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ABSTRACT:

A growing number of single nucleotide polymorphisms (SNPs) have been
associated with body mass index (BMI) and obesity, but whether the effect of
these obesity susceptibility loci is uniform across the BMI distribution remains
unclear. We studied the effects of 37 BMI/obesity-associated SNPs in 75,230
adults of European ancestry along BMI percentiles using conditional quantile
regression (CQR) and meta-regression (MR) models. The effects of 9 SNPs
(24%) increased significantly across the sample BMI distribution including, FTO
(rs1421085, p=8.69x107"°), PCSK1 (rs6235, p=7.11x10), TCF7L2 (rs7903146,
p=9.60x10%), MC4R (rs11873305, p=5.08x10"°), FANCL (rs12617233,
p=5.30x10%), GIPR (rs11672660, p=1.64x10""), MAP2K5 (rs997295,
p=3.25x10"%), FTO (rs6499653, p=6.23x10"") and NT5C2 (rs3824755,
p=7.90x10""). We showed that such increases stem from unadjusted gene
interactions that enhanced the effects of SNPs in persons with high BMI. When
125 height-associated were analyzed for comparison, only one (<1%), IGF1
(rs6219, p=1.80x10"%), showed effects that varied significantly across height
percentiles. Cumulative gene scores of these SNPs (GS-BMI and GS-Height,
respectively) showed that only GS-BMI had effects that increased significantly
across the sample distribution (BMI: p=7.03x10"’, Height: p=0.499). Overall,
these findings underscore the importance of gene-gene and gene-environment
interactions in shaping the genetic architecture of BMI and advance a method to

detect such interactions using only the sample outcome distribution.
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1 INTRODUCTION:

2 Obesity is a prominent risk factor for psychological disorders,
3 osteoarthritis, hypertension, type 2 diabetes (T2D), cardiovascular disease, and
4  certain cancers."? The rise of obesity coincided with ‘obesogenic’ societal and
5 environmental changes that include excessive consumption of high calorie foods,
6 sedentary lifestyle and urbanization.?* Genetic factors are also known to play an
7  important role in obesity as 50-80% of body mass index (BMI) variation can be
8  ascribed to genetics (heritability).>® Moreover, genome wide association studies
9 (GWAS) have identified ~140 polygenic loci that are directly associated with BMI
10  or obesity.”

11 The role of individual and compound gene-environment (GXE) and gene-
12 gene (GXG) interactions in determining BMI has not been fully elucidated. The
13 study of BMI-associated GXG interactions has been impeded by statistical and
14  computational limitations, although promising new approaches have recently
15 been proposed.®' On the other hand, several lines of evidence suggest that
16  GXE interactions may play an important role in shaping BMI. First, estimates of
17  the heritability of BMI are influenced by environmental exposures.” One study
18 reported that the heritability of BMI is increased in persons born after the
19 obesogenic transition, while another reported that the heritability of BMI is
20 correlated with the population prevalence of obesity.'*'® More recently, the
21  cumulative gene score from 29 BMl-associated SNPs showed a positive
22 interaction effect with birth year.' Interactions between the genetic determinants

23 of BMI and obesogenic environmental factors readily explains why both
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1 estimates of BMI heritability and cumulative SNP effects are enhanced in
2 permissive environments. Second, specific interactions between BMI-associated
3 SNPs and environmental factors have been documented.!" Physical activity and
4  energy intake have been reported to modify the effects of SNPs within the fat
5 mass and obesity- associated (FTO) gene.”> " Importantly, FTO (rs1421085) has
6 been shown to jointly interact with diet, physical activity, salt and alcohol
7 consumption and sleep duration.?’ Thus, a subset of genetic variants may affect
8 BMI through a mixture of direct effects and compound interactions. As such,
9 investigating individual environmental factors may not capture the full range of
10  environmental modification for a given SNP.2"?2

11 In this report, we advanced a statistical framework to assess the effects of
12 single and mixed GXE and GXG interactions on the association between SNPs
13 and BMI. Specifically, conditional quantile regression (CQR) was applied to
14 investigate the effects of 37 BMI/obesity-associated SNPs at multiple percentiles
15 of the sample BMI distribution in 75,230 adults of European ancestry (EA).%>2*
16  Variability in SNP effects across these BMI percentiles was demonstrated to
17  result from unadjusted interactions and was modeled using meta-regression
18 (MR).2>% In this way, CQR and MR were used to collect evidence of unadjusted
19 interactions directly from the sample distribution of BMI absent measures of
20  specific environmental factors. A secondary analysis on 125 established height-

21  associated SNPs is also included for comparison.

22
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1 SUBJECTS AND METHODS:
2 Participants and Phenotypes: The sample population included
3 participants from the following studies: ARIC (phs000280.v3.p1), CARDIA
4  (phs000285.v3.p2), CHS (phs000287.v6.p1), EpiDREAM, the Framingham
5 cohort (phs000007.v29.p10), MESA (phs000209.v13.p3), COPD
6 (phs000179.v5.p2), eMERGE Il (phs000888.v1.p1) and the WHI
7  (phs000200.v10.p3). Measurements collected from participants below age 18 or
8 above the age of 92 were excluded (<1%). For studies with repeated measures
9 across multiple time points or visits, the median height and the median weight
10 was extracted along with the corresponding age at these median values. BMI
11 was calculated by dividing the median weight (kg) by the square of the average
12 measures of height (m). Diabetic status was indicated by one of the following
13 criteria: (1) physician report or self-report of physician-diagnosis, (2) report taking
14 diabetes medication, (3) fasting plasma glucose = 126 mg/dL (7mM), or (4) 2hr
15 glucose = 200 mg/dl (11mM) during an oral glucose tolerance test (OGTT).?’
16  Obesity categories including, normal weight (NW), overweight (OW), as well as
17 obesity classes I, Il and Ill (Ob-I, Ob-Il, and Ob-lIl, respectively) were specified
18 according to WHO guidelines.”® Analyses were restricted to participants of
19  European ancestry (EA, self-reported) with a combined sample size of N=75,230.
20 Summary statistics are presented Table S1. This project was approved by local
21  ethics committee (Hamilton Integrated Research Ethics Board-HIREB) and
22  participant-level data access was granted through the database of Genotypes

23 and Phenotypes (dbGaP) following approval by study-specific Data Access
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1 Committee (DAC). All analyses are consistent with study-specific Data Use
2 Certifications (DUC).

