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ABSTRACT 9

Convolutional neural networks (CNNs) have been used to model the biological visual system. Compared to other models,
CNNs can better capture neural responses to natural stimuli. However, previous successes are limited to modeling mean
responses; while another fundamental aspect of cortical activity, namely response variability, is ignored. How the CNN models
capture neural variability properties remains unknown. Previous computational neuroscience studies showed that the response
variability can have a functional role, and found that the correlation structure (especially noise correlation) influences the
amount of information in the population code. However, CNN models are typically deterministic, so noise (and correlations) in
CNN models have not been studied. In this study, we developed a CNN model of visual cortex that includes neural variability.
The model includes Monte Carlo dropout, namely a random subset of units is silenced at each presentation of the input
image, inducing variability in the model. We found that our model captured a wide-range of neural variability findings in
electrophysiology experiments, including that response mean and variance scale together, noise correlations are small but
positive on average, both evoked and spontaneous noise correlation are larger for neurons with similar tuning, and the noise
covariance is low-dimensional. Further, we found that removing the correlation can boost trial-by-trial decoding performance in
the CNN model.

10

Introduction 11

There has been an emerging trend using convolutional neural networks (CNNs) to model the biological visual system1–9. These 12

studies have achieved great success in fitting neural responses to natural images and have revealed some representational 13

similarities between visual areas of the brain and CNN models. However, previous studies only focused on the trial-averaged 14

neural response while neglecting response variability across trials. Neural responses to an unchanged stimulus always fluctuate 15

across trials and through time. This trial-by-trial variance can easily be larger than the explainable variance in regression 16

models3, suggesting that modeling neural variability should be at least as important as modeling mean response towards the 17

goal of understanding neural codes. 18

Both empirical and theoretical studies indicate that neural variability can have an important role: the structure of the 19

covariance—especially noise correlation, i.e. the trial-by-trial correlation coefficient between neuron pairs to a repeated same 20

stimulus—influences the amount of information in the neural codes10–12. In neurophysiology studies, noise correlation can 21

be modulated by various internal and external factors, such as attention13–15, learning15, 16, adaptation17, anesthesia18, and 22

surrounding context19. A general conclusion from these studies is that decrease of positive noise correlation is coupled with 23

increase of behavior performance13–17. 24

However, these studies used artificial stimuli instead of natural stimuli. This is partially because measuring information in 25

recordings and models is straightforward for parametric inputs, such as orientation of sinusoidal grating. Thus there is a great 26

interest in studying the role of noise correlation with natural stimuli, using models that can extract information from natural 27

images. 28

CNNs have been very successful in processing natural images and performing complex tasks, such as image classification20, 29

object detection21, and segmentation22, with close to human-level performance on some tasks (though see also 23–25). So 30

CNNs have great potential for modeling neural variability with natural inputs. However, the most common use of CNNs is 31

deterministic (i.e. artificial neural responses do not fluctuate for an unchanged input). To introduce variability into artificial 32

neural responses, we chose to use a class of neural networks named Bayesian neural networks26. Bayesian neural networks use 33

Bayesian estimation to obtain the posterior distributions of network parameters (connection weights and biases), and then use 34

them to infer a probability distribution over their outputs. Thus Bayesian neural networks can output both predictions and the 35
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uncertainty of the prediction26. If a sampling-based inference method is used, each independent sample can be seen as the36

response of the artificial neural population during an independent trial (Fig. 1B). Recent studies showed that the dropout layer,37

an existing neural networks tool which was originally designed for overcoming overfitting and filter coadaptation problems27, 28,38

has a variational inference interpretation that can make a non-Bayesian neural network Bayesian29–32. To obtain the inferred39

distribution of the network outputs, artificial neural activations are dropped (i.e. set to zero) in the testing phase for a random40

subset of units. This method is different from the traditional usage of dropout only during the training phase as a regularization41

technique, and is named Monte Carlo dropout29.42

One advantage of using a Bayesian neural network with dropout to model neural variability is that it is naturally consistent43

with the neural sampling hypothesis33, 34. According to this hypothesis the brain approximates Bayesian inference, and neural44

responses represent samples from the inferred probability distribution; thus neural variability represents uncertainty. Empirical45

observations about neural variability and correlations can be captured by the uncertainty of inferences in Bayesian models35–38.46

Despite the good theoretical properties of Bayesian neural networks, it is unknown if they can capture empirical neural data.47

