
Estimating the number of missing

experiments in a neuroimaging

meta-analysis

Pantelis Samartsidis1, Silvia Montagna2, Angela R. Laird3, Peter
T. Fox4, Timothy D. Johnson5 and Thomas E. Nichols6

1MRC Biostatistics Unit, University of Cambridge 2School of
Mathematics, Statistics & Actuarial Science, University of Kent

3Department of Physics, Florida International University
4Research Imaging Institute, University of Texas 5Department of
Biostatistics, University of Michigan 6Oxford Big Data Institute,
Li Ka Shing Centre for Health Information and Discovery, Nuffield

Department of Population Health, and Wellcome Centre for
Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical

Neurosciences, University of Oxford

November 26, 2017

Abstract

Coordinate-based meta-analyses (CBMA) allow researchers to com-
bine the results from multiple fMRI studies with the goal of obtaining
results that are more likely to generalise. However, the interpretation of
CBMA findings can be impaired by the file drawer problem, a type of pub-
lications bias that refers to studies that are carried out but are not pub-
lished due to lack of significance. Using foci per contrast count data from
the BrainMap database, we propose a zero-truncated modelling approach
that allows us to estimate the prevalence of non-significant contrasts. We
validate our method with simulations and real coordinate data generated
from the Human Connectome Project. Application of our method to the
data from BrainMap provides evidence for the existence of a file drawer
effect, with the rate of missing contrasts estimated as at least 6 per 100
reported.

1 Introduction

Now over 25 years old, functional magnetic resonance imaging (fMRI) has made
significant contributions in improving our understanding of the human brain
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function. However, the inherent limitations of fMRI experiments have raised
concerns regarding the validity and replicability of findings (Farah, 2014). These
limitations include poor test-retest reliability (Raemaekers et al., 2007), excess
of false positive findings (Wager et al., 2009) and small sample sizes (Carp,
2012). Meta-analyses play an important role in the field of fMRI as they provide
a means to address the aforementioned problems by synthesising the results
from multiple experiments and thus draw more reliable conclusions. Since the
overwhelming majority of authors rarely share the full data, coordinate-based
meta-analyses (CBMA), which use the xyz coordinates (foci) of peak activations
that are typically published, are the main approach for the meta-analysis of
fMRI data.

As in any meta-analysis, the first step in a CBMA is a literature search.
During this step investigators use databases to retrieve all previous work which
is relevant to the question of interest (Normand, 1999). Ideally, this process will
yield an exhaustive or at least representative sample of studies on a specific topic.
Unfortunately, literature search is subject to the file drawer problem (Rosenthal,
1979; Iyengar and Greenhouse, 1988). This problem refers to research studies
that are initiated but are not published due to lack of significance, either by
cause of authors’ hesitation to submit or perhaps because of rejection by journals
that are reluctant to publish negative results. The file drawer along with the
other forms of publication bias (see Song et al. (2000) for an overview) can
potentially undermine the quality of a meta-analysis as they lead to biased
estimates of the effect of interest (Begg and Berlin, 1988; Sutton et al., 2000).
Aside from distorting a particular scientific question of interest, this feeds into
researchers’ scepticism regarding the usefulness of meta-analysis (Greenland,
1994).

Evidence of the file drawer problem has been found in many fields of sci-
entific research, including psychology (Kühberger et al., 2014), public health
(Dwan et al., 2008, 2013) and the social sciences (Sterling et al., 1995). There-
fore, several methods have been proposed for detecting and sometimes adjust-
ing for the presence of the file drawer problem. Early literature was focused
on finding the fail-safe N (Rosenthal, 1979; Iyengar and Greenhouse, 1988),
the minimum number of unpublished studies required to overturn the outcome
of meta-analysis. Much attention has been given to the graphical tool known
as the funnel plot (Light and Pillemar, 1984; Egger et al., 1997), as well as
methods that formalise this idea (Duval and Tweedie, 2000a,b, among others).
Another very common approach involves the use of weight functions where the
probability of observing a study is modelled as a function of its characteristics
such as p-values, see e.g. Larose and Dey (1998); Copas and Jackson (2004).
Finally, another popular approach is sensitivity analysis where one chooses a
parametric model for the probability that an initiated body of research results
in publication, and the outcome of meta-analysis is studied under different pa-
rameter values of the model (Copas, 1999, 2013). For an overview and more
detailed description of methods for modelling the file drawer problem we refer
the reader to Jin et al. (2015).

Since most of the aforementioned methodologies cannot be directly applied
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to fMRI coordinate-based meta-analysis data, there has been little investigation
into potential biases in the field. One effort is Jennings and Van Horn (2012) that
found evidence for publication biases in 74 studies of tasks involving working
memory. The authors use the maximum test statistic reported in the frontal
lobe as the effect estimate in their statistical tests. Another example is David
et al. (2013), who studied the relation between sample size and the total number
of activations and reached similar conclusions as Jennings and Van Horn (2012),
finding publication bias mainly affecting small studies. However, to date there
has been no work on estimating the fundamental file drawer quantity, that is
the number of missing studies.

