associations) are used to infer the
causal effect X→ Y, all in the same data set. An alternative strategy is to use two-sample
MR methods with summary statistics, when no joint data is available. The gene-exposure
(G-X) and gene-outcome (G-Y) associations are taken from different data sources for two-
sample MR with summary statistics. Some MR methods for individual level data can also
be separated into two steps and used with two-sample data. However, not all MR methods
are straightforwardly adapted for two-sample set-ups.

There are three main reasons for using two-sample MR: the first is the separation of
G-X and G-Y associations in two datasets. In this case only two-sample MR is applicable.
Moreover, even if the estimated genetic instrument’s effect on X is biased in the first data
set, this bias should not affect the causal effect estimation obtained in the second data set
(Lawlor, 2016). The second reason is to alleviate weak instrument bias, in which instru-
ments are weakly associated with phenotype of interest. As a result, in one-sample analysis,
the (unobserved) confounders may explain more variation in the phenotype than the instru-
ments, and the estimates will be biased towards the observational confounded association ζy

ζx
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(Burgess et al., 2011). In two sample MR analysis the over-fitting of X is avoided, and then
the weak instrument bias is towards the null (Davey Smith and Hemani, 2014). The third
reason for using two-sample MR is the possibility to improve the statistical power of causal
effect estimates and reduce G→ X bias by using large data collections with many cases of
samples.

2.2 Approaches based on 2SLS

If possible, a simple solution to address pleiotropy is to select for analysis only the valid
genotypes, i.e. those that influence the phenotype of interest X and not Z, and use them
as instruments with instrumental variable methods such as such as two-stage least squares
(2SLS) regression. 2SLS method is a popular technique that is used in the analysis of
structural equations. Given valid instruments G, the following two steps define a 2SLS
model:

1. In the first stage, we obtain a new variable X∗ as fitted value from ordinary least square
regression X ∼ G, where G are the selected instruments.

2. In the second stage, we substitute X with X∗ and obtain ordinary least square estima-
tors of β from the regression Y ∼ X∗.

However, this selection of valid instruments may not always be possible without in-depth
knowledge of the disease under study. For example, Timpson et al. (2005) uses common CRP
(C-reactive protein) gene haplotypes, based on 3 SNPs, as instruments to infer the causal
effect of the CRP protein (i.e. the phenotype of interest X) on multiple metabolic syndrome
phenotypes including body-mass index (BMI) and high density lipoprotein (HDL) levels (i.e.
Y. However, Mart́ınez-Calleja et al. (2012) showed that one of these SNPs (rs1130864) is
directly related to BMI, and it is also known that there exists a negative association between
higher levels of BMI and HDL (Shamai et al., 2011). Hence, these 3 SNPs may not all be valid
instruments for causal effect estimation of CRP protein levels on HDL. In many situations,
our understanding of SNP effects is not complete enough to select valid instruments based
on knowledge.

Another simple solution is to replace G with residuals after regressing each of these
genetic variants on the pleiotropic phenotypes, Z. Specifically, one can replace G with
G∗ = (I − Pz)G where Pz = Z>(Z>Z)−1Z, which regresses out the exogenous effect of Z.
Then two-stage least squares (2SLS) or other instrumental methods can be applied to the
new G∗,X,Y. We refer to this method as “2SLS adj”. In general, this is not an appropriate
solution and it will lead to biased estimation of β since Z is not an exogenous variable.

A related solution based on the underlying linear structural equation model (Equation
1) turns to multiple linear regression of Y on X̂ and Ẑ jointly in a two-stage least squares
(2SLS) model, where X̂ and Ẑ are the predicted phenotypes using G as the instruments. We
refer to this method as “2SLS mul” since it essentially implements multiple 2SLS regression.
The 2SLS mul method uses G to account for the endogeneity of Z without controlling for it
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explicitly. However, using this approach, the resulting estimator of β will be unstable if X̂
and Ẑ are highly correlated (Farrar and Glauber, 1967; Graham, 2003; Grewal et al., 2004).

By nature 2SLS adj and 2SLS mul methods require individual level data in a single
sample. In the two-sample context, when (G,X) and (G,Y) are observed separately, the
estimators are still available for 2SLS under certain conditions and assumptions (Angrist
and Krueger, 1992; Dee and Evans, 2003). In that case, the corresponding estimators are
called “two-sample instrumental variable” (TSIV) estimators in empirical studies (Borjas,
2004; Dee and Evans, 2003). In this paper, we only refer to 2SLS methods as the estimators
for individual level data.

2.3 Distribution of Causal Effects Across Multiple Instruments

When there are multiple instruments but not all are valid, causal conclusions can still be
drawn by examining the distribution of the estimated causal effects across the instruments.
If a group of genotype instruments, such as SNPs, are independent–i.e. located at different
sites in the genome–and they all lead to similar estimates of the causal effect of X on Y (i.e.
β), then this pattern provides strong evidence of a causal relationship between X and Y.
This phenomenon is nicely illustrated with a funnel plot, where the precision of β̂ (defined as
the reciprocal of its variance) for each SNP is plotted against its estimate, β̂. Asymmetry in
a funnel plot might indicate an unbalanced pleiotropy, where variants subject to pleiotropy
tend to bias the causal estimate in the same direction. There are tests for symmetry such as
Beggs rank correlation test, although they have low statistical power (Begg and Mazumdar,
1994).

Mendelian randomization with Egger regression (MR-Egger) provides a more specific
way to assess whether pleiotropy is present and to obtain an “unbiased” estimate. Egger
regression is defined as the linear regression of a normalized parameter estimate against its
precision (reciprocal of the corresponding standard error) in meta-analysis. Egger ’s test
assesses small study bias by testing the hypothesis that intercept of the Egger regression
is zero. (Bowden et al., 2015) suggested that bias due to pleiotropy can be considered as
analogous to small sample bias (Egger et al., 1997), and therefore that meta-analysis methods
could be of use in Mendelian randomization settings. Mendelian randomization with Egger
regression (MR-Egger) uses the slope coefficient from Egger regression as a consistent causal
effect estimator of β. A key assumption (the InSIDE assumption) here is that the associations
of the genetic variants with the phenotypes of interest are independent of the direct effects
of the genetic variants on the response – i.e., αx is independent of αz for any SNPs in G
(Figure 3). The InSIDE assumption still holds even if some instruments are invalid (αz 6= 0),
but it will be violated if genotypes G influence pleiotropic phenotypes (or confounders) Z
that have impact on both X and Y – i.e., αx = 0, αz 6= 0, γzx 6= 0. MR-Egger regression
provides no analytical estimate of the standard error of the β̂, although a confidence interval
can be obtained using bootstrap methods. It is also worth noting that MR-Egger can be
extended to two-sample summary data MR analysis. However, for individual level data
analysis, MR-Egger is restricted to a single sample because it considers risk factors one at a
time. If two distinct samples of G,X,Y are available, MR-Egger can be applied separately
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to both datasets and evaluates the difference between the two samples.

2.4 Summaries of Multiple Instruments

The genetic information across a set of genotypes can be summarized into a single genetic risk
score by calculating a weighted sum, across the set, of the number of risk alleles carried by
each person. The Allele Score method (Burgess and Thompson, 2013) is one example of this
approach. Unweighted scores are simply the total number of risk-increasing alleles carried by
an individual; weighted scores will allow the contribution of each risk-increasing allele to be
proportional to the estimated additional risk. The weights are ideally derived from external
information, such as previously published genetic associations, to reflect the corresponding
genetic effect sizes. If no such external information exists, then cross-validation methods
can be used to obtain bias-reduced weights for score construction, which then improves the
causal effect estimation.

Several other weighted score methods have also been proposed. The Jackknife instrumen-
tal variable estimation method (JIVE ) (Angrist et al., 1995) estimates X̂ of each individual
in the first stage regression X ∼ G without using the corresponding data points. That is, the
ith row in the jackknife matrix X̂ is estimated without using ith observation. As a result,
that JIVE estimator is restricted to a single sample.

When the associations between instruments and the endogenous explanatory variable
X are weak, the naive 2SLS estimator for β may be biased. All weighted score methods
(including allele scores and JIVE ), are expected to be able to reduce weak instrument bias
in comparison to multiple instrument methods as described in section 2.3. In fact, weighted
scores can be strong instruments even when the individual genetic variants are all weak
instruments, and hence bias due to weak instruments is expected to be reduced. However,
weighted scores usually also reduce the power (sensitivity) of MR studies (Pierce et al., 2010;
Palmer et al., 2012) and require all instruments to be valid.

One limitation of this set of methods is that the choice of weights has a considerable
impact on the bias of estimates. One popular and usually stable approach is to obtain
weights from an external source with a large sample size, although this could introduce some
bias due to cohort differences. If relevant external weights are not available, then we have to
use “interval” weights derived from the data under analysis. However, there is no analytical
standard error estimation of the resulting causal effect when internal weights are used.