3 Sample Quality Control (QC): Detailed genotyping procedures for
4  EpiDREAM and studies from the Candidate Gene Association Resource (CARe)
5 project including, ARIC (phs000557.v2.p1), CARDIA (phs000613.v1.p2), CHS
6 (phs000377.v4.p1), the Framingham Cohort (phs000282.v17.p10) and MESA
7 (phs000283.v7.p3) are presented elsewhere.?**® Genotyping was performed
8 using the gene centric HumanCVD Genotyping BeadChip with 49,320 markers
9 concentrated in ~ 2,100 loci that are related to metabolism and cardiovascular
10 disease.®’ This limited scope of analysis was motivated by access to a greater
11 sample size, as well as the high computational cost of fitting CQR models across
12 percentiles the sample outcome distribution. Samples with sex-discordance,
13 array-wide call rate below 95-98%, and/or average heterozygosity beyond 3
14 standard deviations of the mean heterozygosity, were removed.*** Family
15 members were defined by identity by descent (IBD) (Pl HAT) above 0.5 and
16  those with lower call rate were removed so that only one member of each family
17 group was retained for analysis (Table S2). Samples from the COPDGene
18 (phs000765.v1.p2) study were genotyped using the Illlumina HumanHap550 (v3)
19  genotyping BeadChip (lllumina Inc., San Diego, CA, USA) with 561,466 markers
20 and QC procedures were performed as above except that cryptic relatedness
21 was defined by IBD Pl HAT > 0.1875.>*% Genotypes from the WHI study
22 (phs000746.v1.p3) and eMERGE Il (phs000888.v1.p1) were comprised of an

23  imputed dataset and samples from related/duplicate participants were removed.
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1 Analyses of the WHI dataset were conducted on each sub-study (WHIMS,
2 GARNET, HIPFX, MOPMAP and GECCO). A summary of sample QC, along with
3 acomplete list of datasets (accession #) and additional details on these studies is
4  provided in Table S2.

5 SNP Selection and Marker QC: SNPs that have previously been
6 associated with BMI, obesity and height were identified by searching the
7  genome-wide association study (GWAS) Catalog, GIANT Consortium data files,

8 and screening the literature.®**

Literature screening was conducted
9 independently by A.A. and D.M. to maximize SNP attainment. For GWAS SNPs,
10 only associations with p<5x10™ were considered. These SNPs were sorted into
11 correlated linkage disequilibrium blocks (LD, R?* > 0.1) based on genomic
12 sequences from EA populations (Phase 3, 1000 Genome Project) and the
13  strongest association SNP on the HumanCVD Genotyping BeadChip was
14 selected.®*® Proxy SNPs (LD, R? > 0.9) were identified for SNPs in LD blocks
15 not represented on the array. Thus, 39 BMl/obesity- and 129 height-associated
16 SNPs were identified. For studies using different genotyping platforms, the
17  original association SNPs (39 BMI/obesity and 129 height) were screened and
18 proxied as above on each genotyping platform. SNPs that mapped to the same
19 gene were screened jointly using conditional regression analysis to test for
20 independent associations with quantitative traits (BMI or height) and only SNPs
21  that maintained associations were retained.*' However SNPs in FTO (rs1421085

22 and rs6499653) and PCSK1 (rs6232 and s6235) were exempted from exclusion

23 due to prior evidence in the literature of independent associations with
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1 BMl/obesity.**** In total, 37 BMl/obesity- and 125 height-associated independent
2 SNPs were identified and selected for further analysis. SNP call rate, minor allele
3 frequency (MAF) and exact tests of Hardy-Weinberg equilibrium (HWE) in EA
4  populations are presented in Tables S3-4. Within each study, SNPs with a call
5 rate below 90% or HWE p-value<1x10 were excluded from analysis. In
6 addition, only SNPs imputed with high quality were retained for analysis (R2 >0.7
7 for WHI and info score > 0.7 for eMERGE 11).** SNP genotypes were encoded
8 per the trait increasing effect alleles and modeled additively for individual
9 analyses.

10 Gene Scores: The cumulative gene score (GS) was calculated for all
11 BMl/obesity- and height-associated SNPs (GS-BMI and GS-Height, respectively).
12 An un-weighted GS was utilized because weights can be biased and context
13 dependent.*** No GS was calculated for participants with more than 10%
14  missing genotypes, otherwise missing SNP genotypes were imputed using the
15 arithmetic average genotype at each missing SNP. In addition to BMI, GIPR
16 (rs10423928, LD R?*=1 with rs11672660 in EA), TCF7L2 (rs7903146),
17 TOMM40/APOE (rs2075650), HMGCR (rs4604177, LD R?=0.63 with rs6453133
18 in EA), PCSK1 (rs6235), CDKAL1 (rs9356744) and KCNQ1 (rs2283228) have
19 also been associated with several co-morbidities of obesity including glucose
20 homeostasis, T2D, lipid levels and CRP levels.***® To mitigate potential biases
21 stemming from these comorbidities at higher BMI percentiles, a GS excluding
22 these 7 SNPs was also calculated, GS-BMI (Stringent). Finally, GSs for both BMI

23 and Height were calculated without imputing missing genotypes, GS-BMI (No
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1 Imputation) and GS-Height (No Imputation). Testing GS-BMI (Stringent), GS-BMI
2 (No Imputation) and GS-Height (No Imputation) was performed as sensitivity
3 analysis.

4 Statistical Analysis: A statistical framework combining CQR and MR was
5 used to model variation in the effects of SNPs under single and mixture GXE and
6 GXG interactions (see Supplemental Note).?*?® Like ordinary least square (OLS),
7  CQR models may assume a linear relationship and provide intercept and slope
8 estimates for a series of pre-specified percentiles.?®** Therefore, CQR can be
9 applied to produce a comprehensive evaluation of the effects of a SNP across
10 the sample distribution of a quantitative trait (e.g. BMI or height). A piecewise
11 linear plot for the series of CQR estimates at different percentiles provides a
12 useful visual summary of their variation along the sample distribution.?*** Figure
13 1 shows a working example of CQR and MR in comparison with OLS using FTO
14 (rs1421085) and ARIC CARe.