In this study, we used Bayesian CNNs implemented with Monte Carlo dropout to test if CNNs can capture empirical48

observations on neural variance and covariance. We found that our model captured a wide-range of neural variability findings49

in electrophysiology experiments, including that response mean and variance scale together, noise correlations are small but50

positive on average, both evoked and spontaneous noise correlation are larger for neurons with similar tuning, and the noise51

covariance is low-dimensional. We also found that when the network is not fully trained, modulating dropout rate in the testing52

phase has a similar effect as attention on neural variability structure. Finally, we found that removing the correlation can boost53

trial-by-trial decoding performance in the CNN model.54

Results55

We built a 6-layer CNN and used the Cifar10 natural image dataset for training and testing (Fig. 1A). The channel numbers in56

the 6 convolutional layers are 64,64,128,128,256, and 256, which are also neuron numbers in the following analysis. The center57

neurons of each feature map after ReLU were used to model neural responses. The model has dropout layers with a dropout58

rate 0.5, but with a modification according to Monte Carlo dropout that drops activations in both the training and testing phase.59

Due to dropout in the testing phase, the feedforward computations are variable even when an identical stimulus is presented60

(Fig. 1B). The networks were trained for 100 epochs by the Adam optimizer with learning rate 0.0001 and L2-regularization61

coefficients 0.0001 (see online Methods for more details).62

Our model achieved 82.88% accuracy on the Cifar10 testing set (Supplementary Fig. 1). Note that our model is not aimed63

to compete with benchmark models on classification accuracy. Rather, our goal is to construct a simple neural network model64

that is able to capture biological observations on neural variability while having a good classification accuracy.65

The results are arranged as follows. We first show that the artificial neural variability has similar properties as observed in66

neurophysiology studies (Fig. 2, 3). Then we analyze the dimensionality of the artificial neural covariance and compare the67

effects of changing test-time dropout rate to visual attention (Fig. 4, 5). Finally, we study the role of noise correlations on the68

object classification task (Fig. 6).69

CNN can capture basic properties of single-neuron variability70

Although our main focus is covariability, as a sanity check, we first tested if the model can reproduce basic aspects of71

single-neuron variability. We found that, similar to cortical data39, activation variance increases with the mean activation72

approximately monotonically (Fig. 2A).73

A common way to characterize how much neural activity fluctuates compared to its mean is the Fano factor, i.e. variance74

divided by mean. The Fano factor is 1 for a Poisson process, which is the simplest statistical description of variability in75

the visual cortex, although cortical Fano factors often deviate from 118, 39. We found a similar order of magnitude for the76

Fano factors obtained in the CNN model (Fig. 2). The variabilities are inherent in our CNN model with dropout. We didn’t77

heavily tune the model to match the amount of variability to the brain; instead we chose a default dropout rate of 0.5 which is a78

common value used in CNN models. To match empirical variability quantitatively, other Fano factor values can be obtained by79

changing the training dropout rate (Supplementary Fig. 2) and L2-regularization coefficient (Supplementary Fig. 3). After80

training, the Fano factor in the model is larger in deeper layers (Fig. 2B). This is consistent with some neurophysiology studies81

that showed higher areas in the sensory pathway have larger Fano factors39, 40. This trend is also observed with different82

L2-regularization coefficients (Supplementary Fig. 3), but less obvious in a 12-layer CNN model (Supplementary Fig.4).83

During training, the Fano factor in the CNN model showed generally decreasing trends (Fig. 2C). Neurophysiology studies also84

showed that the Fano factor decreases after subjects learn the task15, 41, 42. This is expected in our model, because response85

variability presumably represents the uncertainty of inferences, and in Bayesian models training usually decreases the posterior86

variance of the inference. We find that the primary cause of the decreasing Fano factor in the CNN model is due to the87

L2-regularization prior (Supplementary Fig. 3), which penalizes large weights thus decreasing weights at the beginning of88
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Figure 1. Neural network model and Monte Carlo dropout induced variability. (A) Schematic 6-layer neural network model.
It contains widely used building blocks such as 2D convolution, ReLU, Batch Normalization and Max Pooling (see online
Methods for more details). Center artificial neurons (thicker circle outline) in each feature map are used in the following
analysis. (B) Illustration of sampling of the neural network. Dropout is used during both the training and testing phases. We
treat each random dropout choice as a trial (a row in the diagram); thus each trial will elicit a unique activation pattern (last
column, color indicates level of activation). An example of activations as a function of trials of one center artificial neuron is
shown in the top right panel (pseudo data for illustrative purpose). Similarly, correlation between artificial neurons from
different feature maps can be measured (bottom right panel).
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Figure 2. CNN captures basic properties of single-neuron variability. (A) Activation variance versus mean of layer 6 neurons.
Each blue dot corresponds to one neuron and one stimulus. The geometric mean of the Fano factor is 0.68. The red dotted line
corresponds to a Fano factor of 1. (B) Averaged Fano factors (geometric mean) of different layers. The errorbar indicates
geometric standard error of the mean (SEM), i.e. the geometric Standard Deviation divided by the square root N (i.e. number of
data points in A). (C) Fano factor in layer 2 (L2) to 6 (L6) changes during training.