In the context of two-sample analysis, the Allele score weights obtained from one sample
can be used to infer the causal effect on a second distinct sample, given that G,X,Y are
observed in both samples. The weights can be generated by (1) averaging the cross-validated
weights from the training data; or (2) sampling from a normal distribution around the
training weight with a chosen standard deviation (e.g. 0.01). The latter approximates
the uncertainty in the estimation of weights from external data (Burgess and Thompson,
2013). In our two-sample analysis we refer to these two methods as Allele and Allele sim
respectively.
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2.5 Reducing Correlations between G and the Environment

A more sophisticated way to reduce bias due to pleiotropy is to set up a stringent condition
for the estimate of β that reduces the correlation between G and any other factors that
influence Y without going through X. Suppose that

Y = Xβ + e,

where e includes the effects of U, Z and εy. Hence, the goal here is to reduce Cor(G, e),
which is induced through the effects of U and Z. It must be noted that this only makes sense
when there is no causal impact of X on Z. The Limited Information Maximum Likelihood
(LIML, (Hayashi, 2000)) finds a conservative estimator of β by minimizing

Φ(β) =
(y −Xβ)>G(G>G)−1G>(y −Xβ)

(y −Xβ)>(y −Xβ)

instead of minimizing (y−Xβ)>G(G>G)−1G>(y−Xβ) in the 2SLS. The denominator in
the equation of Φ(β) is the variance of regression errors. LIML will be less biased than 2SLS
when regressors X and regression error y −Xβ are not independent or when there are many
weak instruments (Hahn and Inoue, 2002). However, the variance of LIML will increase
when instruments are weak and the sample size is small, compared to 2SLS (Blomquist
et al., 1999).

The idea behind LIML was generalized in the Continuously Updating Estimator ap-
proach (CUE, (Hansen et al., 1996)). This approach seeks “unbiased” estimator for β̂ that
satisfies the empirical analogue of the following (moment) conditions:

E[gi(β)] = E[Gi(yi − xiβ))] = 0.

This is equivalent to minimizing
ĝ>(β)Wĝ(β),

where ĝ(β) = n−1
n∑
i=1

gi(β) = n−1
n∑
i=1

Gi(yi − xiβ) is the sample analog of the population

moment conditions E(Gi(yi − xiβ)) = 0 in the generalized method of moments (GMM)
framework. Here, Gi is the ith observation of instruments G and W is a weighting matrix.
CUE defines a weighting matrix W(β) as a function W(β) = (n−1

∑
gi(β)g>i (β))−1 to give

different weights to each moment condition.

All MR estimators based on the generalized method of moments (framework) are re-
stricted to a single sample, since they all rely on the asymptotic properties of generalized
methods of moments. Thus, given two distinct samples, LIML and CUE can only be applied
separately to obtain one causal effect estimate for each sample.

Davies et al. (2015) demonstrated that CUE is a better choice than LIML and 2SLS when
there are many weak instruments. In fact Hansen et al. (2012) and Newey and Windmeijer
(2005) showed that generalized methods of moments estimators, including LIML and CUE,
are more resistant to bias in this situation. Furthermore, Bound et al. (1995) showed that
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the bias of the 2SLS estimator can be approximated by:

E(β̂2SLS − β) ≈
σεxεy
σ2
εx

(
p− 2

µ2

)
, (3)

where σ2
εx is the variance of the regression error εx in the first stage, and σεxεy is the covariance

of the second stage regression error εy with εx. The quantity µ2 = X̂>X̂
σ2
εx

denotes the amount

of the variation in X that is jointly explained by the instruments, where X̂ is the fitted
value of X using G. Hence, the bias of the 2SLS estimator is proportional to the number
of instruments (p) and inversely proportional to the variation in X that is explained by G.
That is, the bias will increase if we add more instruments that do not explain the variation
of X.

2.6 Valid Instrument Selection Methods

The correlation between G and e = (y −Xβ) may arise from several kinds of violations of
assumptions (A2) and (A3). The previously-described methods in sections 2.3, 2.4 and 2.5
do not use the information contained in Z. We have observed that when X and Z are highly
correlated, both LIML and CUE fail to provide consistent estimates of β. Therefore, consis-
tent solutions in the presence of pleiotropy have been proposed to embed valid instrument
selection within an instrumental variable method. The motivation here is to incorporate
both direct and indirect causal effects from G to Y using the following model:

Yi = Giδ + Xiβ + εyi + ζyU, (4a)

E(εi|Gi) = 0, i = 1...n, (4b)

Xi = Giα + εxi (4c)

where δ represents the direct effects of the instruments G on outcome Y. Indirect effects
of G on Y are captured through X, and β represents the causal effect parameter of interest.
α is the association parameter between G and X. In recent work by Kang et al. (2016), the
authors proposed the some invalid some valid IV estimator (sisVIVE) to minimize

(β, δ) ∈ argmin
1

2
||PG(Y −Gδ −Xβ)||22 + λ||δ||1,

where PG = G(G>G)−1G>. The first term essentially replaces X in 2SLS with (X,G),
and thereby the direct causal effect of G on Y (via Z) is taken into consideration. The
second term λ||δ||1 enforces an L1 sparse selection of invalid instruments using a LASSO
prior. sisVIVE is robust to certain invalid instruments and their direct causal effect on Y
(without going through X). However, this method’s ability to select valid instruments is
limited by the assumption that at least 50% of all instruments must be valid.
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sisVIVE treats pleiotropic phenotypes as general sources of the indirect causal effect G
on Y, and does not use the information on Z explicitly. Given variables Z, Kang et al.
(2016) suggests either adjusting for them or using them as exogenous variables. We refer
to these two methods as “sisVIVE adj” and “sisVIVE exo” and implement them using R
package sisVIVE.

If two distinct samples are available, sisVIVE can be extended to a two-sample estimator.
First we can apply sisVIVE on a single sample to obtain estimation of δ and corresponding
valid instrument selections. Then this estimation of δ can be carried over to the MR analysis
of a second sample. The corresponding adjustment for pleiotropic phenotypes Z can also be
incorporated within this two-sample estimator based on sisVIVE.

In summary, a high-level comparison of all the methods described above is provided in
Table 1, contrasting key features. It is also worth noting that the descriptions above are
largely restricted to the case of a univariate variable X, although most methods can be easily
extended to multivariate X (see Discussion). Among all methods new approaches that can
incorporate external information from a different sample (in two-sample setup), or construct
valid instrumental variables to address pleiotropy, are attracting increased attention.
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Table 1: Properties of selected Mendelian randomization methods. Columns: Selected in-
strumental variable methods. Rows: Selected properties. 3: Yes; the corresponding method
has this property, or can be used in this scenario. 7: No.

aAllele score method with internal weights is not applicable to summarized data analysis.
bn: sample size. p: number of genetic variants.
cLinearity in the association between X and Y, and between G and X.
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3 Constrained Instrumental Variable method

The Constrained Instrumental Variable (CIV ) method proposed here is designed to maximize
instrument strength yet provide robustness to pleiotropic effects, specifically for the situation
where potentially pleiotropic phenotypes (Z) are measured and available.

3.1 CIV when p < n

Specifically, we are interested in finding a weight vector c ∈ Rp and v ∈ Rr, s.t.

max
c∈Rp,v∈Rr

c>G>Xv (5)

subject to conditions:

c>G>Gc = 1, (6a)

v>X>Xv = 1, (6b)

c>G>Z = 0. (6c)

The motivation of this method is to construct a relatively strong instrumental variable
Gc (a linear combination of variables in G) that is uncorrelated with Z. In this way the weak
instrument bias and the pleiotropic effect are alleviated in Mendelian randomization with
the new instrumental variable. We use Equation (5) to obtain the maximized canonical cor-
relation between Gc and X. In addition we use Equation (6c) to force the new instrumental
variable Gc to be orthogonal to all possible pleiotropic phenotypes in Z. This maximization
problem is well-defined when p ≥ k (see Appendix A).

The strength of the CIV instruments can be measured with an F-statistic or with a
concentration parameter (Stock et al., 2012). The former can be calculated as the F-statistic
from a linear regression model against the null that the excluded instruments are irrelevant
in the first-stage regression X ∼ G. The latter measures the overall association between X
and G without considering the number of instruments used. As a rule of thumb, a single
instrumental variable with F-statistics < 10 is usually considered weak instrument. CIV is
designed to retain instrument strength, however, it may not always yield the strongest global
F-statistic since the linear constraint (6c) may force our method to exclude some genotypes,
that are associated with both X and Z, from the construction of CIV.

In the context of one-sample analysis, the solution, c, is used to construct a new in-
strumental variable G∗ = Gc. The new CIV is used directly to infer the causal effect of
X on Y from (G∗,X,Y) using estimation methods for linear structural equation modeling
methods such as 2SLS. Alternatively CIV can be embedded inside a bootstrap to find a
bias-corrected CIV weight. We refer to the latter as “CIV boot”.

In the context of model assessment, or when we have two different sets of participants
available, we may want to split data into two datasets. Specifically, CIV is trained on the
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first (training) set, and the solution c is then applied to the second dataset to construct new
instrumental variable Gc to infer causal effect. Some other methods, such as Allele score
method can also be implemented in this way since both of the methods rely on the first stage
pathway (X ∼ G) to construct instruments, and this process is separated from second stage
regression (Y ∼ X) .

One limitation of the CIV method lies in the fact that a solution c only exists when
p < n. In fact, when p < n, there is an unique solution (see Appendix A). This weighted
score can then be used directly to estimate the causal effect of X on Y. However, a solution
only exists when p < n since G>G is not invertible when p > n. In addition, we may
want to select a subset of valid instruments from among all SNPs (the columns of G) of
interest. Therefore, we propose an extension of the previous solution that addresses these
two concerns, through imposing a penalty on the problem (5).

3.2 Smoothed CIV

Different choices of penalty functions on the problem (5) lead to different solutions. However,
popular LASSO and L2 penalties would not result in a sparse solution here under any level
of regularization because of the linear constraint (6c). An explanation can be understood by
examining Figure 4. The LASSO and L2 contours will touch the linear constraints (straight
line in the figure) at two non-sparse solutions of c.