15 Under conditions where true single and mixed GXE and GXG interactions
16 are unadjusted, SNPs will shift both the location and scale (variance) of the
17 sample outcome distribution (see Supplemental Note).56 These shifts in scale
18  result in detectable variations of CQR estimates collected from percentiles across
19 the sample outcome distribution. It follows that CQR estimates for a SNP are
20 constant (i.e. equal) across percentiles if all unadjusted interaction effects are
21  zero. It is important to consider that GXG interactions include non-linear genetic
22 models of effects where the presence of one allele changes the effects of a

23 second allele within the same variant.’”*® Thus, the association of SNPs with an
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1 outcome under unadjusted interactions essentially reduces to modelling
2 variability in CQR estimates. This can be effectively achieved using MR.%*?® In
3 this context, MR is basically a regression model where the CQR estimates from
4  across the sample outcome distribution represent the dependent variable and the
5 percentiles at which these CQR estimates were calculated represent the
6 independent variable (Figure 1). Additional details on CQR and MR as well as an
7  analytic description of this statistical framework and simulations are presented in
8 the Supplemental Note and Figures S1-2.

9 OLS models were used to verify the associations of SNPs and GSs with
10 BMl/obesity and height in the sample populations included in this study. CQR
11 models were fitted at every 5" percentile of the distribution of BMI and height for
12 each SNP. A total of 10,000 Markov chain marginal bootstrap (MCMB) replicates
13 were used to compute confidence intervals and the cross-percentile variance-
14 covariance matrix for CQR estimates.’*®" The proportion of the trait variance
15 explained by GS-BMI and GS-Height in CQR models was also calculated.®
16  Hypothesis test statistics in MR were computed assuming normality to estimate
17  the effects of percentiles on changes in mean CQR estimates for each SNP. The
18  set of percentiles (5™ to 95™) were re-centered at the 50 percentile so that the
19 intercept of the MR models corresponds to the main effect of the SNP at the
20 median. To compute residuals after adjusting for the median effects of each SNP
21 on BMI, the univariable median effect of each SNP was calculated using CQR at
22 the 50™ percentile and the residuals were calculated by subtracting the product of

23 this median effect and the genotype from BMI. SNP effects on variance were

10
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1  estimated using OLS analysis of z°.%® Lastly, the effects of each SNP and the GS
2 on the risk of specific BMI categories (NW vs. OW, NW vs. Ob-I, NW vs, Ob-ll
3 and NW vs. Ob-Ill) was estimated using logistic regression.
4 All  regression models were performed using one-step individual
5 participant-data meta-analysis (also known as fjoint-analysis’ or ‘mega-
6 analysis’).?*®® This method was justified by access to individual participant data
7  and the fact that CQR analyses refer to the conditional sample distribution.®® This
8 means that analyses on separate studies correspond to their conditional
9 distributions and it would not be appropriate to combine them using meta-
10 analysis of their summary statistics. All models were adjusted for age (years), sex
11 (female=0, male=1) and study (factor). Age was modeled quadratically (age and
12 age-squared) for BMI analysis, consistent with previous reports.'*?° Analysis of
13 SNPs and the GS with BMI (37 SNPs+GS=38) and height (125 SNPs+GS=126)
14 were subject to multiple testing correction using Bonferroni adjusted p-value
15 thresholds of p<0.05/38=1.32x10"% and p<0.05/126=3.97x10%, respectively.®’
16 QC and statistical analyses were conducted using PLINK version 1.90b3.42 and
17 R version 3.3.2.323%36%78 CQR models were fitted using quantreg and MR models
18  were fitted using metafor.”*® Additional packages used in the analysis include
19  GenABEL, pracma, doParallel, foreach and data.table. 8'8°

20

11
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1 RESULTS:
2 Figure 1 depicts a step by step analysis of FTO (rs1421085) in the ARIC
3 CARe study. In the top left panel, an OLS model (green) is fitted to determine the
4  mean effects of FTO genotype on BMI (Bo.s, kg/m? per Effect Allele) and CQR
5 models (grey) are fitted evenly across the sample BMI distribution (every 5
6 percentile) to determine the effects of FTO genotype at each BMI percentile
7 (Bcar, kg/m? per Effect Allele). In middle right panel, the estimates (So.s and
8  PBeqr) and 95% confidence intervals from these models are collected and plotted
9 against the BMI percentile at which they were fitted. In the bottom left panel, MR
10 analysis (magenta) is used to model variation in the CQR estimates across the
11 sample BMI distribution and MR estimates (Bur, kg/m? per Effect Allele per BMI
12 percentile) along with 95% confidence intervals are plotted. Presenting the
13 results of OLS, CQR and MR in this way is useful for summarizing the purpose of
14  each analysis and contrasting possible differences between them.
15 Initially, OLS models were fitted for each of 37 BMl/obesity-associated
16 SNPs and all but one was verified to increase BMI in this study sample (Table 1).
17  CQR models were then fitted at regular intervals of the BMI distribution to explore
18  whether the effects of SNPs on BMI varied across the sample distribution (Table
19 S5). CQR estimates for each SNP were plotted against the BMI percentiles at
20  which they were produced to provide a visual summary of the CQR results
21  (Figures 2 and S3). Several SNPs had effects that appeared to increase across

22 the distribution of BMI including, FTO (rs1421085), PCSK1 (rs6235), TCF7L2

12
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1 (rs7903146), MC4R (rs11873305), FANCL (rs12617233), GIPR (rs11672660),
2 MAP2K5 (rs997295), FTO (rs6499653) and NT5C2 (rs3824755).

3 Single or mixed interactions in the effects of SNPs that are not adjusted in
4  regression models will produce variability in CQR estimates along the distribution
5 of the outcome (see Supplemental Note). This variability can be detected and
6 quantified using MR.?*?® Simulations showed that the power to detect such
7  interactions using CQR and MR was not affected by the MAF or the main effects
8 of the SNPs, but increased with the number of interactions as well as the main
9 effects of the interacting covariate (see Supplemental Note and Figure S1).
10  Yaghootkar, et al., have recently shown that differences in the prevalence of
11  diseases outcomes (e.g. T2D) between sample and general populations can bias
12 regression estimates of the main effects of SNPs on risk factors (e.g. BMI).%
13 However, the variability of CQR estimates across the sample distribution is not
14  affected by biased main effects when CQR models are fitted with adjustment for
15 disease status (see Supplemental Note). This was supported by simulations
16  which showed that the prevalence of disease outcomes in sample populations
17  had negligible effects on the power and Type-I error rate for detecting unadjusted
18 interactions when CQR models were adjusted for disease status (see
19  Supplemental Note and Figure S2).
20 MR models were fitted to assess the variability in the CQR estimates of
21  BMl-associated SNPs along the sample distribution of BMI (Table 2, Figures 2
22 and S3). Significant positive associations (p<1.32x10°) between BMI percentile