In what follows, we propose a model for estimating the prevalence of non-
significant contrasts omitted from a large cohort of studies in the context of
CBMA. The remainder of the paper is organised as follows. In Section 2, we
describe the CBMA data, both real and simulated, that we used and the sta-
tistical model for point data that accounts for missing studies. In Section 3, we
present the results of our simulation studies and real data analyses. Finally, in
Section 4 we conclude with a discussion of our main findings and set directions
for future research.

2 Methods

2.1 BrainMap database

Our analysis is motivated by coordinate data from BrainMap 1 (Laird et al.,
2005). BrainMap is an online, freely accessible database for coordinate-based
data of both functional and structural neuroimaging experiments. The database
is continuously expanding and as of November 2014 consists of results obtained
from 2,562 scientific papers, each one of these containing several experiments
or contrasts. BrainMap is a widely used resource, and many meta-analyses are
based on data retrieved from this database (see Hill et al. (2014) and Kirby and
Robinson (2015) for some recent examples). It is therefore of vital importance
to investigate the presence of the file drawer problem and its possible effects on
meta-analysis.

Our unit of observation is a contrast, and hence our dataset consists of 12,292
observations. Each observation (contrast) consists of a list of three dimensional
coordinates xi, the foci, typically either local maxima or centers of mass of voxel
clusters with significant activations. For the purposes of this work we ignore the
spatial aspect of the problem and instead model the file drawer only based on
the the total number of foci per contrast ni. Further, we do not consider any
of the resting-state studies that are registered in BrainMap. Table 1 presents
presents some summary statistics of the BrainMap dataset, whereas Figure 1
shows the empirical distribution of the total number of foci per contrast.

Table 1: BrainMap database summaries.

1RRID:SCR 003069
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Database composition
Publications Contrasts Foci

2,555 11,432 92,407
Contrasts per publication

Min. Q1 Median Mean Q3 Max.
1 2 4 4.5 6 42

Foci per contrast
Min. Q1 Median Mean Q3 Max.

1 3 6 8 11 98
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Figure 1: Empirical distribution of the total number of foci per contrast in the
BrainMap database, ni. The left panel shows the full distribution, while the
right panel shows a zoomed-in view of all studies reporting 24 or fewer foci. The
BrainMap database does not record incidents of null contrasts (contrasts in a
study for which ni = 0).

The barplot of Figure 1 (right) identifies a fundamental aspect of this data:
even though the distribution of ni has most of its mass close to zero, there are
no contrasts with zero foci. Thus we are careful not to describe our estimates
as ‘null study’ prevalence. Rather, we are estimating prevalence of null con-
trasts, some of which may in fact be clearly reported in papers in the BrainMap
database; however, given the stigma of negative findings, we suspect these type
C null contrasts are rare.

2.2 Models

Our model uses count data from the observed, reported experiments to infer on
the file drawer quantity. At this point, we make some critical assumptions: I)

data {ni}Ii=1, both observed and unobserved, are taken to be independent and
identically distributed (i.i.d.) samples from a count distribution N of a given
parametric form (we will relax this assumption later, to allow for inter-study
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covariates); II) the probability of publication depends on the total number of sig-
nificant activations ni; specifically, this probability equals zero for experiments
with ni = 0 and equals one for studies with ni ≥ 1. For a detailed discussion of
the implications of assumptions I-II, see Section 4.

As each paper in the BrainMap database has multiple contrasts, potentially
violating the independence assumption, we draw subsamples such that exactly
one contrast from each publication is used. Specifically, we create 5 subsamples
(A-E) drawing 5 different contrasts for each subsample, if possible; for publica-
tions with less than 5 contrasts we ensure that every contrast is used in at least
one subsample, and then randomly select one for the remaining subsamples.

If assumptions I-II described above hold, then a suitable model for the data is
a zero-truncated count distribution. A zero-truncated count distribution occurs
when we restrict the support of a count distribution to the positive integers.
For a probability mass function (pmf) π (n | θ) defined on n = 0, 1, . . . , where
θ is the parameter vector, the zero truncated pmf is:

πZT(n | θ) = P(N = n) =
π(n | θ)

1− π(0 | θ)
, n = 1, 2, . . . . (1)

We consider three types of count distributions π (n | θ): the Poisson, the Neg-
ative Binomial and the Delaporte. The Poisson is the classic distribution for
counts arising from series of independent events. In particular, if the foci in a
set of experiments arise from a spatial Poisson process with common intensity
function, then the resulting counts will follow a Poisson distribution. Poisson
models often fit count data poorly due to over-dispersion, that is, the observed
variability of the counts is higher than what would be anticipated by a Poisson
distribution. More specifically, if a spatial point process has a random intensity
function, one that changes with each set of observed points, the distribution of
counts will show this over-dispersion. In particular, we note that in our previous
work (Kang et al., 2011) we have always used such ‘Cox processes’ with random
intensity functions.