−0.2 −0.1 0.0 0.1 0.2

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

c1

c 2

Figure 4: Graph demonstrating the maximization problem with LASSO penalty and L2

penalty. Rectangle: LASSO penalty contour with the same level of penalization. Circle:
L2 penalty contour with the same level of penalization. Straight line represents the CIV
solution space required, and it does not intersect with a sparse solution. Pixels with color
from yellow to red: coordinates of c = (c1, c2) with absolution correlation values from high
levels to low levels.

Instead we consider an L0 penalty and maximize the function
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max
c∈Rp,v∈Rr

c>G>Xv − λ|c|0 (7)

subject to conditions:

c>G>Gc ≤ 1, (8a)

v>X>Xv ≤ 1, (8b)

c>G>Z = 0, (8c)

where |c|0 is the L0 norm of c and λ is a regularization parameter.

This problem is equivalent to maximizing a convex function over a convex set. However,
it is computationally impractical to exhaustively enumerate all possible sets of |c|0; this
problem with L0 norm has been proven to be NP-hard (Natarajan, 1995). Therefore, we
propose instead to consider smoothed L0 penalties: fσ(x) = exp(− x2

2σ2 ). In the limit when
σ → 0, |c|0 ≈ p−

∑
j

fσ(cj), thereby the problem (7) can be approximated by:

max
c∈Rp,v∈Rr

c>G>Xv − λ(p−
∑
j

fσ(cj)) (9)

subject to conditions (8a), (8b) and (8c). The approach is then to solve problem (9) for a
decreasing sequence of σ (→ 0) and a given value λ, while resulting in at least approximately
sparse solutions. However, there are no theoretical guarantees for the uniqueness of such
numerical solutions, and often there are multiple solutions.

In order to implement this smoothed L0 algorithm and obtain a single solution c for a
given value of λ, we proceed as follows:

1. Initialization: For a given value of λ, start from an initial guess c̃ and initial L0 penalty
σmax = maxj |c̃j|, set σ = σmax.

2. While σ > σmin = 0.01 we do

i Calculate the gradient of function (7) d ∈ Rp, where dj =
λc̃j
σ2 exp(− c̃2j

2σ2 ) −
2[c̃>G>MG]j, j ∈ {1, ..., p} and M = X(X>X)−1X>.

ii Set c = (I−A−A)(c̃− µd) where A− is a general inverse of A = Z>G and µ is a
step-size parameter in gradient descent algorithm.

iii Set c∗ = c/
√

c>G>Gc as the updated solution.

iv Repeat (i) (ii) and (iii) (maximum T times) until it converges, i.e.

√
p∑
j=1

(|c∗j | − |cj|)2/p <

10−10.
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3. Update σ with σ = 0.5 σprev, where σprev is the previous value of σ used in step 2.
If σ > σmin repeat all items in step 2. If not, stop the algorithm and record the last
iteration of c as the final solution.

In summary, the maximization problem of Equation (9) is solved by repeatedly taking
gradient descent steps (i), and then projecting the possible solution back into constrained
set ((ii),(iii)). Note that the step (ii) restricts the solution to be on the constrained set
(8c) and step (iii) restricts to the boundary of the constrained set (8a). Note that the
unconstrained gradient descent step followed by projection to the feasible set is equivalent
to a direct gradient descent step on the feasible set (Cui et al., 2010). The parameters for
step-size (µ) and number of iterations (T ) should be carefully chosen to achieve balance
between computation cost and precision. That is, the states discovered by this algorithm
may not achieve the maximized value of Equation (7) even with a large number of iterations,
if we use a step size that is too large. The decreasing list of values for σ is chosen to ensure
that the approximation accuracy will gradually increase.

The tuning parameter λ affects the prediction performance of our CIV method, as for
any penalization method. Higher values of λ lead to stronger penalization on the L0 norm
of c and an approximately sparser solution for c. This means that more valid instruments
will be considered as invalid and omitted from construction of the CIV weighted scores.
Smaller values of λ correspond to less regularization and thus lead to less sparse solutions.
The ideal value for λ will depend on the actual proportion of invalid instruments among all
instruments.

We therefore implement a K-fold cross-validation technique to find an optimal
value for λ that minimizes the projected prediction error ||PG∗(Y −Xβ∗)||, where
PG∗ = G∗>(G∗>G∗)−1G∗. We choose to use the projected prediction error as the tuning
measurement in order to make G∗ = Gc as “valid” as possible rather than as “informative”
as possible. In the ideal case where G∗ is a valid instrument whose causal impact on Y only
goes through X, then the regression residual Y −Xβ∗ should be orthogonal to any vectors
spanned by the original instruments in G. In other words, only valid instruments G will
yield PG∗(Y −Xβ∗) = 0. In general, we are more interested in the validity of the prediction
model rather than the most informative solution of β; the latter may lead to over-estimation
of the causal effect of interest.

There may be multiple local solutions of c to the smoothed problem Equation (9), since
this a non-convex optimization problem. A careful reader may recognize that it implies
maximization of a convex function over a convex set, yet overall this is not a convex problem!
As a result, a local maximum solution of c may not be the global maximum solution, and
numerical optimization techniques may get trapped into a local minimum. Therefore, we
start from multiple (e.g. 100) initial points randomly sampled from a multivariate normal
distribution N(0, Ip), and let the smoothed L0 algorithm converges to a set of solutions,
possibly arriving at multiple local modes of c. After examining correlations between all pairs
of solutions (c(1), c(2)), highly correlated solutions (corr ≥ 0.9) are removed. The remaining
solutions are combined into a matrix, c∗, of row dimension p. Finally, we construct new
instruments G∗ = Gc∗ and refer to this approach as CIV smooth.
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3.3 Causal Effect Estimation

The causal effect estimate of exposure on response β is now obtained with valid instruments
G∗. Several alternative methods can be used to infer causal effects from G∗,X,Y. For
simplicity, we choose the two stage least square (2SLS) estimator as the default causal effect
estimator. Remember that the 2SLS estimator is defined as β̂2SLS = (X>PGX)−1X>PGY;
this is equivalent to implementing the least square regression twice, in the first stage X ∼ G∗

and the second stage Y ∼ X∗. The asymptotic variance of the 2SLS estimator β can be
estimated with:

β̂2SLS = β + (X>G(G>G)−1G>X)−1X>(G>G)−1G>(Y −Xβ) (10)
√

n(β̂2SLS − β)→ N(0,A),

A = σ̂2
e [(

1

n

n∑
i=1

xiG
>
i )(

1

n

n∑
i=1

GiG
>
i )−1(

1

n

n∑
i=1

xiG
>
i )>]−1,

σ̂2
e =

1

n

n∑
i=1

(yi − x>i β̂2SLS)2,

It is worth noting that Y − Xβ is the regression error term which is assumed with ho-
moscedastic variance. However, such asymptotic estimation of variance is not available for
the CIV methods, since the new instruments G∗ are dependent on all observations of X and
Z, and hence XiG

∗>
i and XjG

∗>
j are not independent. Therefore, the assumption of weak

law of large numbers is violated and puts the convergence of 1
n

n∑
i=1

XjG
∗>
j

P−→ E[XjG
∗>
j ] into

jeopardy.

Bootstrapping can be used to estimate the sample variance of β̂ and obtain confidence
intervals. The resulting empirical confidence intervals should be interpreted with caution
and compared with other methods (such as the Allele score method) cautiously, especially
when weak instruments are present (Moreira et al., 2009).

Both CIV and CIV smooth can be applied to the case when two separate samples are
available. For CIV construction, the weight c can be estimated on the first sample and
then applied to the second sample for causal effect estimation. The same approach can
be applied to the CIV smooth algorithm. An alternative way to apply CIV smooth to the
two-sample MR analysis, similar to sisVIVE, is to conduct valid instrument selection using
the first sample with CIV smooth, and then to conduct causal effect estimation with that
information on a second sample. All these three methods are included in our two-sample
analysis below.
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4 Simulation

4.1 Simulation Design

Simulations have been conducted under a variety of different kinds of violations of the MR
assumptions in order to compare the performance of our CIV methods with other popular
methods. In all simulations, we assume that there is a fairly large set of potential genetic
instruments G, and that individual level data are available for the phenotype of interest X,
potential pleiotropic phenotype Z, and the response Y.

Table 2 provides the broad goals behind four series of simulations designed to address
different types of violations of the key assumptions. All simulations assume the presence of
pleiotropy, and hence assumption (3) of the MR assumptions is always violated. In Series I,
we generate strong but pleiotropic instruments G for phenotype of interest X; this violates
the assumption (A2). In Series II, we investigate the association between X and Z, by
varying the direction and strength of the simulated causal relationships between these two
sets of variables. In Series III, we simulate a set of weak, pleiotropic instruments, where the
associations between G and X are not strong; this violates assumption (A2) and jeopardizes
(A1) of the three MR assumptions. Finally, in Series IV, we examine performance when the
selection of important SNPs is desirable, such as what one might expect if many variants of
interest are simultaneously considered within an MR analysis. Parameter settings in common
across scenarios are given in Table 2. It is worth noting that we do not include simulations
with p ≥ n, i.e. when there are more genotypes in G than observations. The reason is CIV
and CIV smooth are the only methods that would work under such restrictions and we do
not have competitors in this case.