23 and CQR estimates were detected for 9 of 37 SNPs (24%) including, FTO

13
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1 (rs1421085, Bur [95%CI]=0.49 [0.37, 0.62], p=8.69x10™"°), PCSK1 (rs6235, 0.32
2 [0.18, 0.46], 7.11x10%), TCF7L2 (rs7903146, 0.30 [0.17, 0.44], 9.60x10°),
3 MC4R (rs11873305, 0.60 [0.31, 0.89], 5.08x10™°), FANCL (rs12617233, 0.26
4 [0.13, 0.39], 5.30x10%°), GIPR (rs11672660, 0.29 [0.14, 0.45], 1.64x10"%),
5 MAP2K5 (rs997295, 0.23 [0.10, 0.35], 3.25x10™), FTO (rs6499653, 0.25 [0.11,
6 0.40], 6.23x10°") and NT5C2 (rs3824755, 0.36 [0.15, 0.57], 7.90x10™). The
7  estimates from MR (Bur) quantify changes in the impact of each SNP on BMI
8 across the sample distribution. For these 37 SNPs, the median pur value [Q1,
9 Q3] was 0.135 [0.094, 0.217] kg/m? per Effect Allele per BMI Percentile. In this
10  statistical framework pur is equal to zero if all SNP interaction effects are also
11 zero (see Supplemental Note). Positive pBur estimates indicate that effects of
12 SNPs vary systemically by BMI percentile because unadjusted interactions are
13 inflating the effects of SNPs in participants with high BMI.

14 Since height is known to be highly heritable, analyses were extended to
15 height as a reference to the BMI results.?>*”# OLS models were fitted for each of
16 125 height-associated SNPs and all but two were verified to increase height
17 (Table S6). CQR and MR were used to estimate variation in the effects of these
18  SNPs on height as above (Figure S4 and Table S7). Only one height-associated
19 SNP, IGF1 (rs6219, Bur [95%CI]=0.48 [0.23, 0.73], p=1.80x10"%), showed
20  significantly (p<3.97x10™) increased effects along the sample height distribution
21  (Table S8). For height-associated SNPs, the median Bur value [Q1, Q3] was
22 0.002 [-0.056, 0.085] cm per Effect Allele per Height Percentile. Thus, CQR

23  estimates for height-associated SNPs were predominantly consistent across

14
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1 height percentiles and <1% showed evidence of unadjusted interactions,
2 compared to 24% of BMl/obesity-associated SNPs.
3 BMI/obesity- and height-associated SNPs were combined into gene
4  scores (GS-BMI and GS-Height, respectively) to examine the overall association
5 of these SNPs across the sample distribution. OLS models were used to verify
6 the positive association between GS-BMI and GS-Height with their respective
7  traits (Table 3). CQR models for GS-BMI showed steadily increasing effects with
8 increasing percentiles, while CQR models for GS-Height did not vary across
9 percentiles (Figure 3). MR analysis indicated that percentiles were significantly
10 and positively associated with CQR estimates for GS-BMI (Bur [95%CI]=0.15
11 [0.13, 0.17], 7.03x10") but not GS-Height (0.01 [-0.01, 0.02], 0.499) (Table 3).
12 At the 10™ and 90™ BMI percentiles, each additional effect allele of GS-BMI
13 increased BMI by 0.054 and 0.167 kg/m? (3.1-fold increase), respectively; while
14 each additional allele of GS-Height increased height by 0.172 and 0.180,
15 respectively (Table S5 and S7). Thus, in 1.73m tall persons at the 10" BMI
16  percentile, carrying 10 additional BMI-increasing alleles was associated with 1.6
17 kg of extra weight, while at the 90™ BMI percentile this was associated with 5.0
18 kg of extra weight. Furthermore, at the 10™ and 90™ BMI percentiles, the
19  proportion of trait variance explained by GS-BMI increased (2.7 fold, 0.130% to
20  0.357%), while that of GS-Height was stable (1.825% to 1.822%) (Tables S5 and
21 S7). These results support the conclusion that the impact of BMI-associated
22 SNPs was larger for individuals with high BMI, which contrasts with the impact of

23 height-associated SNPs which varied little by height.
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1 Excluding 7 SNPs that have also been associated with comorbidities of
2 obesity from the GS, GS-BMI (Stringent), did not alter the pattern of increasing
3 effects across the sample BMI distribution (Figure S5).**°° Moreover, MR
4  analysis indicated that BMI percentile was significantly and positively associated
5 with the CQR estimates for GS-BMI (Stringent) (Bur [95%CI]=0.14 [0.11, 0.16],
6 p=2.18x10?%). In addition, CQR models were refitted with adjustment for diabetic
7  status as this was shown to mitigate the effects of possible stratification within the
8 sample population (see Supplemental Note and Figure S2). Of the 9 SNPs
9 whose effects showed significant increases across the sample BMI distribution
10 (Table 2 and Figure 2), 3 have also been associated with glucose homeostasis
11  and T2D, namely GIPR (rs11672660), TCF7L2 (rs7903146) and PCSK1
12 (rs6235).%8°%% Refitting CQR models with adjustment for diabetic status had little
13 impact on the results from MR analysis of these SNPs or GS-BMI (Table S9). To
14 address the potential effects of scaling, analyses were conducted on 1)
15 transformed BMI and 2) the residuals after adjusting for the median effects of
16 each SNP. The scaling effect refers to potential correlations between mean and
17  variance effects that result from skewness.®® Transformations counteract scaling
18 by reducing skewness, which may suppress some potentially useful distributional
19 information, while residual analysis addresses scaling directly to preserve
20 distributional information (Figure S6). Despite a reduction in sensitivity, significant
21  associations between log-transformed BMI percentile and CQR estimates were
22 detected for 4 of 9 SNPs including FTO (rs1421085), PCSK1 (rs6235), TCF7L2

23 (rs7903146), FANCL (rs12617233) and GS-BMI (Table S9). Rank transformation
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1 of BMI further reduced the overall sensitivity and only PCSK1 (rs6235) and GS-
2 BMI continued to show significant associations, while most of the remaining
3 SNPs were relegated to nominal levels of significance (Table S9). Analysis of
4  SNP-adjusted BMI residuals detected significant associations between BMI
5 percentile and CQR estimates for all 9 SNPs and GS-BMI (Table S9). Additional
6  sensitivity analysis that included modelling the effects of age linearly or testing
7  fewer percentiles (i.e. every 10" percentile from the 5™ to 95" BMI percentiles)
8 also showed no substantial changes to MR results (Table S9). Furthermore,
9 calculating the GS for each trait without imputing missing genotypes did not affect
10 results for GS-BMI and GS-Height (Figure S5). Finally, the results from CQR
11 were compared to those from conventional subgroup analysis. To this end, the
12 effects of genotype on the risk of OW, Ob-I, Ob-ll and Ob-lll was evaluated
13 separately using logistic regression (Table S10). The odds ratios (ORs) of each
14 SNP for each category were plotted against the BMI percentiles of the
15 corresponding category and CQR estimates were then overlaid on these bar
16 plots. The patterns from logistic regression models across BMI categories were
17  qualitatively consistent with the patterns from CQR models at comparable BMI
18  percentiles (Figure S7).