The Negative Binomial distribution is the count distribution arising from the
Poisson-Gamma mixture: if the true Poisson rate differs between experiments
and is distributed as a Gamma random variable, then the resulting counts will
follow a Negative Binomial distribution. For the Negative Binomial distribution
we use the mean-dispersion parametrisation:

π(n | µ, φ) =

(
φ

φ+ µ

)φ
Γ (φ+ n)

Γ (φ)

(
µ

µ+ φ

)n
, (2)

where µ is the mean, φ > 0 is the dispersion parameter and Γ (·) represents the

gamma function; with this parametrisation the variance is µ + µ2

φ . Hence, the
excess of variability compared to the Poisson model is accounted for through

the additional term µ2

φ .
The Delaporte distribution is obtained by modelling the foci counts ni of

experiment i as Pois(µγi) random variables; the γi follows a particular shifted
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Gamma distribution with parameters σ and ν, σ > 0 and 0 ≤ ν < 1 (Rigby
et al., 2008). The probability mass function of the Delaporte distribution can
be written as:

π(n | µ, σ, ν) =
exp (−µν)

Γ( 1
σ )

[1 + µσ(1− ν)]
− 1

σ S, (3)

where µ is the mean and:

S =
n∑
j=0

(
n

j

)
µnνn−j

n!

[
µ+

1

σ(1− ν)

]−j
Γ

(
1

σ
+ j

)
. (4)

With this parametrisation the variance of the Delaporte distribution is µ +
µ2σ(1− ν)2.

Once the parameters of the truncated distribution are estimated, one can
make statements about the original, untruncated distribution. One possible
way to express the file drawer quantity is the percent prevalence of zero count
contrasts pz, that is, the total number of missing experiments per 100 published.
This can be estimated as:

p̂z =
π(0 | θ̂)

1− π(0 | θ̂)
× 100. (5)

Here, π(0 | θ̂) denotes the probability of observing a zero count contrast, and

θ̂ denotes the estimated parameter values from the truncated model (e.g. θ =
(µ, σ, ν)> for the Delaporte model).

Our statistical model is based on homogenous data, and we can reason-
ably expect that differences in experiment type, sample size, etc., can introduce
systematic differences between studies. To explain as much of this nuisance vari-
ability as possible, we further model the expected number of foci per experiment
as a function of its characteristics in a log-linear regression:

µ = exp
(
xT
i β
)
, (6)

where xi is the vector of covariates and β is the vector of regression coefficients.
The covariates that we consider are: i) the year of publication ranging from
1985 to 2014 with median 2004; ii) the square root of the number of partici-
pants ranging from 1 to 395 with median 12; iii) the experimental context. For
experimental context we use 7 levels: age effects, disease effects, drug effects,
gender effects, learning, linguistic effects, normal mapping and other. The first
six levels appeared at least 20 times in the database while ‘other’ covers any
other label that occured less frequently. Even though the BrainMap database
records multiple labels for each experiment, we only used the first one. Sum-
maries of the BrainMap subsamples A-E data for each level of context can be
found in A.

Parameter estimation is done under under the generalized additive models
for location scale and shape (GAMLSS) framework of Rigby and Stasinopoulos
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(2005). The fitting is done in R2 (R Core Team, 2015) with the gamlss li-
brary (Stasinopoulos and Rigby, 2007). Confidence intervals are obtained with
the bootstrap. When covariates are included in the model, we use the strati-
fied bootstrap to ensure representation of all levels of the experimental context
variable. In particular, for each level of the categorical variable a bootstrap sub-
sample is drawn using the data available for this class and subsequently these
subsamples are merged to provide the bootstrap dataset. Model comparison is
done using the Akaike information criterion (AIC) provided by the package.

2.3 Monte Carlo evaluations

We perform a simulation study to assess the quality of estimates of pz, the
total number of experiments missing per 100 published, obtained by the zero-
truncated Negative Binomial and Delaporte models (initial work found Brain-
Map counts completely incompatible with the Poisson model, and hence we did
not consider it for simulation). For both approaches, synthetic data are gen-
erated as follows. First, we fix the values of the parameters, that is, µ, φ for
the Negative Binomial distribution and µ, σ, ν for the Delaporte distribution.
We then generate I∗/(1 − π(0|θ)) samples from the untruncated distributions,
where I∗ is chosen such that the expected number of non-zero counts is I. We
remove the zero-count instances from the simulated data and the corresponding
zero-truncated model is fit to the remaining observations. Finally, we estimate
the probability of observing a zero count experiment based on our parameter
estimates.