Table 3 summarizes the implementation details of the specific methods used for causal
inference in our simulations. Note that we have two variants of CIV and CIV smooth
methods: CIV boot and CIV smooth.sel. The former is a bootstrapped version of CIV ;
that is, a bootstrap corrected estimate of c is obtained and used to infer a causal effect
from (G,X,Y). The latter is a selection method based on CIV smooth: we first obtain
CIV smooth estimates ĉ. For each converged solution ĉ, a feature j is recognized as significant
if coefficient |cj| ≥ ψ∗maxj |cj|, j = 1, ..., p. This criteria ψ can be tuned with cross-validation
to achieve optimal selection performance in application. In our simulations we choose a small
value ψ = 0.2 for simplicity. All selected features are then recognized as valid instruments G∗

for MR analyses. CIV boot method is included in all simulations to check the consistency of
CIV, while CIV smooth.sel method is only applied in simulation Series IV to test the feature
selection performance of CIV smooth solutions. The description of all other methods can
be found in Section 2. In series I, II and III, all methods in Table 3 are implemented for
one-sample analysis, and a few comparable methods are used for two-sample analysis. In
series IV, only applicable feature selection methods are considered in simulation.
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Simulation
Series

n η p pz MAF αx αz Fx
Methods
(One Sample)

I. Standard
Pleiotropy

500 1.0 9 2 0.33 1 1 42.86 All methods

II. X→ Z
or Z→ X

500 1.0 50 15 0.33 0.1 ; 0.5 0.1 ; 0.5
3.6;10.04
3.57;9.75

All methods

III. Weak
Instruments

500 1.0
9
25
100

2
5
22

0.33
0.2,0.5
0.12,0.3
0.06,0.15

0.2,0.5
0.13,0.32
0.06,0.15

6.64,26.42
3.22,8.84
0.8,2.26

All methods

IV. Selection of
Valid Instruments

500 1.0 50 10 0.33 2 ; 0.1 0.5 11.13; 2.44
CIV Variants
sisVIVE Variants

Table 2: Some of the parameter settings used in the four series of simulations. n: number
of individuals. p: number of genotypes in total. pz: number of pleiotropic genotypes with
no effect on X. MAF: minor allele frequency of all SNPs in the simulation. Methods:
the methods compared in each simulation in one-sample setups. αx: association parameter
between G and X as in Figure 3. αz: association parameter between G and Z as in Figure
3. Fx: the expected F-statistic values for testing the strength of instruments in G (for
X) given values of αx, αz and other parameters. All methods used in one sample analysis:
2SLS naive, 2SLS adj, 2SLS mul, JIVE, Allele Score, Egger Regression, LIML, sisVIVE adj,
sisVIVE exo, CUE, CIV, CIV smooth and CIV smooth.sel.

4.2 Simulation Series I, II and III : Implementation

4.2.1 Simulation Series I : Standard Pleiotropy

In Series I, we simulated a standard pleiotropy problem with generated values of genotypes
G, a phenotype of interest X, a pleiotropic phenotype Z and an outcome of interest Y.
The values of parameters were carefully chosen so that all the 9 genotypes in G were strong
instruments for X and 2 of them had pleiotropic effects on Y via Z. 200 replications of
the simulation for both one-sample and two-sample setups were generated. The results were
compared across all approaches described in the section 2. We generated Datasets as follows:

xi = αx

9∑
j=1

Gij + uxi + εx,i

zi = αz
∑
j∈Gz

Gij + uzi + εz,i

yi = zi + ui + εy,i

(11)

where xi, zi, yi are the ith observation of G,Z,Y. Let Gij denote the value of ith observation
of jth genotype. uxi , uzi , ui represent the effect of confounding factor U on X, Z and Y
respectively. εx,i, εz,i, εy,i are the independent error of G,Z,Y for ith observation respectively.

The simulation of Equation (11) was based on 9 (p = 9) independent variants G simu-
lated with a minor allele frequency 0.3 and a sample size of n = 500. The pleiotropic subset,
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Method Label/Variants Parameter Choice Treatment of Z

2SLS
2SLS naive NA NA

2SLS adj NA Adjust G ∼ Z

2SLS mul NA Combine (X,Z) to be X∗

JIVE JIVE NA Combine (X,Z) to be X∗

Allele
Allele 10 fold cross-validation Combine (X,Z) to be X∗

Allele sim
“precise weight” with standard
deviation 0.01 (Burgess and Thompson, 2013)

Combine (X,Z) to be X∗

Egger Egger NA NA

LIML
LIML NA NA

LIML exo NA Adjust (G,X,Y) ∼ Z

sisVIVE
sisVIVE adj

10 fold cross-validation;
A numeric vector of penalization
parameter must be given for cross-validation.

Adjust G ∼ Z

sisVIVE exo
10 fold cross-validation;
list of penalization parameter

Adjust (G,X,Y) ∼ Z

CUE CUE NA Combine (X,Z) to be X∗

CIV

CIV NA Embedded

CIV boot 100 bootstrap samples Embedded

CIV smooth

10 fold cross-validation;
A numeric vector of penalization
parameter must be given for cross-validation;
100 random initial points

Embedded

CIV smooth.sel

10 fold cross-validation;
A numeric vector of penalization
parameter must be given for cross-validation;
100 random initial points;
select variants whose coefficients
>0.2 * max(coefficients)

Embedded

Table 3: The methods and parameter settings used in the simulations. Label: the actual label
used in figures. Parameter Choice: the parameter specifications for each of the methods in
the simulations. Treatment of Z: the way to incorporate pleiotropic phenotype Z in different
methods.
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Gz, containing 2 SNPs (pz = 2) sampled without replacement, that were also associated with
Z. Given that the SNPs were assumed to be independent with the same minor allele fre-
quency, each SNP (coded as 0,1,2 for the number of minor alleles) had variance σ2

G = 0.42.
The concentration parameter, µ2

x, the amount of the variation in the exposure that was

jointly explained by the instruments, could therefore be written as µ2
x =

npα2
xσ

2
G

σ2
Xuε

= 0.21npα2
x,

where σ2
Xuε

= 2 is the variance of the regression residual (εx + ux) in the first stage of Equa-
tion (11). The concentration parameter divided by p, given the OLS estimates of αx and
σ2
Xuε

, was equal to the F-statistic for testing the null hypothesis αx = 0. We set αx = αz = 1
to ensure G were strong instruments (F statistics > 10) for both X and Z.

We implemented simulations in both one-sample and two-sample setups for Series I, in
which specific MR methods (in Table 3) were compared. The one-sample setup corresponded
to a sample of n = 500 observations of G,X,Z,Y. In addition, we assessed performance
of our CIV instruments and compared with appropriate comparators, including Allele score
methods and sisVIVE methods in the two-sample setup. Specifically, we generated two
different sets of G,X,Z,Y, and each set contains 500 observations. We analyzed the first
dataset with the variants of Allele score methods, sisVIVE methods and CIV methods (see
Table 3). The weights obtained from the first dataset for instrumental variable construction
were then applied to the second data set. The corresponding measurements of instrument
strength (F-statistic), correlations between new instruments (G∗) and pleiotropic phenotype
Z, and causal effect estimation bias from second data were recorded and compared in Fig-
ure 5. We chose the F-statistic as a measure of instrument strength instead of the concentra-
tion parameter (in one-sample analysis) because we have different numbers of instrumental
variables from different methods, and only the F-statistic takes that into account.

4.2.2 Simulation Series II : Direct Causal Effect between X and Z

In Series II, we simulated direct causal links between X and Z to study the impact of
pleiotropy on causal effect estimation of all applicable methods in both one-sample and two-
sample set-ups. Specifically, G were generated as instruments for X and a proportion (pz) of
them were generated as genetic causes for phenotype Z. Direct causal relationships between
X and Z, either X → Z or Z → X, were then simulated. The outcome Y was depending
on both of X and Z. In this way, the correlation between X and Z was induced partially
through direct causal relationships and partially through overlapping genetic causes.

As far as the direct causal relations between X and Z is concerned, we find that the
violation of MR assumption (A2) is inevitable when X → Z. Specifically, when there are
direct causal relations Z → X and not all genetic variants in G are associated with Z, the
situation can be considered as pleiotropy and only the genetic variants not directly related
with Z are valid instruments. However, if the causal relation goes from X → Z, then all
genetic variants in G are invalid and this should not be considered as pleiotropy. In addition,
when there is a strong link between X and Z, the two sets of variables are likely to be highly
correlated, and this in itself can lead to instability of the estimation of causal effect, β.

In Simulation Series II, datasets were generated containing direct causality between x
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and Z as follows:

yi = βxi + zi + ui + εy,i

zi = αz
∑
j∈Gz

Gij + uzi + εz,i, xi = αx

p∑
j=1

Gij + zi + uxi + εx,i

or

yi = βxi + zi + ui + εy,i

xi = αx

p∑
j=1

Gij + uxi + εx,i, zi = αz
∑
j∈Gz

Gij + xi + uzi + εz,i

(12)

In each simulated dataset, 50 SNPs (G in Equation (12)) with a minor allele frequency
0.3 and n = 500 observations were generated. Both directions of the causality between X
and Z were considered, i.e. in one case G → X → Z was generated, and in the other case
G → Z → X was generated. In each case, αx ∈ (0.1, 0.5) encompassed one scenario with
weak instruments and another with strong instruments. 200 datasets were generated for
each scenario, and results compared the estimates and variance of the causal effect, β.

We ran both one-sample and two-sample simulations in Series II using the methods
introduced in Table 3. The instrumental variable strength, correlation between G∗ and
Z, and causal effect estimation bias in two-sample simulations of selected methods were
summarized in Figure 6 and Figure 7. The performance in one-sample simulations under the
causal null, when there were no true associations (β = 0), was reported in Figures 10 and
11 for the scenarios X→ Z and Z→ X.