19
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1 DISCUSSION:
2 The aim of this study was to investigate variations in the impact of 37
3 BMl/obesity-associated SNPs across the distribution of BMI. We introduced a
4  method that applies CQR to model the effects of SNPs at different percentiles of
5 the sample BMI distribution and then estimated variability in these effects using
6 MR. CQR estimates at different percentiles were shown to be uniform if all
7 unadjusted SNP interactions are zero (see Supplemental Note). It follows that
8  SNPs whose CQR estimates vary significantly across the sample BMI distribution
9 are regulated by such interactions.
10 CQR analysis revealed distinct profiles of associations of BMI/obesity
11 SNPs across the sample BMI distribution. Several of these SNPs had effects that
12 increased steadily at higher BMI percentiles while others had uniform effects that
13 varied little across BMI percentiles (Figures 2 and S3). One other study has used
14 CQR to explore the relationship between genetic variants and BMI in a modest
15 sample of adults for FTO (rs1558902) and a GS.®° The patterns reported by that
16 study are consistent with the results reported here.®?® Two other reports used
17 CQR to investigate the effects of SNPs on BMI in European children and their
18 results are also comparable with those here.?*®" Overall, the high degree of
19 correspondence between previously reported CQR results with European
20 children and those from adults presented here emphasizes the robustness of
21 these findings. Furthermore, the patterns observed using CQR analysis were
22 compared to those from conventional logistic regression (subgroup analysis) as

23 Berndt et al., has demonstrated that the genetic architecture of BMI overlaps
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1 strongly with BMI categories (Table S10).*2 The patterns across BMI categories
2 from logistic regression were largely consistent with those from CQR (Figure S7).
3 CQR overcomes several of the limitations of subgroup analysis as it utilizes the
4  entire sample data to estimate regression parameters on the same scale as the
5  continuous outcome and comparing CQR estimates from different quantiles is
6 relatively intuitive and easy.?*

7 MR was applied to model changes in the effects of BMl/obesity SNPs
8 across the sample BMI distribution.?®?® Results from MR showed that BMI
9 percentile was positively and significantly associated with CQR estimates for 9 of
10 37 SNPs (24%). In addition, nominal associations were also observed for several
11 other SNPs and the median pBur [Q1, Q3] was 0.135 [0.094, 0.217] kg/m2 per
12  Effect Allele per BMI Percentile (Table 2 and Figure S3). This is supported by the
13 analysis of GS-BMI which also showed significantly increasing effects across the
14 sample BMI distribution (Figure 3 and Table 3). These findings indicate that
15 unadjusted interactions enhanced the effects of BMI-associated SNPs at higher
16 BMI levels. Modelling the effects of age linearly or considering fewer BMI
17  percentiles (every 10™ rather than every 5 percentile) had minimal effects on
18 these results (Table S9). Although CQR does not make any assumptions about
19 the outcome distribution, BMI is often transformed (log and inverse-rank) to
20 accommodate the normality assumption of OLS at the cost of suppressing some
21  distributional information. Transformations disproportionately compress distances
22  between samples to impose symmetry on distributions and some have argued

23 that rank transformation in particular is overly conservative.®*%*% Part of the
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1 novelty of our approach is that CQR and MR leverage precisely this distributional
2 information to extract evidence of gene interactions and we expect
3 transformations that suppress distances between ranked samples to reduce the
4  sensitivity of this method. Despite decreased sensitivity, significant associations
5 between BMI percentile and CQR estimates were detectable with log
6 transformed BMI for 4 of the 9 SNPs and GS-BMI while the rest showed nominal
7  associations (Table S9). Rank-transformation decreased sensitivity even further
8 and only PCSK1 (rs6235) and GS-BMI had significant detectable associations,
9  while many of the remaining 9 SNPs showed nominal associations.
10 Scaling refers to the phenomenon where the mean and variance effects of
11 a SNP can be correlated when the outcome distribution is skewed.®® This is
12 typically addressed using transformations to impose symmetry on the outcome
13 distribution. Although quantile based methods do not rely on the mean and
14 variance they may also be susceptible to scaling effects (Figure S6).2* To
15 examine the possible role of scaling in CQR and MR without compromising
16  sensitivity, we conducted analyses on the residuals after adjusting for the median
17  effects of each SNP. Residual analysis was shown to effectively mitigate scaling
18 effects by reducing the correlation between SNP main effects and pur (Figure
19  S6). Significant associations between residual BMI percentile and CQR estimates
20 were detected for all 9 SNPs and GS-BMI, indicating that the associations
21 persisted even after adjusting for SNP main effects (Table S9). These results
22 confirm that scaling effects did not substantially contribute to our findings. Future

23 work aimed at better understanding the phenomenon of scaling would be useful
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1  for analysis of quantitative traits with asymmetric distributions.
2 There is evidence that differences in disease prevalence (e.g. T2D)
3 between sample and general populations can result in the stratification of
4  secondary traits (e.g. BMI) that are risk factors for disease.®® This stratification
5 can compromise regression estimates of the main effects of SNPs on secondary
6 traits and naively adjusting regression models for disease status may not
7 adequately address this.®® While the main effects of SNPs from disease-adjusted
8 regression models are susceptible to stratification bias, the variation of SNP
9 effects across the sample distribution is not (see Supplemental Note). This is
10 evident in simulations which showed that stratification had little effect on the
11 power and Type-I error rate of MR analysis when CQR models were adjusted for
12 disease status (Figure S2). As GIPR (rs11672660), TCF7L2 (rs7903146) and
13 PCSK1 (rs6235) have been associated with glucose homeostasis and T2D, CQR
14 models were refitted with adjustment for diabetic status and analyzed using
15 MR.*®%0% These SNPs and the GS continued to show significantly increasing
16 effects across the sample BMI distribution with this adjustment, which
17  demonstrated that the results were not an artifact of possible sample stratification
18 (Table S9). Although estimating the variability of disease-adjusted CQR
19  estimates across the sample distribution using MR is robust against stratification
20 bias, future studies aimed at estimating the main effects of SNPs using CQR
21  should implement methods to address this potential source of bias.?® A total 7 of
22 the 37 obesity predisposing loci that were selected for analysis have also been

23  associated with comorbidities of obesity including glucose homeostasis, T2D,
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1 lipid levels and CRP levels.*®*° Excluding these SNPs from the GS did not alter
2 the pattern observed across the sample BMI distribution or affect the results from
3 MR analysis, which suggested that these findings do not stem from the influence
4 of comorbidities at high BMI levels (Figure S5).