We set our simulation parameter values to cover typical values found in
BrainMap (see C, Table 8). For the Negative Binomial distribution we consider
values 4 and 8 for the mean and values 0.4, 0.8, 1.0 and 1.5 for the dispersion,
for a total of 8 parameter settings. For the Delaporte distribution, we set µ
to 4 and 8, σ to 0.5, 0.9 and 1.2, and ν to 0.02, 0.06 and 0.1 (18 parameter
settings). The expected number of observed studies is set to I = 200, 500, 1,000
and 2,000. For each combination of (I, µ, φ) and (I, µ, σ, ν) of the Negative
Binomial and Delaporte models, respectively, we generate 1,000 datasets from
the corresponding model, for each parameter setting, and record the estimated
value of pz for each fitted dataset.

2.4 HCP real data evaluations

As an evaluation of our methods on realistic data for which the exact number of
missing contrasts is known, we generate synthetic meta-analysis datasets using
the Human Connectome Project task fMRI data. We start with a selection
of 80 unrelated subjects and retrieve data for all 86 tasks considered in the
experiment. For each task, we randomly split the 80 subjects into 8 groups of 10
subjects. Hence, we obtain a total of 86× 8 = 688 synthetic fMRI experiments.
For each experiment, we perform a one-sample group analysis, using ordinary

2RRID:SCR 001905
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least squares in FSL3, and recording nvi , the total number of surviving peaks
after random field theory thresholding at the voxel level, 1% familywise error
rate (FWE), where i = 1, . . . , 688. We also record the total number of peaks
(one peak per cluster) after random field theory thresholding at the cluster level,
cluster forming threshold of uncorrected P=0.00001 & 1% FWE, nci . These
rather stringent significance levels were needed to induce sufficient numbers of
results with no activations. We then discard the zero-count instances from nvi
and nci , and subsequently analyse the two truncated samples in two separate
analyses, using the zero-truncated Negative Binomial and Delaporte models.
Finally, the estimated number of missing experiments is compared to the actual
number of discarded contrasts. Note that we repeat the procedure described
above 6 times, each time using different random splits of the 80 subjects (HCP
splits 1-6).

3 Results

3.1 Simulation results

The percent relative bias of the estimates of pz,
p̂z−pz
pz
× 100, and its bootstrap

standard error for the zero-truncated Negative Binomial and Delaporte models
are shown in Table 2 and Table 3, respectively. The results indicate that,
when the model is correctly specified, both approaches perform adequately.
In particular, in Table 2 we see that the bias of p̂z is small, never exceeding
8% when the sample size is comparable to the sample size of the BrainMap
database (I = 2, 555) and the mean number of foci is similar to the average
foci count found in BrainMap (≈ 9). The bootstrap standard error estimates
produced by the Negative Binomial model are also accurate with relative bias
below 5% in most scenarios with more than 500 contrasts, while Delaporte tends
to underestimate standard errors but never more than -15% (see Table 3).

Table 2: Percent relative bias for estimation of pz, the zero-count experiment
rate as a percentage of observed studies, for Negative Binomial and Delaporte
models as obtained from 1,000 simulated datasets. Parameter µ is the expected
number of foci per experiment, φ, σ and ν are additional scale and shape pa-
rameters. Negative Binomial performs well and, while Delaporte often under-
estimated pz, with at least 1,000 contrasts it always has bias less than 10%
(positive bias over-estimates the file drawer problem).

Negative Binomial
Parameter values % relative bias of p̂z

µ φ pz E[I] = 200 500 1000 2000

4 0.4 62.1 8.76 2.85 1.40 0.80
4 0.8 31.3 2.72 1.97 -0.78 0.32
4 1.0 25.0 1.70 1.21 0.72 0.16

3RRID:SCR 002823
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4 1.5 16.6 2.85 1.66 0.71 0.13
8 0.4 42.0 7.07 3.17 0.70 -0.22
8 0.8 17.2 4.35 1.57 0.49 0.21
8 1.0 12.5 3.32 0.84 0.63 0.04
8 1.5 6.7 2.53 0.90 0.69 0.21

Delaporte
Parameter values % relative bias of p̂z

µ σ ν pz E[I] = 200 500 1000 2000

4 0.5 0.02 11.8 -12.65 -10.66 -9.69 -8.02
4 0.9 0.02 20.8 -17.47 -12.35 -10.28 -10.10
4 1.2 0.02 27.6 -20.46 -18.59 -16.64 -13.83
4 0.5 0.06 10.5 -6.13 -5.58 -4.77 -3.73
4 0.9 0.06 18.0 -4.08 -4.18 -1.32 0.15
4 1.2 0.06 23.4 -5.07 -3.27 -1.09 0.01
4 0.5 0.10 9.3 -4.53 -3.32 -2.65 -1.90
4 0.9 0.10 15.6 1.07 3.86 1.91 1.80
4 1.2 0.10 20.0 4.46 3.32 3.89 4.07
8 0.5 0.02 3.6 -13.77 -10.02 -7.75 -5.91
8 0.9 0.02 9.2 -11.99 -9.00 -7.46 -5.04
8 1.2 0.02 13.8 -14.07 -11.22 -9.48 -8.12
8 0.5 0.06 2.8 -3.04 -3.18 -2.12 -1.89
8 0.9 0.06 6.8 1.41 4.13 2.74 2.47
8 1.2 0.06 10.0 10.49 7.52 7.91 5.19
8 0.5 0.10 2.2 0.93 1.36 0.82 0.74
8 0.9 0.10 5.0 8.09 5.88 5.78 4.94
8 1.2 0.10 7.3 17.91 10.68 7.77 4.76