4.2.3 Simulation Series III : Weak Instruments

In Series III, a set of genotypes G (p = 9, 25 or 100) were generated as weak instruments
for X. A proportion of them (2/9, 5/25 or 22/100) had pleiotropic effects on Y via Z, in
which case both phenotypes (X and Z) were endogenous variables. We generated samples
of (X, Z, Y) according to Equation 13. The choices of parameter values, as in Table 2, were
based on Davies et al. (2015), and the results of all approaches (in both one-sample and
two-sample setups) were displayed and discussed.

xi = αx

p∑
j=1

Gij + uxi + εx,i

zi = αz
∑
j∈Gz

Gij + uzi + εz,i

yi = βxi + zi + ui + εy,i

(13)

Sets of independent variants G in Equation (13) were generated with p = 9, 25, or
100, each with a minor allele frequency of 0.3 and a sample size of n = 500. The pleiotropic
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subset, Gz (pz = 2, 5 or 22 respectively), containing genotypes sampled without replacement,
was also associated with Z. The values for parameter αx were carefully chosen so that, for
different numbers of SNPs p, all variants in G were weak instruments (F statistics < 10)
with the same magnitude (µx). We also chose the values for αz and pz = |Gz| (number of
pleiotropic genotypes) to make sure the magnitudes of the concentration parameter for the
pleiotropic effect (µz) were the same for different values of p.

The parameter combinations evaluated in specific simulation scenarios were recorded in
Table 4, capturing simultaneously the effects of weak instruments and pleiotropic variants,
with a range of different numbers of instruments (p = 9, 25, 100). The performances of CIV
instruments in two-sample setup were illustrated in Figure 8. Performances under the causal
null, when there were no true associations (β = 0), in one-sample setup were summarized in
Figures 12, 13 and 14, for different values of p. The performance of all methods under true
value β = 1 can be found in the Appendix (Figures 19, 20 and 21).

p pz αx αz µ2
x µ2

z

Scenario1 9 2 0.2 0.2 37.8 8.4
Scenario2 9 2 0.2 0.5 37.8 52.5
Scenario3 9 2 0.5 0.2 236.25 8.4
Scenario4 9 2 0.5 0.5 236.25 52.5
Scenario5 25 5 0.12 0.13 37.8 8.4
Scenario6 25 5 0.12 0.32 37.8 52.5
Scenario7 25 5 0.3 0.13 236.25 8.4
Scenario8 25 5 0.3 0.32 236.25 52.5
Scenario9 100 22 0.06 0.06 37.8 8.4

Scenario10 100 22 0.06 0.15 37.8 52.5
Scenario11 100 22 0.15 0.06 236.25 8.4
Scenario12 100 22 0.15 0.15 236.25 52.5

Table 4: Simulation scenarios for Series III simulations with weak instruments. Data were
generated for each simulation scenario with two values of β ∈ (0, 1), and replicated 200 times
(i.e. 200 datasets were generated).
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4.3 Simulation Series I, II and III : Results

4.3.1 Instrument Strength

Figure 5 shows one example of the instrument strength results from the two-sample sim-
ulations in Series I. It can be seen from panel (a) in Figure 5 that all methods (Allele
score methods, sisVIVE methods and CIV methods) form strong instrumental variables (F-
statistics > 10), and CIV methods create instrumental variables that have weak correlation
with Z (panel (b)). Allele score methods form the strongest instrumental variables among
all competitors; however, their causal effect estimations are biased (panel (c)) because of
the relatively large correlations of allele scores and Z (panel (b)). sisVIVE methods also
lead to strong instruments (panel (a)) with unbiased causal effect estimation (panel (c)),
however, the correlation with Z is a bit larger than CIV (panel (b)). In summary, CIV
methods (including CIV, CIV boot and CIV smooth.sel) form instrumental variables that
have reduced correlation with pleiotropic phenotype Z, and lead to unbiased causal effect
estimates in simulation Series I.

In Figure 6 and Figure 7 where results are shown from Series II with Z → X and
X → Z respectively, all the variants of Allele methods and sisVIVE methods do not perform
well. There are pleiotropic correlations of allele scores with Z and biased causal effect
estimates from Allele methods. The sisVIVE.exo method selects instrumental variables that
are relatively weak, and sisVIVE.adj method select pleiotropic instruments. BothsisVIVE
methods give slightly biased causal effect estimates. In contrast, all CIV instruments show
lower pleiotropic correlations with Z than sisVIVE or Allele methods, and the resulting
causal effect estimates are less biased than the Allele and sisVIVE methods.

However, in Figure 8 where results are shown for Scenario 9 in Series III where p = 100,
i.e. many weak instruments, the CIV methods do not perform well compared to Allele score
methods. It can be seen from panel (a) in Figure 8 that all CIV methods form relatively
weak instrumental variables compared to Allele score methods. CIV and CIV boot result in
instrumental variables with smaller correlations with Z. Of the CIV methods, CIV smooth,
with or without selection, results in a stronger instrument with comparable strength to
sisVIVE, and with the advantage of lower correlations with Z than sisVIVE, although the
pleiotropic correlations with Z are no longer zero after smoothing of CIV. Here, the Allele
methods perform extremely well, forming strong instruments that are uncorrelated with
Z. It is worth noting that any weighted score based on a non-sparse weight will have a
weak correlation with Z, since there are many valid but weak instruments (75/100) and the
variance of Z is relative large in this case. Similar results were obtained for other scenarios
in Series III simulations. The weak instruments from CIV boot and CIV then result in large
variability in the causal effect estimates (panel (c)). In conclusion, one limitation of CIV
methods lies in the fact that the strength of CIV instruments may be excessively reduced
when there are many weak instruments present in G (F < 10).
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Figure 5: Boxplots of instrument strength measurements (a), correlation between new in-
struments (G∗) and Z (b), and causal effect estimation bias (c) from a two-sample set-up,
with p = 9, αx = αz = 1 instruments across 200 simulations in series I, when true β = 0.

(a) F-statistics of X ∼ G∗ regression (in the sec-
ond sample).
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(b) G∗ − Z correlation (in the second sample).
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(c) causal effect estimation bias (in the second
sample).
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Figure 6: Boxplots of instrument strength measurements (a), correlation between new in-
struments (G∗) and Z (b), and causal effect estimation bias (c) from a two-sample set-up,
with Z → X and αx = αz = 0.5 across 200 simulations in series II, when true β = 0. A
vertical line of F = 10 is drawn on the F-statistics plot.

(a) F-statistics of X ∼ G∗ regression (in the sec-
ond sample).
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(b) G∗ − Z correlation (in the second sample).
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(c) Causal effect estimation bias (in the second
sample).
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Figure 7: Boxplots of instrument strength measurements (a), correlation between new in-
struments (G∗) and Z (b), and causal effect estimation bias (c) from a two-sample set-up,
with X → Z and αx = αz = 0.5 across 200 simulations in series II, when true β = 0. A
vertical line of F = 10 is drawn on the F-statistics plot.

(a) F-statistics of X ∼ G∗ regression (in the sec-
ond sample).
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(b) G∗ − Z correlation (in the second sample).
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(c) Causal effect estimation bias (in the second
sample).
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Figure 8: Boxplots of instrument strength measurements (a), correlation between new in-
struments (G∗) and Z (b), and causal effect estimation bias (c) from a two-sample set-up,
with p = 100, αx = 0.06, αz = 0.06 instruments across 200 simulations in series III, when
true β = 0. A vertical line of F = 10 is drawn on the F-statistics plot.

(a) F-statistics of X ∼ G∗ regression (in the sec-
ond sample).
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(b) G∗ − Z correlation (in the second sample).
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(c) causal effect estimation bias (in the second
sample).
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4.3.2 Causal Effect Estimation

Figure 9 shows causal effect estimation results from Series I in a one sample set-up. It can
be seen that the estimates from 2SLS adj have consistent negative bias and 2SLS naive
have positive bias, while LIML methods seem to show either a positive or negative bias,
depending on whether or not adjustments for Z are included. The causal effect estimates from
sisVIVE and Egger methods are slightly biased, while JIVE and Egger methods have large
variability. CUE, Allele and 2SLS mul have consistently unbiased causal effect estimates
and little variability across replications. All 3 flavors of CIV, especially CIV smooth, also
perform well with little bias and variability that is comparable to that of 2SLS mul, Allele or
CUE. In summary, the causal effect estimation bias is small and comparable for 2SLS mul,
Allele, sisVIVE, CUE and all three CIV variants.

In fact, CIV smooth seems to perform the best among three CIV variants, with less
bias and variability than the others. CIV smooth method also has slightly less bias than
sisVIVE, the reason is that sisVIVE does not consistently select valid instruments across
replications according to our observations. Here, the regression adjustments for Z used by
2SLS is biased since the adjusted instrumental variables (regression residuals) violate the
assumption (A1). Note that Allele score method performs well here in one-sample analysis
in contrast to its biased result in two-sample analysis (8). In conclusion, using the smoothed
solution of CIV, the impact of pleiotropic genotypes can be reduced and the causal effect
estimates is consistently less biased than its closest competitors (Allele score and sisVIVE
methods).

Figure 9: Boxplots of estimates of the causal effect estimates, β, from a one-sample set-up
in simulation series I, with true causal effect β = 0 across 200 simulations.