5 Although BMI was the primary focus of this report these analyses were
6 also applied to height. This was important because analysis of height could shed
7  light on the nature of the unadjusted interactions that were detected. BMI is a
8 composite of both height and weight, where height is one of the most heritable
9 complex human traits and weight is strongly influenced by environmental

10 exposures and behavior.""%

If unadjusted interactions in the effects of
11 BMl/obesity-associated SNPs are predominantly due to GXG interactions, then it
12 is reasonable to suppose that they would be detected with a similar frequency in
13 other quantitative traits such as height. On the other hand, if GXE interactions
14  predominate then they may be less frequently detected in quantitative traits with
15 a smaller environmental component (i.e. height). CQR models for 125 height-
16  associated SNPs were mostly uniform and exhibited little variability across height
17 percentiles (Figure S4). Only one significant association between height
18 percentiles and CQR estimates for height SNPs was detected by MR and the
19 median Bur [Q1, Q3] was 0.002 [-0.056, 0.085] cm per Effect Allele per Height
20  Percentile (Table S8). Moreover, the effects of GS-Height did not vary along the
21  sample height distribution, which suggests that unadjusted interactions do not

22 impact the genetic architecture of height to same extent that they do for BMI

23  (Table 3 and Figure 3). The simplest explanation for the discrepancy between the

22


https://doi.org/10.1101/225128

bioRxiv preprint doi: https://doi.org/10.1101/225128; this version posted November 29, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Abadi, A, et al. Penetrance of polygenic obesity susceptibility loci across the body mass index
distribution: an update on scaling effects.

1 results for GS-BMI and GS-Height is that the unadjusted interactions detected
2 from GS-BMI are predominantly GXE interactions. It is important to consider that
3 gene interactions described here include variants with non-linear genetic models
4  of effects where the presence of one allele changes the effects of a second
5 allele.®""®

6 GXE interactions for SNPs in the FTO gene have been reported for
7  physical activity, food intake, dietary salt, alcohol consumption and sleep
8  duration.””"® In addition, the effects of TCF7L2 (rs12255372) on BMI showed
9 interactions with fat intake in a weight-loss trial.”®’ Our analyses also pointed to
10 significant interactions for FTO (rs1421085) and TCF7L2 (rs7903146), but
11  suggested that such interactions may extend to additional BMlIl/obesity-
12 associated SNPs including PCSK171 (rs6235), MC4R (rs11873305), FANCL
13 (rs12617233), GIPR (rs11672660), MAP2K5 (rs997295), FTO (rs6499653),
14 NT5C2 (rs3824755) and GS-BMI. This is entirely consistent with a report
15 showing that the effects of GS-BMI (29 SNPs) was increased by greater
16 exposure to obesogenic environments and another demonstrating interactions
17 between GS-BMI (69 SNPs) and several obesogenic drivers including socio-
18 economic status, TV watching, ‘westernized’ diets and physical activity.™%?
19 These reports also support the argument that the unadjusted interactions
20 detected for BMI SNPs are predominately GXE interactions. Environmental
21  modification of the effects of genetic variants raises the possibility that preventive

22  measures, sustained lifestyle modifications and therapeutic interventions may

23  attenuate some of the genetic elements of BMI. Indeed, the overall effect of
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1  BMl/obesity SNPs is minimal at low BMI levels (Figures 2 and 3). If weight-gain
2 leads to a genetically driven ‘vicious circle’, then weight-loss can lead to a
3 genetically driven ‘virtuous circle’. Investigating additional BMI-associated SNPs
4 using CQR and MR to uncover the full extent of unadjusted interactions in the
5  architecture of BMI will be the focus of future studies.