Table 3: Percent relative bias of bootstrap standard error of p̂z, missing ex-
periment rate as a percentage of observed studies, for Negative Binomial and
Delaporte models as obtained from 1,000 simulated datasets. Parameter µ is
the expected number of foci per experiment and φ, σ and ν are additional scale
and shape parameters. For a sample of at least 1,000 contrasts, Negative Bino-
mial standard errors are usually less than 3% in absolute value; while Delaporte
has worse bias, it is never less than -15% (negative standard error bias leads to
over-confident inferences).

Negative Binomial
Parameter values % relative bias of se(p̂z)

µ φ pz E[I] = 200 500 1000 2000

4 0.4 62.1 34.85 8.72 6.26 -1.33
4 0.8 31.3 8.15 -1.08 -1.76 -1.45
4 1.0 25.0 10.04 5.87 1.40 1.10
4 1.5 16.6 3.97 1.20 -0.37 -3.00
8 0.4 42.0 27.65 2.53 2.61 1.31
8 0.8 17.2 4.67 -0.88 0.58 3.29
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8 1.0 12.5 1.77 2.76 -0.75 -0.04
8 1.5 6.7 1.43 -0.40 -2.48 -1.32

Delaporte
Parameter values % relative bias of se(p̂z)
µ σ ν pz E[I] = 200 500 1000 2000

4 0.5 0.02 11.8 -6.98 -6.51 -7.28 -7.23
4 0.9 0.02 20.8 -10.01 -10.28 -11.56 -11.63
4 1.2 0.02 27.6 -5.88 -9.20 -12.08 -11.48
4 0.5 0.06 10.5 -8.80 -5.50 -9.71 -11.00
4 0.9 0.06 18.0 -8.08 -8.87 -13.53 -14.39
4 1.2 0.06 23.4 -2.69 -6.61 -11.58 -13.36
4 0.5 0.10 9.3 -3.09 -3.43 -8.38 -6.59
4 0.9 0.10 15.6 -7.18 -10.05 -8.81 -9.96
4 1.2 0.10 20.0 -10.47 -9.99 -12.13 -13.47
8 0.5 0.02 3.6 -8.74 -6.96 -6.87 -8.49
8 0.9 0.02 9.2 -10.35 -8.84 -8.81 -10.31
8 1.2 0.02 13.8 -2.86 -6.91 -11.28 -13.51
8 0.5 0.06 2.8 -5.93 -9.27 -11.21 -5.80
8 0.9 0.06 6.8 -6.61 -6.70 -10.93 -9.43
8 1.2 0.06 10.0 -1.42 -10.57 -9.72 -10.42
8 0.5 0.10 2.2 -9.40 -8.75 -7.14 -5.62
8 0.9 0.10 5.0 -10.02 -8.39 -8.16 -2.02
8 1.2 0.10 7.3 -8.16 -8.13 -0.26 -0.85

3.2 HCP synthetic data results

Results of the analysis of the HCP synthetic datasets using the zero-truncated
Negative Binomial and Delaporte models are summarised in Figure 2 and Table
4. In Figure 2 we plot the empirical count distributions and the fitted probabil-
ity mass functions for the 12 datasets considered. For datasets obtained with
voxelwise thesholding of the image data, we see that the Delaporte distribution
provides a better fit compared to the Negative Binomial qualitatively, and by
AIC for all 6 datasets (Table 4). For clusterwise thresholding, there are fewer
peaks in general and their distribution is less variable compared to voxelwise
thresholding. Both distributions achieve a similar fit. Here, AIC supports the
Negative Binomial model in 4 out of 6 datasets.

Table 4 reports the true number of missing contrasts n0, along with point
estimates n̂0 and the 95% bootstrap intervals obtained by the zero-truncated
models. For voxelwise data, the Negative Binomial model overestimates the
total number of missing experiments in all 6 datasets as a consequence of the
poor fit to the non-zero counts, while the Delaporte model bootstrap intervals
include the true value of n0 in 5 out of 6 datasets, greatly underestimating
n0 in one dataset. For clusterwise counts, the point estimates obtained by
the zero-truncated Negative Binomial model are very close to the true values.
Notably, n0 is included within the bootstrap intervals for all 6 datasets. The
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Delaporte model underestimates the values of n0 in all 6 datasets, but the
bootstrap intervals include n0 for 4 out of 6 datasets.