the training (Supplementary Fig. 5). Larger L2-regularization coefficients induce a more rapid decrease of the Fano factor89

(Supplementary Fig. 3).90

CNN can capture properties of covariability between neurons91

In addition to variability in single neurons, variability shared between neurons, especially noise correlation, has been observed92

and widely studied in biological neural systems. We asked if the CNN model could capture properties of noise correlation in93

the visual cortex. In this study, we focused on variability between artificial neurons coding for different features at the same94

spatial location.95

In our CNN model, noise correlations are small and positive on average at all layers (Fig. 3A), consistent with neuro-96

physiology studies44. We further looked at how training affects noise correlation (Fig. 3B;C). For early layers (layers 2 and97

3), noise correlation gradually increases (Fig. 3B). For late layers (layers 4, 5, and 6), noise correlation firstly increases, and98

then decreases after 15 epochs (Fig. 3B). The last layer showed the most drastic changes. In this later decreasing phase,99

testing accuracy increases while noise correlation decreases (Fig. 3C). This matches neurophysiology experiments that showed100

learning decreases noise correlation and increases behavioral performance15, 16. The early rapid increase phase we observed in101

our model is unlikely to have biology implications, because an animal’s brain is highly organized before training rather than102

random weighted connections as in the CNN model.103

A striking aspect across the CNN layers is that the noise correlation is highest for the last layer of the network and has the104

most drastic change during training (Fig. 3A;B). This also held for a 12-layer CNN model (Supplementary Fig. 4). We found105

this observation depends on the L2-regularization coefficients. With smaller L2-regularization coefficients, noise correlation in106

the last layer ended with a relatively larger value (Supplementary Fig. 3). Additionally, we looked for other potential factors107

that cause the last layer to have the highest noise correlation. We found that the computations after the layer can influence the108

amount of its noise correlation (by influencing the gradient backpropagation that changes weights in early layers). Two factors109

are if there is a following dropout layer, and how many feature maps are in the following layer (Supplementary Fig. 6).110

Neural correlations can be measured under different conditions: conditioned on one stimulus (noise correlation), conditioned111

on all stimuli, i.e. measuring the correlation over all trials (signal correlation) which represents tuning similarity, and conditioned112

on no stimulus, i.e. measuring the correlation when the stimulus is a uniform gray input (spontaneous correlation). These113

different measures are shown to be positively related in experiments44–47. We found a similar relationship in our model. Both114

noise correlation (Fig. 3D) and spontaneous correlation are positively related to signal correlation (see also Supplementary115

Fig.7 for a more complete exploration). Thus neuron pairs with large signal correlation also have large noise correlation and116

spontaneous correlation (Fig. 3E; see also Supplementary Fig.7) as observed in primary visual cortex (V1) data35, 43 (Fig. 3F).117

Low dimensionality of covariability in CNN118

Neurophysiology studies showed that neural variability when conditioned on the stimulus is low-dimensional48–50. The direction119

of maximal variance in the shared covariance matrix (corresponding to the dominant eigenmode, with the largest eigenvalue)120

can account for about 70% of the total shared variance48. Therefore, we studied the dimensionality of the representation in the121
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Figure 3. CNN captures properties of covariability between neurons (A) Histogram of the noise correlation in different layers
at the end of the training. Black dotted line indicates 0 correlation and the red line indicates the mean. (B) Averaged noise
correlation in different layers during training (C) Decrease of noise correlation in layer 6 during training is coupled with
increase of model accuracy in later epochs. (D) Signal correlation is positively related to noise correlation and spontaneous
correlation. Each data point is a neuron pair in layer 6 of the CNN. (E) Neuron pairs with larger (>0.4) signal correlation (sc)
also have larger noise correlation and spontaneous correlation. Spontaneous correlation is measured with blank inputs to the
model. (F) Similar observations are found in V1 (reproduced from 35, 43). Error bars show SEM.
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hidden layers of our model.122

Figure 4. Low dimensionality of covariance in the CNN model versus neurophysiology studies. (A-C) The largest five
eigenvalues (ordered from largest to smallest) of the shared component of the covariance matrix from layer 6 in the CNN
model. Error bars show SEM. (D) Eigenvalues (corresponding to the variances) of the shared component of the covariance
matrix from V4 data(reproduced from [28] [20]). (E) Percentage of the shared covariance explained by the dominant
eigenmode in different layers (L2 - L6) at different epochs of training.