6 This study is the largest yet to apply CQR to examine how the effects of
7  SNPs vary with BMI and establishes quantitative support for hitherto qualitative
8 descriptions of CQR. The combined utility of CQR and MR presents a
9 contemporary statistical framework to cue hypotheses on gene interactions,
10  better define clinical risks associated with genetic profiles and prioritize clinical
11 targets. Future studies aimed at distinguishing variants whose effects are
12 modified by unadjusted interactions from those with fixed effects could advance
13 the field of precision medicine. With the combined application of CQR and MR,
14  this can now be achieved solely using information contained within the sample
15  outcome distribution.
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Figure 1: Working example of conditional quantile regression. BMI (kg/m?)
was plotted against the number of effect alleles of FTO (rs1421085) in the ARIC
CAREe study (top-left). An ordinary least squares (OLS) model of the mean effect
of this SNP on BMI was plotted (solid-green line). Conditional quantile regression
(CQR) models, fitted every 5" percentile of BMI, show the effects of this SNP at
these BMI percentiles (solid-grey lines). The slopes (Bo.s, horizontal-dashed-
green line; Bcar, thick-black line; kg/m? per Effect Allele) from these models were
then plotted against BMI percentile at which they were fitted (middle-right). 95%
confidence intervals for these estimates are also plotted (OLS, horizontal-dotted-
green line; CQR, shaded-grey region). The change in CQR estimates across BMI
percentiles was modeled using meta-regression (MR). The MR slope (Bur, kg/m?
per Effect Allele per BMI percentile, thin-magenta line) and the 95% confidence
intervals (dotdashed-magenta lines) were plotted (bottom-left).
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Figure 2: The effects of BMl/obesity-associated SNPs across the sample
BMI distribution. Conditional quantile regression (CQR) models of BMI/obesity-
associated SNPs were fitted every 5" percentile of BMI and adjusted for age,
age-squared, sex and study. Estimates of the change in BMI (kg/m?) per effect
allele (Bcqr) from these models was plotted against the BMI percentile (thick-
black line) along with the 95% confidence intervals (shaded-grey region). The
results from ordinary least square (OLS) models (Bo.s, kg/m? per Effect Allele,
horizontal-dashed-green line) and the 95% confidence intervals (horizontal-
dotted-green lines) were also plotted for comparison. The change in CQR
estimates across BMI percentiles was modeled using meta-regression (MR) and
estimates from MR (Bur, kg/m? per Effect Allele per BMI percentile, thin-magenta
line) and the 95% confidence intervals (dotdashed-magenta lines) were plotted.
MR analysis detected significant (p<1.32x10™%) increases in the effects of these
SNPs across the sample BMI distribution.
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Figure 3: The effects of GS-BMI and GS-Height across the sample
distribution of BMI and height, respectively. As in Figure 2, CQR models of
the GS-BMI and GS-Height were plotted against the BMI percentile and height
percentile, respectively. The thick-black line is the estimated change in each trait
per effect allele (GS-BMI, Bcar, kg/m? per Effect Allele; GS-Height, Bcar, cm per
Effect Allele) and shaded-grey region represents the 95% confidence intervals.
Also plotted are the OLS regression estimates (GS-BMI, Bo.s in kg/m? per Effect
Allele; GS-Height, Bors, cm per Effect Allele, horizontal-dashed-green line) and
95% confidence intervals (horizontal-dotted-green lines). The change in CQR
estimates across outcome percentiles was modeled using meta-regression (MR).
Estimates from MR (GS-BMI, Bur, kg/m? per Effect Allele per BMI Percentile; GS-
Height, Sur, cm per Effect Allele per Height Percentile; thin-magenta line) and the
95% confidence intervals (dotdashed-magenta lines) were also plotted.
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Table 1: BMI/Obesity-associated SNP information and results from ordinary
least squares (OLS) models. 37 BMl/obesity predisposing SNPs were selected

for analysis. The Effect / Other (E/O) alleles were based on original discovery
studies (PMID), and SNPs were coded by BMI increasing or obesity predisposing

alleles. Indicated positions were based on GRCh37 and all alleles were on the

positive strand. The association of these SNPs with BM| was assessed using

OLS models that were adjusted for age, age-squared, sex and study. Bo.s is the

effect size (kg/m? per Effect Allele) and 95%Cl are the 95% confidence intervals.

SNP Gene Chr:Position E/O PMID Bovs [95%CI] p-value
rs1421085  FTO 16:53800954  C/T 17658951  0.512[0.451,0.572] 5.88x10°®
rs10767664 BDNF 11:27725986 = A/T 20935630 @ 0.246[0.172,0.319]  5.89x10™"
rs11672660 = GIPR 19:46180184  C/T 25673413  0.234[0.159,0.309] 8.16x107°
rs4788099  SH2B1 16:28855727  G/A 23001569 0.180[0.113,0.246] 1.13x10’
rs7903146 | TCF7L2  10:114758349 C/T | 25673413  0.167[0.102, 0.232] @ 5.36x10""
rs2075650 = TOMM40 19:45395619 = A/G | 23001569 @ 0.218[0.131, 0.305] @ 9.75x10""
rs11873305 = MC4R 18:58049192  A/C 25673413  0.384[0.229,0.539]  1.23x10™
rs997295 MAP2K5 @ 15:68016343 | T/G 23001569 0.131[0.070,0.191]  2.40x10™%
rs3824755  NT5C2 10:104595849 C/G 25673413  0.218[0.115,0.321] = 3.32x10™%
rs12617233 FANCL | 2:59039998 C/T 23001569 0.128[0.067,0.190] @ 4.34x10°°
rs6499653  FTO 16:53877592 | T/C 25673413 0.142[0.073,0.211]  5.19x10%
rs1788826 | NPC1 18:21154024  G/A 25673413  0.124[0.061,0.186] = 1.08x10™%
rs17066846 = MC4R 18:58044818 | G/T 25673413  0.144[0.068, 0.220]  2.09x10™%
rs6453133 | HMGCR | 5:74692776 | A/G | 25673413 = 0.124[0.058,0.189] @ 2.18x10™
rs739564 IQCK 16:19740237 A/G 25673413  0.147[0.067,0.227] = 2.97x10™%
rs2272903 | TFAP2B | 6:50786571 G/A 23001569 0.173[0.076,0.270] = 4.77x10™%
rs7553158 | TNNI3K | 1:75005238 G/A 25673413  0.102[0.042,0.162] 8.40x10™%
rs11570094 = SPI1 11:47359706 = A/C 25673413  0.107 [0.041,0.172]  1.37x10%
rs4946932 | FOXO3  6:108974746 | C/A | 25673413 = 0.107 [0.041,0.174] @ 1.57x10®
rs2819347 | LMOD1  1:201884288  G/C | 25673413 = 0.101[0.037,0.165] @ 1.89x10®
rs2836754 | ETS2 21:40291740 | C/T 25673413  0.099[0.033,0.164] @ 3.20x10%
rs2984618 | TALT 1:47690438 T/G | 25673413  0.087[0.026, 0.148] | 5.17x10
rs11208662 LEPR 1:65987164  C/G 23563609 0.139[0.037,0.242] 7.66x10%
rs6235 PCSK1 | 5:95728898 | G/C 18604207 @ 0.090[0.023,0.158] @ 8.82x10™%
rs9356744 | CDKAL1  6:20685486 T/C = 22344219  0.071[0.005, 0.137] 0.035
rs7988412 | MTIF3 13:28000282 | T/C 25673413 = 0.090 [0.005, 0.175] 0.037
rs1780050 | NEXN 1:78400540 | A/C 25673413 @ 0.063 [0.002, 0.124] 0.042
rs526134 USP37  2:219402371 G/A 25673413  0.066 [0.000, 0.132] 0.049
rs980828 NOS1AP | 1:162306415  G/T 25133637 | 0.050 [-0.010, 0.110] 0.100
rs17001561 = SCARB2 4:77096118 | A/G 25673413 0.070[-0.017, 0.157] 0.113
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SNP Gene Chr:Position E/O PMID Bors [95%CI] p-value
rs6232 PCSK1 5:95751785 C/T = 18604207 0.095 [-0.041, 0.232] 0.172
rs749767 KATS8 16:31124407 A/G 25673413 0.042[-0.022, 0.105] 0.199
rs1211166  NTRK2 9:87285992 A/G | 23001569 0.041 [-0.034, 0.116] 0.289
rs2535633 | ITIH4 3:52859630 G/C | 24861553 0.024 [-0.037, 0.085] 0.437
rs10144353 PRKCH 14:61911157  T/C 23563609 0.044 [-0.067, 0.155] 0.441
rs1561288  ADCY3 2:25369002 C/T 23669352 0.024 [-0.047, 0.095] 0.507
rs2283228 | KCNQ1 11:2849530 C/A | 24861553 -0.037 [-0.159, 0.085] 0.550
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Table 2: Quantifying the effect of BMI percentile on conditional quantile
regression (CQR) estimates using meta-regression (MR). MR was used to
model variability in the CQR estimates across BMI percentiles. Note that the
percentiles were re-centered around the 50™ percentile so that the intercept from
MR models corresponds to the main effect of the SNP at the median. (*) Denotes
statistical significance at the Bonferroni adjusted threshold of p<1 .32x10, Rls
is the re-centered mtercegt of the MR models, pur is the effect of BMI percentile
on CQR estimates (kg/m* per Effect Allele per BMI Percentile), 95%CI are the
95% confidence intervals.