Overall, we find that the zero-truncated modeling approach generally pro-
vides good estimates of n0, with the Negative Binomial sometimes overestimat-
ing and the Delaporte sometimes underestimating n0. A conservative approach,
therefore, favors the Delaporte model.

Table 4: Evaluation of the zero-truncated modeling approach using synthetic
data obtained from the HCP project, using voxelwise (top) and clusterwise
(bottom) inference. The true number of missing contrasts (n0) for each one of
the 12 datasets (6 for voxelwise thesholding and 6 for clusterwise thresholding)
is shown in the second column. For each of the Negative Binomial and Delaporte
methods, the estimated missing contrast count (n̂0), 95% bootstrap confidence
interval for n0 and AIC score are shown (smaller AIC is better).

Voxelwise
Negative Binomial Delaporte

Split n0 n̂0 AIC n̂0 AIC

1 7 20 [14,27] 6576.4 1 [1,4] 6562.8
2 5 22 [15,29] 6583.3 3 [1,8] 6576.2
3 5 22 [16,30] 6575.9 1 [1,21] 6566.1
4 4 25 [18,33] 6603.8 4 [1,25] 6601.7
5 10 18 [13,24] 6539.4 1 [0,1] 6504.1
6 10 21 [15,29] 6557.0 2 [1,10] 6550.0

Clusterwise
Negative Binomial Delaporte

Split n0 n̂0 AIC n̂0 AIC

1 148 167 [115,248] 3167.8 71 [50,108] 3166.9
2 144 151 [104,217] 3209.3 58 [44,79] 3204.5
3 150 161 [109,246] 3163.2 95 [62,184] 3164.4
4 151 154 [107,231] 3156.3 106 [57,159] 3158.0
5 153 148 [101,291] 3175.0 98 [60,174] 3176.5
6 152 151 [103,223] 3198.2 89 [54,157] 3199.7
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Figure 2: Evaluation with HCP data with 688 contrasts of sample size 10, comparing accuracy of Negative Binomial (NB)
and Delaporte (DEL) distributions for the prediction of the number of studies with no significant results (zero foci) based
on only significant results (one or more foci). Left panel shows results for voxelwise inference, right for clusterwise inference,
both using PFWE=0.01 to increase frequency of zero foci. For clusterwise datasets, the Negative Binomial confidence intervals
always include the observed zero count, while Delaporte ofter underestimates the count. For voxelwise analysis, the Negative
Binomial over-estimates the zero frequency substantially, while Delaporte’s intervals include the actual zero frequency in 3 out
of 5 splits.
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3.3 Application to the BrainMap data

We found the Poisson distribution to be completely incompatible with the Brain-
Map count data (B, Figure 6), and we do not consider it further. We start by
fitting the Negative Binomial and Delaporte zero-truncated models without any
covariates. Figure 3 shows the emprical and fitted probability mass functions
for the 5 subsamples. We see that both distributions provide a good fit for the
BrainMap data. The Negative Binomial model is preferred based on AIC in 4
out of 5 but with little difference in AIC (Table 6). The estimated prevalence
of missing contrasts, along with 95% bootstrap intervals are shown in Table 5.
Note that while there is considerable variation in the estimates over the two
models, the confidence intervals from all subsamples do not include zero, thus
suggesting a file drawer effect.

Table 5: BrainMap data analysis results. The table presents the estimated pre-
velance of file drawer studies along with 95% bootstrap confidence intervals, as
obtained by fitting the zero-truncated Negative Binomial and Delaporte models
to BrainMap subsmaples A-E. No covariates are considered.

Negative Binomial Delaporte
Subsample p̂z 95% interval p̂z 95% interval

A 10.14 [8.55,12.00] 7.27 [4.74,11.03]
B 9.47 [8.00,11.11] 5.41 [3.92,8.95]
C 9.02 [7.61,10.63] 6.17 [4.10,9.77]
D 8.67 [7.31,10.21] 7.03 [4.41,9.67]
E 10.16 [8.59,11.97] 6.76 [4.67,10.60]

Covariates essentially have no effect on the estimated prevalence of missing
contrasts. However, including covariates results in an improvement in terms
of AIC for both models and all BrainMap subsamples (Table 6). As can be
seen in Figure 4, the estimated prevalence of zero count contrasts is a slowly
decreasing function of both the square root number of participants and the
year of publication. For the former, the trend is expected and one possible
explanation is that bigger samples result into greater power, and therefore more
foci and thus less of a file drawer problem. However, for publication year,
decreasing publication bias is welcomed but we could have just as well expected
that the increased use of multiple testing in later years would have reduced
foci counts and increased the file drawer problem. Finally, we see that the
estimated percent prevalence of zero-count contrasts is similar for all levels of
the categorical variable context, with the exception of experiments studying
gender effects (Figure 5).
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Figure 3: BrainMap results for 5 random samples using the Negative Binomial
and Delaporte models and no covariates. Plots show observed count data (gray
bars) with fit of full (non-truncated) distribution based on zero-truncated data,
including the estimate of p0 (over black bar).
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Figure 4: Predicted pz, missing experiment rate per 100 published experiments,
as a function of year of publication (top) and the square root of sample size
(bottom), with pointwise 95% bootstrap confidence intervals. There is not much
variation in the estimate of the percentage missing, but in both cases a negative
slope is observed, as might be expected with improving research practices over
time and greater power with increased sample size. All panels refer to the first
BrainMap random sample (subsample A).
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Figure 5: Studies missing per 100 published as a function of experiment context,
with 95% bootstrap confidence intervals. Note that we have fixed the year and
square root sample size covariates to their median values. The plot is derived
from the first BrainMap random sample (subsample A).
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Table 6: AIC model comparison results for the BrainMap data. The AIC is
found by fitting the zero-truncated Negative Binomial and Delaporte models,
with and without the covariates, to BrainMap subsamples A-E. Every split
indicates evidence for better fit with covariates (smaller AIC indicates better
fitting model).