Similar to the methods used in previous studies, we partitioned the covariance matrix into independent and shared variability123

by factor analysis48, then focused on the shared part of total covariance. To analyze the dimensionality, we eigen decomposed124

the shared component of the covariance matrix. We used the relative amount of the largest eigenvalue to other eigenvalues as an125

indication of dimensionality (the larger the percentage, the lower the dimensionality). We found that the largest eigenvalue126

dominates others, which indicates the variability is low dimensional in the CNN model (Fig. 4A;B;C). In other words, the first127

eigen mode can account for a large proportion of the total covariance. Similar eigenvalue spectrum is found in neurophysiology128

studies14, 49 (Fig. 4D).129

We then studied how dimensionality changes with learning, to test if it reflects the trends seen in noise correlations (Fig130

3). Intuitively, when correlations are large on average we can expect a low dimensionality. This is confirmed by Fig. 4D,131

where we observe the shared variance explained by the dominant eigenmode has a similar trend to the noise correlation as a132

function of the number of epochs (Fig. 3B). Layer 6 shows the most dominant eigenmode, accounting for 65% of the total133

shared variance which peaks at 10 epochs (Fig. 4E). Other layers have a moderate change of dimensionality during training,134

where the dominant eigenmode accounts for about 20% of the total shared variance, which is less pronounced than layer 6135

but still a large number considering the total numbers of neurons in the analysis (64 in L2, 128 in L3 and L4, 256 in L5 and136

L6). We also found that the dominant eigenmode accounts for a large portion of the positive covariance, by reconstructing the137

covariance matrix from the corresponding eigenvector (Supplementary Fig. 8).138

Neurophysiology studies showed that when an animal is attending to the stimulus, noise correlation decreases, especially139

through a reduction of the amplitude of the dominant eigenmode15, 48, 49. We considered the effect of testing time dropout rate140

on the noise correlation and the dimensionality of the covariance matrix as an analogy to attention. Conceptually, decreasing141

testing dropout rate will increase the number of artificial neurons used for the feedforward computation; since each of them is a142

source of variability, the dimensionality of variability of output artificial neurons could increase. We found that changing the143

dropout rate from 0.5 to 0.2 decreases noise correlation of L6 at early epochs (before 50 epoch) but not at later epochs (Fig.144

5A). Decreasing the testing dropout rate also decreases the proportion of the largest eigenmode, especially at the early epochs145

of training (Fig. 5B). In neurophysiology studies, when the stimuli were attended to, only the dominant eigenmode showed a146

decrease in the magnitude (Fig. 5F). We found a similar pattern in layer 6 of the CNN model, especially at early epochs (Fig. 5147

C;D;E). The pattern was less pronounced in the early layers of the CNN model (Supplementary Fig. 9).148

The influence of the testing dropout rate decreasing the dimensionality of the shared covariance (relating to the attention149

effect) is more aligned with neurophysiology studies when the CNN is not fully trained. One possibility is that reducing testing150

dropout rate and extensive training have a similar role (analogous to learning and attention effects in the visual cortex15), i.e.151

they both increase performance and decrease noise correlations . But when the two factors are combined, the effect is not152

additive since the system already reached the limits by either of these two factors.153

The alignment of reducing testing dropout rate and attention is not limited to noise correlation and dimensionality of the154

covariance matrix. We also found that reducing testing dropout rate in the CNN model can reduce the Fano factor (Supplementary155

Fig. 10), similar to neurophysiology studies reporting that attention decreases the Fano factor14, 15. Behaviorally, attention156

increases subjects’ task performance14, 15. We found that during early epochs, reducing testing dropout rate can increase testing157

accuracy (Supplementary Fig. 11). Combined with the result shown in Figure 3C, we therefore found two factors that can affect158
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Figure 5. Modulating testing dropout rate reveals a similar change on the neural covariability as attention effect in animal
studies. (A) Reducing testing dropout rate from 0.5 to 0.2 changes the percentage of the shared covariance explained by the
first eigenmode. (B) Reducing testing dropout rate from 0.5 to 0.2 changes noise correlation. (C) The eigenvalues of the shared
covariance matrix of the CNN layer 6 responses at 20 epochs. Error bars show SEM. (D, E) Same as (C), but measured at 40
and 100 epochs. (F) The eigenvalues of the shared covariance matrix of V4 are modulated by attention (reproduced from
14, 49).