SNP Gene Ris Bur [95%CI] p-value
rs1421085 FTO 0.473  0.495[0.370,0.620] @ 8.69x107"°
rs6235 PCSK1 0.078  0.320[0.180, 0.459] @ 7.11x10°%
rs7903146 TCF7L2 0.144  0.303[0.169, 0.437] @ 9.60x10™
rs11873305  MC4R 0.344  0.603[0.311,0.895] | 5.08x10°%
rs12617233 | FANCL 0.129  0.261[0.134,0.387] | 5.30x10°%
rs11672660 = GIPR 0.227  0.294 [0.141, 0.447] | 1.64x107%
rs997295 MAP2K5 = 0.131  0.228[0.103,0.352] = 3.25x10™
rs6499653 | FTO 0.121  0.253[0.108,0.398] | 6.23x10°%
rs3824755 | NT5C2 0.222  0.362[0.151,0.574] | 7.90x10°%
rs7553158 TNNI3K 0.099  0.196[0.071,0.322] | 2.12x10%
rs10767664  BDNF 0.247  0.217[0.064, 0.370] | 5.50x10%
rs4788099  SH2B1 0.151  0.194[0.057,0.332] | 5.59x10%
rs17066846 = MC4R 0.124  0.215[0.063,0.367] | 5.61x10
rs9356744 CDKAL1 | 0.063  0.186[0.050,0.322] | 7.35x10%
rs6453133 | HMGCR | 0.130  0.177 [0.040, 0.314] 0.011
rs2819347  LMOD1 0.111 | 0.137[0.004, 0.269] 0.044
rs2075650 TOMM40 = 0.283  0.161[-0.019, 0.341] 0.079
rs4946932 | FOXO03 0.106 = 0.120 [-0.016, 0.256] 0.084
rs2984618 TAL1 0.069  0.108 [-0.019, 0.235] 0.095
rs980828 NOS1AP  0.024  0.095 [-0.030, 0.220] 0.135
rs1788826 | NPC1 0.109 = 0.094 [-0.036, 0.224] 0.156
rs11570094 | SPI1 0.103 = 0.096 [-0.039, 0.231] 0.163
rs7988412 | MTIF3 0.088 = 0.109 [-0.062, 0.280] 0.212
rs2283228 | KCNQ1 0.003 = 0.147 [-0.094, 0.388] 0.232
rs739564 IQCK 0.122 = 0.100 [-0.065, 0.265] 0.234
rs526134 USP37 0.062 = 0.079[-0.055, 0.212] 0.247
rs2272903 TFAP2B | 0.145 = 0.113[-0.084, 0.310] 0.261
rs2836754 | ETS2 0.086 = 0.073[-0.060, 0.206] 0.280
rs2535633  ITIH4 0.016 = 0.068 [-0.059, 0.194] 0.296
rs11208662 | LEPR 0.142  0.111[-0.105, 0.327] 0.314
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SNP Gene Rl Bur [95%CI] p-value
rs6232 PCSK1 0.075 @ 0.133[-0.137, 0.404] 0.334
rs749767 KATS 0.048 @ 0.058 [-0.075, 0.191] 0.390
rs1561288 ADCY3 0.027 @ -0.037[-0.185, 0.112] 0.627
rs10144353  PRKCH 0.043 | 0.049[-0.171, 0.269] 0.662
rs1211166 NTRK2 0.029 @ -0.027 [-0.179, 0.126] 0.731
rs17001561 | SCARB2 | 0.068 | -0.020[-0.194, 0.154] 0.824
rs1780050 NEXN 0.045 @ 0.010[-0.117, 0.136] 0.883

42


https://doi.org/10.1101/225128

bioRxiv preprint doi: https://doi.org/10.1101/225128; this version posted November 29, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Abadi, A, et al. Penetrance of polygenic obesity susceptibility loci across the body mass index
distribution: an update on scaling effects.

Table 3: Analysis of the GS-BMI and GS-Height. BMI/Obesity- and height-
associated SNPs were combined into gene scores (GS-BMI and GS-Height,
respectively). As in Table 1, the results from ordinary least squares (OLS) models
are presented. Furthermore, as in Table 2, meta-regression (MR) analysis was
applied to quantify the effects of trait (BMI and height) percentile on the
conditional quantile regression (CQR) estimates for GS-BMI and GS-Height,
respectively. (*) Denotes statistical significance at the Bonferroni adjusted
threshold of p<1.32x10" for GS-BMI and p<3.97x10"% for GS-Height. fo.s is the
effect size (GS-BMI, kg/m? per Effect Allele; GS-Height, cm per Effect Allele)
from OLS Models, Rlsg is the re-centered intercept of the MR models (same units
as Pors), Bur is the effect size (GS-BMI, kg/m? per Effect Allele per BMI
Percentile; GS-Height, cm per Effect Allele per Height Percentile) from MR
models, and 95%CI are the 95% confidence intervals.

MR Models

SNP BoLs [95%Cl] p-value | Rlso Bur [95%CI] p-value
GS-BMI 0.119[0.108, 0.130] 3.48x10°*| 0.112 0.151[0.128,0.175] 7.03x10™" *
GS-Height | 0.176 [0.169, 0.182] <2.2x10°% | 0.176 0.005[-0.010, 0.021] 0.499
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