−2 −1 0 1 2
p=9, αx=1, αz=1 

 CIV_smooth
 CIV_boot

 CIV
 CUE

 sisVIVE_exo
 sisVIVE_adj
 LIML_mul

 LIML
 Egger
 Allele
 JIVE

 2SLS_adj
 2SLS_mul

 2SLS_naive

The results of one-sample simulations in Series II, when there are causal relations between
Z and X, are found in Figures 10 and Figure 11. In Figure 10, we have a causal pathway
from X to Z. Conditioning on Z directly could lead to collider bias, but since some SNPs are
not directly associated with Z, CIV methods may be able to alliviate the bias by removing
them. In Figure 11, the causal effect estimation results of all methods when there is a causal
pathway from Z to X are shown. In this case, CIV methods are expected to eliminate
the pleiotropic bias since they are designed to remove the pleiotropic genotypes and restore

30

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/227454doi: bioRxiv preprint 

https://doi.org/10.1101/227454


the assumption (A2). In both these figures, particularly when the instruments are strong,
there are large biases associated with sisVIVE, LIML, 2SLS naive and 2SLS adj methods.
sisVIVE method has a particularly large bias in Figure 10. CUE continues to show good
performance, as does 2SLS mul method. There is little bias for Allele, Egger, or JIVE but
with weak instruments, these methods are quite variable.

All 3 flavours of CIV perform well here in Figures 10 and Figure 11, with little bias and
variability that is comparable to that of 2SLS or CUE. CIV smooth continue to perform the
best of the three CIV variants, with slightly less bias than the other versions.

Figure 10: Boxplots of estimates of the causal effect estimates, β, from a one-sample set-up
in simulation series II, when there are causal effects X→ Z and β = 0 across 200 simulations.
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Figure 11: Boxplots of estimates of the causal effect estimates, β, from a one-sample set-up
in simulation series II, when there are causal effects Z→ X and β = 0 across 200 simulations.
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Figures 12, 13 and 14 show causal effect estimation results from Series III, for different
numbers of SNPs, p, in one sample set-ups. In all 3 Figures, it can be seen that the JIVE
estimates have huge variability across simulations. 2SLS naive and Egger methods show
consistent and large positive bias, and the LIML methods seem to show either a positive or
negative bias, depending on whether or not adjustments for Z are included. For CUE and
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Allele score methods, the variability across simulations tends to increase with p. However,
the variability of CIV, sisVIVE and 2SLS appears to decrease as p increases.

The only method that gives an unbiased causal effect estimate in all of 3 Figures 12 - 14
is CUE, which was explicitly designed for situations with many weak instruments. Bias is
also small for LIML (although estimates are variable), which agrees with the general claim
that generalized methods of moments are less biased than 2SLS when using many weak
instruments (Hansen et al., 2008; Davies et al., 2015).

The causal effect estimation bias is small and comparable for 2SLS adj, 2SLS mul, sis-
VIVE and CIV smooth. The similarity between CIV smooth and sisVIVE is expected.
These two methods both perform embedded feature selection, and hence are likely to un-
derperform when only selecting a few weak instruments from a large set of candidates. The
comparable performances of 2SLS adj and 2SLS mul here are probably due to the design
of the simulations for Series III; there is no causal relationship between X and Z and all
genotypes are weak instruments. Hence, the adjustments for Z used by 2SLS work well. The
biases for Allele score method and CIV without smoothing are larger; indicating that in gen-
eral summarizing many weak instruments into one instrument does not provide substantial
benefit here.
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Figure 12: Boxplots of estimates of the causal effect estimates, β, from a one-sample set-up
in simulation series III, with p = 9 instruments across 200 simulations, when true β = 0.
The panels display results for different values of αx and αz.
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Figure 13: Boxplots of estimates of the causal effect estimates, β, from a one-sample set-up
in simulation series III, with p = 25 instruments across 200 simulations, when true β = 0.
The panels display results for different values of αx and αz
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Figure 14: Boxplots of estimates of the causal effect estimates, β, from a one-sample set-up
in simulation series III, with p = 100 instruments across 200 simulations, when true β = 0.
The panels display results for different values of αx and αz
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4.4 Simulation Series IV : Selection of Valid Instruments

A fourth series of simulations was designed to explore the performance of valid genotype
selection in one-sample setup. Here, G contained not only some strong instruments (some
of which may have pleiotropic effects), but also many weak instruments. We referred to
these weak instruments as “unnecessary genotypes”; perhaps they were put into the pool
of instruments since they shared the same genetic pathway with a strong SNP, or their
contributions were so weak that they were not adding information. Use of such SNPs as
potential instruments jeopardized the validity of the whole set of instruments, G, and causal
effect estimates may be biased with some instrumental variable methods. Of particular
interest here is the comparison of performance between CIV smooth and sisVIVE, which
both do genotype selection.

Data were simulated for n = 500 observations containing data (G,X,Y,Z). For each
observation, p = 50 independent SNPs were generated with a minor allele frequency of 0.3,
divided into two subsets GUN (30 unnecessary SNPs) and GR = G/GUN (20 relevant SNPs).
We also sampled 10 SNPs (as GRz) without replacement in GR to be pleiotropic, i.e. also
associated with Z. For each individual i ∈ (1, ..., n), the phenotypes (Xi and Zi) and response
(yi) were simulated as described below:

xi = 2
∑
j∈GR

Gij + 0.1
∑
j∈GUN

Gij + ui + εx,i,

zi = 0.5
∑
j∈GRz

Gij + ui + εz,i,

yi = xi + zi + ui + εy,i,

(14)

where GRz was the subset of relevant SNPs that were associated with Z, and ui was a
confounding factor related to X, Z and Y. We generated ui and ε. from the standard
Gaussian distribution. These SNPs with αx = 0.1 were all weak instruments and not actually
unrelated with xi. We used the term “unnecessary” here only because the selection of these
SNPs should be largely unnecessary for the causal effect estimation purpose. We repeated
the simulation 200 times and aggregated the results.

The selection of genotypes using CIV smooth was conducted in two different ways. In the
first approach, we selected the “top” feature, i.e. the feature corresponding to the maximum
absolute magnitude of c, in each converged CIV smooth solution. Then we combined all
“top” features across different solutions and recorded the selection frequency of each feature.
This method was referred as CIV smooth.top. The number of features selected in this way
would be limited; since many solutions only had slightly different weighting values of SNPs,
but the ‘top” feature in each solution could be the same. The second selection strategy was
based on CIV smooth.sel. We first labeled all SNPs j as “relevant” in a weighting vector c if
cj ≥ 0.2 max |c|. Then we counted the number of times each SNP j was selected, and used
the averaged value across solutions as the relative selection index for all genotypes.

The results of genotype selection were shown in Table 5. In general CIV smooth selected
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fewer of the pleiotropic genotypes in G, as well as fewer unnecessary genotypes. For example,
CIV smooth (using only the top feature) selected 3.03 valid genotypes which accounted for
52% of all selected features. This means on average 52% of the top features in all converged
modes c corresponded to valid genotypes, while sisVIVE with either the adjusted or the
exogenous Z methods only achieved a sensitivity below 20%. The proportion of irrelevant
features and pleiotropic features were also substantially lower when using the CIV smooth
methods. In conclusion, the valid instrument selection performances from CIV smooth were
substantially better than sisVIVE methods.

Valid Genotypes Pleiotropic Genotypes Unnecessary Genotypes
CIV smooth.top 3.03 (52%) 0.65(11%) 2.14(36%)
CIV smooth.sel 7.96 (25%) 5.47 (17%) 18.31 (57%)

sisVIVE adj 10.00 (20%) 10.00 (20%) 30.00 (60%)
sisVIVE exo 6.83 (15%) 6.25(14%) 31.42 (70%)

Table 5: Simulation Series IV with unnecessary genotypes: feature selection results for
CIV smooth and sisVIVE among SNPs with different kinds of associations and across dif-
ferent methods. The table shows the average number (proportion) of selected features from
different methods, averaging over 200 simulated data sets. CIV smooth.top means only the
SNP with highest |cj| were selected and used as instrument for MR analyses.

5 Data Analysis: Alzheimer’s Disease

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that causes a slow decline in
memory and reasoning skills. It is well known that biomarkers including cerebrospinal fluid
tau protein (CSF-tau) and CSF amyloid beta-protein ending at amino acid position 42 (CSF-
Aβ 1-42) are reliable measures of AD progression (Iturria-Medina et al., 2016). Recently,
other biomarkers such as glucose metabolism and neural functional activity have been added
while exploring the mechanisms underlying late-onset Alzheimers disease (LOAD) using
multi-factorial data analysis (Iturria-Medina et al., 2016). However, at this point, there is
still some uncertainty whether the changes in these biomarkers “cause” AD progression or
are simply associated with AD progression.

We have used instrumental variable methods on data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) (Mueller et al., 2005) to try to disentangle causal relationships
for AD. ADNI began in 2004 and included 200 subjects with early AD, 400 subjects diagnosed
with mild cognitive impairment (MCI), and 200 elderly control subjects. Biospecimens, in-
cluding blood, urine, and cerebrospinal fluid (CSF) were collected from participants. FDG
PET imaging was performed on participants within two weeks before or after the in-clinic
assessments of memory composite scores. The global and regional standardized uptake value
ratios (SUVR) of each subject were recorded after each scanning. Genotyping and sequencing
data were also available for all subjects obtained from Illumina Human610-Quad BeadChip.
Further details of of protocols and procedures of this data was available on the Image Data
Archive (IDA).
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The outcome (AD status) here is a binary variable, and MR methods assume linear
additivity and are not designed for the situation of a binary outcome (Didelez and Sheehan,
2007). Alternatively, under more restrictive parameter assumptions (Vansteelandt et al.,
2011), logistic regression and log-linear regression can be used in the second stage of MR
analysis to estimate a causal risk ratio (CRR) when response is binary (Clarke and Wind-
meijer, 2012; Burgess et al., 2014). If only one exposure (X) is analyzed with one binary
outcome under linear assumption in the second stage, then any bias towards the null in the
causal effect estimate would be largely due to the impact of confounding factors (Palmer
et al., 2008).