the classification accuracy and noise correlation: training and reducing testing dropout rate increase classification accuracy, 159

while decreasing noise correlation. 160

Noise correlations in CNNs reduce classification performance 161

Noise correlations can impact the amount of information encoded in population codes10–12, 51–54. Theoretical studies showed that 162

if noise correlation has a component that is aligned with the coding direction, the noise correlation is information-limiting11, i.e. 163

the amount of information saturates with increasing population size. Neurophysiology studies have observed this information- 164

limiting effect in large neuron populations55–57. To study if noise correlation in CNN models is information-limiting, we 165

stacked a SVM classifier after layer 6 (to replace the dense-layer classifier). The SVM classifiers were trained and tested under 166

two conditions: leaving layer 6 unchanged (correlated), and permuting by assigning artificial neural activations random trial 167

numbers to break the correlations (shuffle). As more neurons are used in the classifier, the SVM classifiers trained and tested on 168

correlated activation show faster saturation of accuracy and discriminability index (i.e. d prime) than those trained and tested on 169

the permuted activation (Fig. 6). This faster saturation on correlated activation is also seen during the training (Supplementary 170

Fig.12). This indicates noise correlation in the CNN is harmful. This may be related to the information-limiting effects, because 171

noise correlations in our model originate from the feedforward propagation of dropout “noise”54, although we cannot rule out 172

other factors, given that discriminability for the shuffled data also appears to saturate. 173

To further show that noise correlation can be harmful in the CNN, instead of training new SVM classifiers on top of the 174

CNN model, we kept the CNN model unchanged (even without fine tuning) and either kept the layer 6 activation unchanged or 175

shuffled. The single trial prediction accuracy (rather than the Monte Carlo sampling which averages across trials) increased 176
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Figure 6. Decoder performance plateaued higher when correlation is eliminated (A) Accuracy of SVM classifiers trained on
different numbers of correlated L6 center neurons(solid line) or permuted to break correlations (shuffled condition; dotted line).
When more neurons are recruited, the shuffled condition plateaued at a higher accuracy.(B) Same as (A) but measuring d prime.

from 85.88% ± 1.56% to 88.38% ± 1.51% (p < 10−8, by 6-fold cross validation and t-test) when layer 6 activation was177

permuted. This result further indicates that noise correlation in the CNN is harmful. It is surprising that we can boost the178

performance of a fully trained neural network by only permuting activations without any retraining or fine tuning. This result is179

counterintuitive, since the decoder is trained on correlated data but performs better on shuffled data. We think this observation180

results from the balance of two opposing effects. First, if the decoder is optimal for correlated data but suboptimal for shuffled181

data, performance on shuffled data should be worse10. Second, if noise correlations partly align with the coding direction,182

shuffling should increase performance. Our result indicates that either the dense layer decoder, even if trained on correlated183

data, is not optimal; or the noise correlations are strongly aligned with the coding direction, such that the optimal decoders for184

correlated and shuffled data are similar, and so the beneficial effect of shuffling dominates.185

Discussion186

Without heavily tuning hyperparameters of the model, our Bayesian CNN model with the Monte Carlo dropout implementation187

captured a variety of properties of neural variability found in the brain. These properties include that the variance and the mean188

of responses scale together (Fig. 2), both evoked and spontaneous noise correlation are correlated with signal correlation (Fig.189

3), and population activity is low dimensional (Fig. 4). We further found that reducing the testing dropout rate has a similar190

effect on noise correlation and covariance dimensionality as attention in neurophysiology studies (Fig. 5). Furthermore, we191

found that noise correlation in CNNs harms the representation, and removing noise correlations by trial-shuffling yields better192

classification accuracy (Fig. 6).193

Using CNN as a brain model194

CNNs have shown great success in solving Computer Vision tasks20–22. They have also been recognized as powerful computa-195

tional models for visual processing1–7, 9, and indeed are inspired by the hierarchical structure and linear-nonlinear computations196

in the brain. Compared to other models, representations in CNN models are more similar to cortical representations, and197

can better fit single neuron responses to natural images (but see also a discussion on model failures in 23–25). Furthermore,198