AIC model comparison: Negative Binomial
Subsmaple No covariates Regression

A 16111.28 15095.05
B 16012.85 14994.86
C 16206.25 15178.73
D 16056.65 15037.79
E 16005.15 15006.94

AIC model comparison: Delaporte
Subsmaple No covariates Regression

A 16112.77 15082.81
B 16011.35 15014.12
C 16207.33 15185.88
D 16058.47 15028.52
E 16006.02 15036.04

4 Discussion

Summary. In this paper, we have proposed a method for estimating the total
number of contrasts missing from a large cohort of CBMA studies due to the
file drawer problem. Our method uses intrinsic statistical characteristics of the
non-zero count data to infer zero counts. This is achieved by estimating the
parameters of a zero-truncated model, either Negative Binomial or Delaporte,
which are susequently used to predict the prevalence p0 of zero-count studies in
the original, untruncated distribution, and re-expressing this as pz, the rate of
missing contrasts per 100 published. The approach relies on assumptions I and
II described in Section 2.2. Assumption I implies that there is independence
between contrasts. However, as one publication can have several contrasts,
this assumption is tenuous despite it being a standard assumption for most
CBMA methods. To ensure the independence assumption is valid, we subsample
the data so that only one randomly selected contrast per publication is used.
Assumption II defines our censoring mechanism, such that experiments with at
least one significant activation are always published. The assumption that non-
significant research findings are suppressed from the literature has been adopted
by authors in classical meta-analysis (Eberly and Casella, 1999, among others)
and we believe that is reasonable in the context of CBMA as well.

A series of simulations studies suggest that the zero-truncated modelling ap-
proach provides valid estimates of the file drawer quantity. A critical limitation
of our HCP evaluation is the repeated measures structure, where 86 contrasts
come from each subject. Such dependence generally does not induce bias in the
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mean estimates, but can corrupt standard errors and is a violation of the boot-
strap’s independence assumption. However, as the bootstrap intervals generally
captured the true censoring rate, it seems we were not adversely affected by
this violation. It should be noted, moreover, that the properties of our estima-
tors degrade as the total number of observed studies decreases and therefore the
methods should not employed for meta-analyses with a small number of studies,
below, say, 1,000 studies.

We find that both zero-truncated Negative Binomial and Delaporte models
provide a good fit for the total number of foci per contrast in the BrainMap
database. The analysis suggests that the estimated magnitude of the file drawer
slightly varies depending on study characteristics, but generally consists of at
least 6 missing experiments for 100 published and is significantly greater than
zero.

Implications for meta-analyses. Our findings provide evidence for the exis-
tence of publication bias in CBMA. While we cannot rule out a contribution of
contrasts that have actually been reported in the original publications and not
encoded in the database, we posit that the majority come from contrasts never
described in publications or not published at all.

We stress that this analysis is totally agnostic to the statistical procedures
used to generate the results in the BrainMap database. The counts we model
could have been found with liberal P < 0.001 uncorrected inferences or stringent
P < 0.05 FWE procedures. However, if the neuroimaging community never
used multiple testing corrections, then every experiment should report many
peaks, and we should estimate virtually no missing studies. In the end, our
results reflect the aggregate statistical practice and signal structure reflected in
the BrainMap database.

Ideally, our unit of inference would be a publication. However, linking our
contrast-level inferences to studies requires assumptions about dependence of
contrasts within a study and the distribution of the number of contrasts exam-
ined per study. We can assert that the more contrasts examined per investiga-
tion, the more likely 1 or more null contrasts should arise; and that the risk of
null contrasts is inversely related to foci-per-contrast of non-null contrasts.

The presence of missing experiments does not invalidate existing studies,
but complements the picture seen when conducting a literature review. Never-
theless, there are some implications concerning the interpretation of the results
obtained from current CBMA approaches. In particular, methods that make no
adjustments for the file drawer effect are conditional on the existence of at least
one activation. Hence, effect estimates obtained trough a CBMA are inflated
unless the prevalence of null exeriments is zero.