A very important limitation of MR analysis in ADNI data is the retrospective nature of
ADNI study design. Ascertainment in ADNI was retrospective by disease status, and there-
fore, instruments that would be valid for a prospective study design may not remain valid
after retrospective sampling in the ADNI data (Didelez and Sheehan, 2007). Specifically, the
estimated first stage (G-X) association from case-control samples may be biased relative to
the true association in a general population sample (Tapsoba et al., 2014; Tchetgen Tchet-
gen, 2013). If the disease being studied is rare, it is possible to use only the control samples
in a first stage regression, in MR methods where two-stage methods are appropriate (Lin and
Zeng, 2009). Therefore, since we realize that MR analysis of the ADNI samples is not ideal,
we use this dataset simply to illustrate performance of our methods, and not to make strong
causal statements. Furthermore, we only present results where the first stage associations
are estimated from the controls.

5.1 Outcome, Exposures and Instruments

Outcome Y: A subject is either from control group or diagnosed with MCI or AD. We
combine AD and MCI subjects into the group with the same response variable. We collected
n = 491 subjects including 151 controls with outcome Y = 0 and 340 patients with outcome
Y = 1.

Exposures X: We are interested in estimating the causal effect of several expo-
sures/biomarkers including CSF amyloid beta-protein (Aβ) (X1), Phosphorylated Tau Pro-
tein (Ptau) (X2), Total Tau protein (Ttau) (X3) and FDG SUVR (X4) on AD progression.
It is well known that the isoforms of Apolipoprotein E (ApoE), a class of apolipoprotein
that mediates cholesterol metabolism, have effects on both Amyloid beta aggregation and
Tau protein phosphorylation, and thus there may exist pleiotropic effects in this case. Nat-
ural logarithm scales of Ttau and Ptau are used to obtain X2 and X3. All exposures (Xk,
k=1,...,4) (and also outcome Y) are adjusted before analysis with covariates including age,
sex and education. Profiles of the subjects are summarized in Table 6.

Instruments G: For each of the exposure Xk, k = 1, ..., 4, the strongly associated SNPs
reported by the NHGRI-EBI Catalog of published genome-wide association studies (Burdett
et al., 2016) were collected from the ADNI Imputed Genotype data. The missing samples
were imputed to the 1000 Genome Project utilizing the same protocol for the ROS/MAP
and AddNeuroMed study. When there were very highly correlated (ρ ≥0.8) sets of SNPs,

38

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/227454doi: bioRxiv preprint 

https://doi.org/10.1101/227454


Number
Age (years)
(mean ± SD)

Gender(M/F)
education (years)
(mean ± SD)

Control 151 75.93 ± 5.86 86/65 16.3+2.7
MCI/AD 340 74.08 ± 7.63 212/128 15.89 ± 2.92
MCI 277 73.64 ± 7.53 173/104 16.03 ± 2.81
AD 63 76.03 ± 7.78 39/24 15.27 ± 3.31

Table 6: Characteristics of subjects studied in ADNI.

we kept only one representative SNP of each correlated sets. Specifically, we first built a
genotype subset containing these SNPs with all pairwise correlations (ρ <0.8). Then we
added SNPs into the feature subset one at a time and would reject the SNP if its pairwise
correlations with the selected subset were high (ρ ≥0.8). The final SNP set was then further
reduced with univariate feature selection using significant F-statistics (p ≤ 0.05). Hence,
reduced sets of SNPs containing 20 SNPs for Aβ (X1), 8 SNPs for Ptau (X2), 5 SNPs for
Ttau (X3) and 25 SNPs for glucose metabolism (X4) were retained for use with Mendelian
randomization methods.

5.2 Mendelian Randomization Analysis

The assumption (A1) of Mendelian randomization stated that the SNPs must be associated
with biomarkers of interest. Strong instruments with F-statistics bigger than 10 are usually
preferred in MR applications. The F-statistics for instrument strength of each biomarker
here (Aβ, Ptau, Ttau, SUVR) are 11.86, 12.40, 3.89 and 5.20 respectively, indicating strong
instruments only for Aβ and Ptau. We also perform Sargan test for over-identification (Baum
et al., 2003) to test the MR assumption (A2) and (A3). The p-values of the Sargan test are
0.22, 0.01, 0.81 and 0.92 for Xk, k = 1, ..., 4, implying the existence of invalid instruments in
G for Mendelian randomization for Ptau (X2) on AD progression (Y). The reason is because
the selected SNPs that are strongly associated with Ptau have even stronger associations
with Aβ. Hence this creates a pleiotropy problem for causal inference of Aβ and Ptau on
AD progression using similar groups of genotypes. More information about the associations
of instruments G with Aβ (X1) and Ptau (β) are shown in the figure 15.

Mendelian randomization was performed to evaluate the potential causal effects of vari-
ability in all biomarkers (X) on the AD progression (Y) in a two-sample set-up. First we
used only the control samples to obtain weights with the three applicable methods (Allele,
sisVIVE and CIV and their variants). In the second step we constructed instrumental
variables using these obtained weights with genotype information on the whole sample, and
inferred causal effects of each biomarker Xk on AD progression (Table 3) while treating other
biomarkers as secondary phenotypes, if applicable. In this way, the retrospective nature of
ADNI is respected, if we assume that the control sample is similar to the whole population
from which the individuals were drawn. We can only include CIV, Allele scores and sisVIVE
in the two-sample analysis because not all methods can be adapted to a two-stage approach
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Figure 15: The associations between instruments selected for phenotypes and phenotypes of
interest. Left: log-Pvalues for association test between the selected SNPs (for Aβ) and Aβ
(X1). Right: log-Pvalues for association test between the selected SNPs (for Ptau) and Ptau
(X2).

here. Hence, the results of this MR analysis are illustrative, and require further validation,
ideally on a separate prospective study.

5.3 Results

The 95% confidence intervals of the causal effect estimates for all four biomarkers obtained
from two-sample analyses are reported in Figure 16 and Figure 17. All variants of Allele
score methods and CIV methods (except CIV boot) identified significantly negative causal
effect of Amyloid beta 1-42 protein levels on AD progression. Only the Allele score methods
and CIV smooth.sel showed a significantly positive causal effect of Ptau protein levels on AD
progression. Furthermore, only Allele.sim and CIV smooth.sel methods identified significant
causal effects of Ttau protein levels on AD progression. For glucose metabolism levels none
of the instrumental variables methods showed significant causal effect estimates.

The observation of significant causal impact for Aβ and Tau protein on Alzheimer’s
disease study is consistent with some previous publications. In fact, multiple observational
studies have reported decreasing Aβ and increasing Tau levels in cerebrospinal fluid of pa-
tients with Alzheimer Disease compared to normal control subjects (Sunderland et al., 2003;
Maruyama et al., 2001). There is no conclusive evidence to support a significant causal rela-
tionship between glucose metabolism levels and AD progression. However, limited research
has been conducted to evaluate the causal relationships of CSF Aβ proteins, Ptau, Ttau and
glucose metabolism on AD using Mendelian randomization.

The range of causal conclusions from different instrumental variable methods with Amy-
loid beta and Ptau protein levels may be due to the existence of pleiotropy. In fact, most of
the SNPs strongly associated with Ptau in this dataset were also strongly associated with
Amyloid beta, and most of the associated SNPs were located in the APOE gene. As a
result, some instrumental variable methods using these invalid instruments could be biased.
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Figure 16: 95% bootstrapped confidence interval of causal estimation of Amyloid beta 1-
42 protein levels (supposedly negative effects) and Ptau protein levels (supposedly positive
effects) on AD progression using different instrumental variable methods in a two-sample
set-up. Left: Amyloid beta protein levels on AD. Right: Ptau protein levels on AD.
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Figure 17: 95% bootstrapped confidence interval of causal effect estimation of Ttau protein
levels (supposedly positive effects) and glucose metabolism on AD progression using different
instrumental variable methods in a two-sample set-up. Left: Ttau protein levels on AD.
Right: glucose metabolism levels on AD.
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Weighted score methods, including allele score methods and CIV smooth.sel, were able to
reduce bias due to pleiotropy compared to sisVIVE. In conclusion, when pleiotropy exists,
CIV smooth.sel could select valid instruments and perform adjusted causal effect estimation
to account for pleiotropy.

6 Discussion

In this paper we proposed constrained instrumental variable methods for causal inference
when pleiotropy is suspected. We have presented the performance of our methods and com-
pared with other popular methods in different simulation scenarios (i.e. standard pleiotropy,
direct causal effects between phenotypes, weak instruments, valid and invalid instruments
selection). To illustrate the performance of CIV methods in real data, we conducted MR
analysis on data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al.,
2005) and demonstrated that the previously known associations for Amyloid beta 1-42 and
Tau protein levels showed evidence for a causal relationship, even after making adjustments
for other potentially-pleiotropic biomarkers.