CNN based generative algorithms can synthesize images that drive a specific neural population response to a target value58, 59.199

However, despite this trend of modeling neural responses with the CNN, the main focus has been on the trial-averaged responses200

of single neurons, and no study has explored the potential to model the variability of neural responses and how it is shared201

between neurons. Without taking the trial-by-trial variance into account, regression models can only explain a small portion of202

the total variance3. Modeling neural variability can help explain total neural variance.203

Although existing CNN models of biological visual processing are typically deterministic and thus lack variability, not204

all types of CNN designs are deterministic. In Bayesian neural networks, the posterior distribution of network parameters is205

estimated, so that during inference, artificial neural responses are represented as distributions. Then, trial-by-trial variability206

can be defined by using Monte Carlo sampling based inference methods. In addition to introducing trial-by-trial variability in207
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CNNs, this approach also gives them the ability to compute uncertainty. Therefore, Bayesian CNNs with Monte Carlo sampling 208

could be used to extend and test predictions of the neural sampling theory of uncertainty representation in the brain33–36. In this 209

study, we used an existing deep neural networks technique, namely dropout, and its relatively new Bayesian interpretation29–32. 210

Our model, though simple, can already capture a wide-range of properties of variability in the brain. 211

Although our results on variability are qualitative, a promising future direction is to fit Bayesian CNN models to both the 212

mean and variance of the neural responses to stimuli. This goal may require a more capable Bayesian model than the Monte 213

Carlo dropout; in other words, a more flexible variational distribution. There is an argument that Monte Carlo dropout cannot 214

estimate uncertainty effectively60. This is due to the fact that the variational distribution of weights, if the dropout rate is fixed, 215

is a one-parameter discrete distribution (Bernoulli distribution) for which the variance and mean are coupled during updating 216

the only one parameter. 217

Modeling variability and uncertainty representation in the brain 218

An advantage of our CNN model for neural variability is that it combines a number of properties: it is hierarchical, uses natural 219

stimuli, is trained on a supervised task, and has a Bayesian interpretation. 220

Mechanistic models showed that recurrent dynamics can reveal cortical-like neural variability61, 62 and covariability63–66. 221

Some of these works also showed that network dynamics can be interpreted as approximating Markov chain Monte Carlo 222

sampling to generate samples of the posterior distribution in Bayesian models. However, these studies did not address natural 223

images and did not relate the structure of variability to performance on a complex visual task, as we did here. To our knowledge, 224

our work is the first to study the effects of noise correlations on object classification performance in a sampling based Bayesian 225

neural network. Our finding that noise correlations impair classification performance can be understood by the observation that 226

input noise that propagates through the feedforward connections limits population information54. Since our CNN model can be 227

considered as having multiplicative Bernoulli noise in the inputs of each layer, the noise correlation observed in our model 228

is likely to be information-limiting, consistent with our results (Fig. 6). Note that our model does not imply a mechanistic 229

implementation of dropout in the nervous system. The corresponding variability for instance might result from recurrent 230

dynamics in neural circuits. However, a recent study suggested that the brain may indeed use a similar representation to dropout 231

in deep learning67. 232

A different approach to explaining neural responses to natural inputs involves developing generative models of image 233

statistics, and comparing neural responses to the inferences. In particular, image statistics models based on the Gaussian scale 234

mixture have reproduced many aspects of neural variability and noise correlations35, 36, 63. One advantage of our CNN model is 235

that it is trained on natural images for classification, and unlike previous models of neural variability, is therefore goal-oriented 236

and performs a natural image task. This opens up a new type of model and neural variability study direction that explores the 237

role of neural correlation in complex tasks. Another advantage of supervised training of the model on a visual task is that all the 238

model parameters are optimized end-to-end, and therefore could be more easily adjusted to other training conditions. 239

Similar to GSM-based models of variability35, 36, 63, our model could also relate neural variability to the representation of 240

uncertainty via sampling, consistent with the neural sampling hypothesis. The Monte Carlo dropout layers give the CNN model 241

a Bayesian interpretation29, 30. The posterior distribution is estimated by sampling. Therefore, to test if the Fano factor in our 242

model is related to uncertainty as predicted by the neural sampling hypothesis, we ran two simulations in the testing phase: (i) 243

modulating the input contrast; (ii) adding Gaussian noise to the input (Supplementary Fig. 13). Low contrast and high input 244

noise presumably mean high model uncertainty. We found that higher input noise and contrast leads to higher Fano factor 245