Future work. The analysis conducted in this paper is based on data re-
trieved from a single database. As a consequence, results are not robust to
possible biases in the way publications are included in this particular database.
A more thorough analysis would require consideration of other databases (e.g.
Neurosynth.org4 (Yarkoni et al., 2011), though note Neurosynth does not report

4RRID:SCR 006798
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foci per contrast but per paper). Secondly, one may argue that our censoring
mechanism is rather simplistic, and does not reflect the complexity of current
(and potentially) poor scientific practice. For example, we have not allowed for
the possibility of ‘vibration effects’, that is, changing the analysis pipeline (e.g.,
random vs fixed effects, linear vs. nonlinear registration) to finally obtain some
significant activations. This would be an instance of initially-censored (zero-
count) data being ‘promoted’ to a non-zero count through some means. Such
models can be fit under the Bayesian paradigm and will be examined in our
future work.
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A BrainMap summaries for study context

In this section we provide summaries of the data on the 5 BrainMap subsamples
A-E, for the different levels of the categorical variable study context. In partic-
ular, Table 7 presents the total number of studies per level, the average sample
size per contrast, and the average number of foci per contrast. Note that in sub-
samples C and E there were less than 20 contrasts with label ‘Gender effects’;
hence, we incorporate those in the ‘Other’ category.

Table 7: Data summaries for the different levels of the categorical variable study
context.

Contrasts per level
Study context BrainMap subsample

A B C D E
Age effects 28 20 30 25 25

Disease effects 472 453 463 487 468
Drug effects 56 52 55 61 60

Gender effects 21 21 - 21 -
Learning 27 28 31 31 31

Linguistic effects 30 32 28 36 32
Normal mapping 1736 1768 1746 1717 1739

Other 25 21 43 18 41
Average constrast sample size

Study context BrainMap subsample
A B C D E

Age effects 15.3 14.1 11.6 13.0 14.1
Disease effects 13.4 13.4 14.1 14.1 13.4
Drug effects 12.7 12.9 12.3 11.9 12.1

Gender effects 12.3 12.6 - 12.5 -
Learning 11.1 11.0 12.1 12.3 11.9

Linguistic effects 11.3 11.8 11.3 11.6 12.1
Normal mapping 13.3 13.3 13.3 13.3 13.3

Other 11.4 11.3 12.5 11.2 12.1
Average foci per contrast

Study context BrainMap subsample
A B C D E

Age effects 8.8 8.5 9.5 8.8 9.4
Disease effects 7.6 7.4 7.6 7.4 7.2
Drug effects 8.1 9.0 8.6 8.8 8.7

Gender effects 4.3 5.2 - 3.6 -
Learning 8.0 8.5 8.4 8.4 8.1

Linguistic effects 5.3 8.6 7.8 10.1 7.2
Normal mapping 9.8 9.5 9.9 9.7 9.6

Other 7.0 7.8 6.1 5.8 5.2
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B Zero-truncated Poisson analysis of the Brain-
Map dataset

In this section, we present results of the analysis of BrainMap subsamples A-
E using the zero-truncated Poisson model. The empirical and fitted Poisson
probability mass functions are shown in Figure 6. It is evident that the zero-
truncated Poisson model provides a poor fit to the BrainMap data. The finding
is confirmed by the AIC criterion which is 26067.2, 25303.4, 26006.6, 25018.8 and
25507.7 for subsamples A-E, respectively. These values are much higher than
the corresponding values obtained by fitting both the Negative Binomial and
Delaporte models (see Table 6). The estimated prevalence of file drawer studies
is estimated as almost zero in all subsamples (Figure 6, final plot). However,
these estimates should not be trusted considering the poor fit provided by the
zero-truncated Poisson model.

C Negative Binomial and Delaporte parameter
estimates

In this section, we present the parameter estimates obtained from the analysis of
BrainMap subsamples A-E with the simple (without covariates) zero-truncated
Negative Binomial and Delaporte models. The parameter estimates are listed
in Table 8.

Table 8: Scalar parameter estimates obtained when fitting the simple zero-
truncated Negative Binomial and Delaporte models to BrainMap subsamples
A-E.

Negative Binomial Delaporte
Subsample µ φ µ σ ν

A 8.28 0.89 8.50 0.93 0.046
B 8.19 0.85 8.50 0.96 0.088
C 8.52 0.84 8.75 0.90 0.054
D 8.33 0.81 8.46 0.84 0.031
E 8.12 0.88 8.38 0.94 0.060
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Figure 6: BrainMap results for 5 random samples using the zero-truncated
Poisson distribution. The first 5 plots show observed count data (gray bars) with
fit of full (non-truncated) distribution based on zero-truncated data, including
the estimate of p0 (over black bar). Final plot shows estimates of pz, prevalence
of file drawer studies for every 100 studies observed. All fitted values include
95% bootstrap confidence intervals. The Poisson model provides a poor fit to
all 5 subsamples.
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