One important feature of our CIV methods is that they find a balance between strength
and validity in instrument construction. CIV solutions are designed to preserve maximum
instrument strength while adjusting for the pleiotropic phenotype Z. In general strong instru-
ments will provide consistent causal effect estimates, while approximately valid instruments
will reduce the pleiotropy-induced bias. When the instruments are strong in a standard
pleiotropy problem (Section 4.2.1), our CIV smooth method yields better estimates in both
one-sample and two-sample setups, and outperforms 2SLS adj, sisVIVE methods, LIML
methods, Egger regression, and Allele score with less bias. In simulations with a direct
causal link between X and Z (Section 4.2.2), CIV methods yield strong instruments while
retaining less pleiotropic genotypes, compared to sisVIVE and Allele methods. When the
instruments are weak (Section 4.2.3), our CIV smooth method performs slightly worse than
CUE and Allele score in terms of consistence and bias; indicating that relatively valid but
weak instrumental variables may still lead to more biased results. In simulation IV (Sec-
tion 4.4) where we examined valid instrument selection, we showed that CIV smooth has a
higher rate of valid instrument selection compared to its closest competitor, sisVIVE.

Another advantage of the CIV methods is the separation of instrument construction
and causal effect estimation. In fact, the construction of CIV only relies on the first stage
pathway G → X. Then, any estimation method for linear structural equation modeling
can be applied to CIV smooth instruments G∗ → X→ Y for causal inference. Due to this
separation of first-stage and second-stage analysis, CIV (IV smooth) and Allele scores can
be trained and assessed on different datasets. In conclusion, CIV methods have substantial
flexibility in terms of the model assessment and implementation of estimation methods.

Multiple solutions can be obtained with CIV smooth–i.e. the solution to the problem (7)
may not be unique. An example of this potential multi-modal problem is shown in Figure 18,
where one simulated dataset from Series II was analyzed. The hierarchical cluster dendro-
gram shows the solution space for this simulation, demonstrating that there exist multiple
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different CIV smooth solutions. However, a principal component analysis of the converged
solutions, across simulations, shows that in many simulations only 1 unique solution stands
out. So although multiple distinct solutions do occur, often they are extremely similar to
each other. To obtain our CIV smooth estimator, we attempt to sample the possible solu-
tion space by starting our converging iterations from multiple initial points, and combining
all converged distinct solutions into a matrix c. This approach provides a spectrum of the
possible instruments that achieve the maximized association and low correlation with Z.

In our simulations, MR analyses were mostly restricted to the case of a single risk factor
X, although most of the methods mentioned above can be extended in some way to allow for
a multivariate X. CIV and CIV smooth methods can be adapted to allow for multivariate
X as seen in Equation 5, and the corresponding multiple solutions c can be used with
multivariate 2SLS to infer the causal effect of X on Y. sisVIVE is also flexible to the
dimension of X as seen in Equation (4). Generalized moment methods (e.g. LIML, CUE )
and 2SLS can also be adapted to handle multiple risk factors together. However, the nature
of Egger regression restricts this approach primarily to univariate risk factor analysis; users
can only analyze multiple risk factors one-by-one.

In simulations, we conducted two-sample analyses, by separating the weight construction
process and causal inference process onto two different samples, to evaluate the properties of
applicable instrumental variable methods. In such two-sample approaches, winner’s curse,
which may result in over-estimates of the predictive power of constructed instruments in
one-sample analyses, is less likely to occur.

In the ADNI data analysis, we applied a two-stage approach in a similar way, by con-
structing instruments using only the control samples. These instruments were then used in
the whole dataset to estimate causal effect of each individual biomarker while treating others
as secondary phenotypes. However, we do realize this two-stage ADNI analysis is still not
an ideal solution due to the retrospective nature of the sampling in this case-control study
sampling. There are additional techniques, including inverse weighting with sampling prob-
ability (Monsees et al., 2009) and maximum likelihood (Lin and Zeng, 2009), that can be
considered in the future to correct for the case-control sampling. It is also worth noting that
we transformed the causal effect estimation problem with multiple phenotypes into multiple
causal effect estimations, each with an individual phenotype – versus the rest – for compar-
ison purposes, since only CIV can process multiple causal effect estimations simultaneously
while both Allele and sisVIVE are designed for individual phenotypes. This “one versus the
rest” strategy leaves room for improvement in future work. The result of ADNI analysis in
this paper simply serve as a demonstration of our CIV methods, rather than a strong causal
statement of Alzheimer’s disease.

In conclusion, this paper proposed new approaches (CIV and CIV smooth methods) for
conducting Mendelian randomization analyses when the pleiotropy is observed. Under the
assumption of linear structural equation models, these approaches can be used to implement
valid instruments selection and adjust causal effect estimation when potential pleiotropic
phenotypes are measured. Our methods (CIV and CIV smooth) perform consistently in
simulations and real data analysis. Hopefully, these methods will help to make the MR
analyses a much more common practice even when pleiotropy is observed.
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Figure 18: Cluster dendrogram (a) and principal component analysis (b) from a one-sample
set-up, with Z→ X and αx = αz = 0.1 across 200 simulations in Section 4.2.2.

(a) Cluster dendrogram of all (100) converged
CIV smooth solutions in one simulation. Red
block denotes the identified hierarchical clusters
using the number of cluster determined by the
silhouette value.
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(b) Top: The proportion of the top eigenvalue
(among all values) of all CIV smooth solutions,
across 200 simulations. Bottom: The total num-
ber of principal components (with eigenvalue ≥
0.8), across 200 simulations.
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A Solution to the Constrained Instrumental Variable Problem

Let M = X(X>X)−1X> then c>G>Xv = c>G>X(X>X)−1X>Xv = c>G>MXv,

max
c∈Rp,v∈Rr

c>G>Xv = max
c∈Rp,v∈Rr

c>G>MXv ≤ ||c>G>M || ||Xv||,

where ||Xv|| =
n∑
i=1

|(Xv)i|2 denotes the norm of vector Xv in the inner product space Rp.

The equality holds if and only if Xv and MGc are collinear. Let w = (G>G)
1
2 c then the

problem is equivalent to
max
w∈Rp

w>Aw

subject to conditions:
w>w = 1

B>w = 0

where A = (G>G)−
1
2G>MG(G>G)−

1
2 and B = (G>G)−

1
2G>Z.

If we have rank(A) = p ≥ rank(Z) = k (columns are uncorrelated), then there exists
solution for w since this is a quadratic optimization problem with quadratic/linear constraints
(Golub, 1973).

Consider the QR decomposition of B:

B = Q>
[
R S
0 0

]
∆ (15)
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where R is a k by k upper triangular matrix with positive diagonal elements (thus invertible).
Q is an orthogonal matrix. S is a k by p−k matrix and ∆ represents the column permutation
matrix (Gu and Eisenstat, 1996) to ensure that the diagonal elements of R are positive and
non-increasing, i.e.R is invertible. R is then unique under these conditions (Golub and
Van Loan, 1996).

Now we let w = Q>
(
y
d

)
where y ∈ Rk, d ∈ Rp−k and QAQ> =

[
A1,1 A1,2

A2,1 A2,2

]
.

The problem then becomes:
max

d∈R(p−k)
d>A>2,2d (16)

subject to conditions:
d>d = 1

We now know that the solution for d is the eigenvector corresponding to the largest eigenvalue
of A2,2. There are at most p− k eigenvectors.

In conclusion, when n > p the (unique) solution of the constrained instrumental variable

(CIV ) is Gc = G(G>G)−
1
2Q>

(
0
d

)
, where Q is an orthogonal matrix defined by (15) and d

is an eigenvector defined by (16).
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B Simulation III : Non-zero Null Hypothesis

Figure 19: Boxplots of estimates of the causal effect estimates, β, from a one-sample set-up
in simulation series III, with p = 9 instruments across 200 simulations, when true β = 1.
The panels display results for different values of αx and αz.

−3 −2 −1 0 1 2 3
p=9, αx=0.2, αz=0.2 

 CIV_smooth
 CIV_boot

 CIV
 CUE

 sisVIVE_exo
 sisVIVE_adj
 LIML_mul

 LIML
 Egger
 Allele
 JIVE

 2SLS_adj
 2SLS_mul

 2SLS_naive

−3 −2 −1 0 1 2 3
p=9, αx=0.2, αz=0.5 

 CIV_smooth
 CIV_boot

 CIV
 CUE

 sisVIVE_exo
 sisVIVE_adj
 LIML_mul

 LIML
 Egger
 Allele
 JIVE

 2SLS_adj
 2SLS_mul

 2SLS_naive

−3 −2 −1 0 1 2 3
p=9, αx=0.5, αz=0.2 

 CIV_smooth
 CIV_boot

 CIV
 CUE

 sisVIVE_exo
 sisVIVE_adj
 LIML_mul

 LIML
 Egger
 Allele
 JIVE

 2SLS_adj
 2SLS_mul

 2SLS_naive

−3 −2 −1 0 1 2 3
p=9, αx=0.5, αz=0.5 

 CIV_smooth
 CIV_boot

 CIV
 CUE

 sisVIVE_exo
 sisVIVE_adj
 LIML_mul

 LIML
 Egger
 Allele
 JIVE

 2SLS_adj
 2SLS_mul

 2SLS_naive

46

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2017. ; https://doi.org/10.1101/227454doi: bioRxiv preprint 

https://doi.org/10.1101/227454


Figure 20: Boxplots of estimates of the causal effect estimates, β, from a one-sample set-up
in simulation series III, with p = 25 instruments across 200 simulations, when true β = 1.
The panels display results for different values of αx and αz
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Figure 21: Boxplots of estimates of the causal effect estimates, β, from a one-sample set-up
in simulation series III, with p = 100 instruments across 200 simulations, when true β = 1.
The panels display results for different values of αx and αz
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