(Supplementary Fig. 13). The result of adding noise is consistent with our hypothesis that the Fano factor indicates model 246

uncertainty. However, modulating contrast does not match the uncertainty expectation. This might be because the network 247

lacks computations such as local divisive normalization and recurrent connections36, 63, 68–70. Normalization has been shown to 248

capture a number of effects relating to neural variability and contrast, and arises as part of the inference in the GSM model36, 69. 249

Attention effects on neural variability 250

Attention is a sophisticated psychological phenomena that involves interactions in multiple brain areas, especially top-down 251

modulation71, 72. Our model is not aimed to reveal a biological mechanism of attention and it is unlikely to do so since it is 252

purely feedforward. However, the model could capture some empirical consequences of visual spatial attention. Studies showed 253

that task-relevant cortical areas have more activity, and that neurons increase their firing rate73, 74 and probably excitability75, 76, 254

when attention is involved. Our dropout model has a subtle effect on neural excitability: lower dropout rates allow more neurons 255

to be active; but for each neuron, the activation is scaled down. The combined effect is that reducing the dropout rate slightly 256

increases individual artificial neural activation (if they are not dropped out and have non-zero activation) (Supplementary 257

Fig. 10). If there is a biological correspondence, it could be that during the attended state synaptic connections are more 258

reliable (more neurons are active), but the synaptic weights are tuned down (less gain). As shown in the results, dropout in our 259

model captured some attention effects on neural variability. Studies showed that attention reduces the Fano factor and neural 260

correlation14, 15. We observed both these effects in our model (Fig 5, Supplementary Fig. 10). 261
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Conclusion262

While CNN models have been influential in modeling cortical neural responses, they have only focused on capturing mean263

neural responses. Our study proposed that the CNN model with variability is a better model of visual cortical neurons, and264

could account for a range of cortical variability data. This provides a much-needed framework to understand the relation265

between neural variability and performance in complex natural tasks.266

Methods267

Neural network model268

Exact Bayesian models usually have intractable posterior problems; so does the Bayesian Neural Network which could have269

millions of parameters. Two main routes to solve this problem are Markov chain Monte Carlo sampling77 and variational270

inference78. Variational inference uses a parametric variational distribution to approximate the posterior distribution. The271

objective of learning is then to minimize the divergence between the variational distribution and the posterior distribution.272

Recent studies showed that Dropout can be interpreted as a variational inference method that makes any neural network273

model bayesian29–31. Model neuron activations are dropped in both training and testing phase. In the Bayesian interpretation,274

this procedure is Monte Carlo sampling from a Bernoulli variational distribution, so that it is named Monte Carlo dropout29.275

Furthermore, applying L2 regularization loss for kernels during training is equivalent to applying a Gaussian prior over weights276

under the Bayesian interpretation29.277

The neural network model is implemented using the TensorFlow framework. The main results are based on a 6-layer278

network trained and tested on the Cifar10 image classification dataset (32 x 32 pixels, 10 classes). The channel numbers of279

6 convolutional layers are 64,64,128,128,256,256. The kernel weights are initialized using the Xavier uniform method. The280

kernel size of all convolutional layers is 3 by 3 with “same” padding. The network includes 2 by 2 max pooling layers after the281

second, fourth and last convolutional layer. Each convolutional layer is followed by ReLU activation, batch normalization and282

dropout. If there is a max pooling layer, the dropout layer is placed after the max pooling; this design can better retain the283

model average79, 80. Following previous dropout studies, we do not add a dropout layer after the last convolution layer. The284

networks are trained for 100 epochs by the Adam optimizer with learning rate 0.0001 and L2-regularization coefficients 0.0001.285

We also consider how different L2-regularization coefficients affect neural variability in the CNN model (Supplementary Fig.286

5). Input images are rescaled so that pixel values are from -1 to 1. A simple data augmentation is applied to the training set (15287

degree random rotation, 10% random shift, and random horizontal flip.).288

The dropout layer is modified so that it drops activations at both the training and testing phase according to Monte Carlo289

dropout29. Only with this modification, the activations in the CNN can have variability to unchanged inputs. As dropout drops290

activations at both training and testing phase, we can use different dropout rates at each of the two phases. We chose a common291

dropout rate, 0.5, in most of the experiments.292

To exclude the correlations due to overlapping receptive fields with identical feature tuning, we only use the center neuron293

of each feature map in the analysis. This also applies to the SVM experiments, in which only the center neurons in layer 6 are294

used in the SVM classifiers.295

Neural variability analysis296

Intermediate layer activations are used for the neural variability analysis. We specifically take the neural activations after the297

ReLU operation to account for non-negative neural activity. Because we do not use responses immediately after the dropout298

layer, the variability is not a direct result of multiplicative Bernoulli noise. A better way to think about it is that the variability of299

each layer’s activation is due to the multiplicative Bernoulli noise to its input. A biological view of this can be that the unstable300

synapses failed to activate a neuron.301

Note that the first dropout layer is after the first convolutional layer, so the activations of layer 1 neurons are not variable302

and not included in the analysis.303

We focus on two types of variability: single neuron variability (Fano factor) and covariability between neuron pairs. To304

compute variability measures, 100 random selected images from the test set are used. Each image is passed to the model 1000305

times. Variability measures are computed stimulus-wise, and then averaged (geometric mean when computing mean Fano306

factor). When analyzing dimensionality, to keep the artificial neuron population size same across layers, we randomly include307

100 neurons (except for the second layer which only has 64 neurons) in the analysis. Because some stimuli do not induce308

a non-zero activation of some neurons, we exclude neurons that have no activity in more than 90% of the total trials. This309

thresholding process is after 100 neurons are randomly selected.310

Noise correlation is the stimulus-wise averaged Pearson correlation coefficient between neuron pairs. Signal correlation311

is the Pearson correlation coefficient between neuron pairs, regardless of stimulus. Spontaneous correlation is the Pearson312

correlation coefficient between neuron pairs, when the input is an all-zero image.313
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Dimensionality analysis 314

We use the factor analysis method (Matlab’s implementation) to estimate the dimensionality of neural covariance48, 49, 81. Factor 315

analysis partitions variance into a shared component and an independent component, and thus best serves our purpose of 316

characterizing the neural covariance structure. Since the active neuron number varies across stimuli, we choose a constant 317

loading factor number, 8. If the algorithm does not converge on a stimulus (rare occurrence), we exclude this stimulus in the 318

analysis. The shared covariance matrix is constructed from the outer product of the loading factors. The shared covariance 319

matrix is eigen decomposed, where the proportion of eigenvalues can be interpreted as the percentage of shared covariance 320

explained by that eigenmode. 321

Information saturation analysis 322

We use two methods to test if noise correlation leads to faster performance saturation. First, we stack a SVM classifier on the 323

top of layer 6 of the CNN model. Center neurons in layer 6 are used as the inputs of the SVM model. Three trials are run, 324

with different random subsets of neurons selected. The number of neurons are chosen to be 10, 50, 100, 150, 200, and 250, 325

to reveal how performance changes according to increasing population size. We either permute layer 6 activations to break 326

trial-by-trial correlation or keep layer 6 activations unchanged. To train the SVM classifier, we randomly select 10000 out of 327

50000 images from the training set. Each image is repeated 300 times, which is slightly larger than the max neuron number so 328

that it is sufficient to break any correlation structure. The performance of the SVM classifier is tested on 10000 images of the 329

testing set with the same repetition process. If a SVM model is trained on permuted activation, then it is tested on permuted 330

activation. If a SVM model is trained on correlated activation, then it is tested on correlated activation. Discriminability 331

index (d prime) is calculated in one-versus-all fashion for each class, and then averaged to get a scalar value for each model: 332

d′ = 1
10 ∑

10
i=1

|µ i
i−µ i

Ω−i|√
(σ i

i
2−σ i

Ω−i
2
)/2

, where µ
j

i is the mean of the predicted probability of class i with true label j; σ
j

i
2

is the variance of 333

the predicted probability of class i with true label j; Ω− i is a set of all samples except those with true label i. Note that only 334

center neurons are used in the SVM model. This causes the SVM models to have a lower accuracy than the full CNN model 335

which has a dense layer classifier. 336

Second, we test if only permuting the layer 6 activation and keeping everything else unchanged can boost performance. 337

Unlike the SVM method, the model (dense layer classifier) is trained on correlated activation, but tested on permuted activation. 338

In this simulation, all the neurons of layer 6 are permuted and used in the analysis. Each image from the testing set is repeated 339

1000 times. The accuracy we measure is trial-wise accuracy, rather than based on the averaged output of 1000 repetitions. We 340

did a 6-fold cross validation by dividing the train and test set in 6 ways and trained 6 CNN models. The final result shown in 341

the main text is the averaged accuracy with double-side paired t-test. This is different from the original Monte-Carlo dropout 342

method which predicts based on the trial average, but we think trial-wise accuracy has better biology implication where the 343

system needs to predict based on the current activation. 344
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