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Abstract

MRI data can be used as input to machine learning models to accurately predict brain age in
healthy human subjects. A large difference between predicted and chronological brain age (the
so-called BrainAGE score) has been associated with disease and neurodegeneration, indicating
the potential utility of neuroimaging-based ageing biomarkers. So far, most brain age prediction
studies have been carried out on humans. However, it is important for such a biomarker to be
validated on laboratory animals too, in order to better account for specific environmental or
genetic factors within a more controlled laboratory framework.

In this work, we developed a new algorithm for rat brain age prediction based on the com-
bination of Gaussian process regression and a logistic regression classifier. The algorithm was
trained on a cohort of 31 normal rats. High prediction accuracy was achieved using leave-
one-out cross-validation (mean absolute error = 4.87 weeks, correlation between predicted and
chronological age r = 0.92), supporting the validity and potential of the method.

Furthermore, the trained model was tested on two independent groups of 24 rats each: a new
normal control group and a “healthy lifestyle” group that underwent long-term environmental
enrichment and dietary restriction (EEDR) between 3 and 17 months of age. After fitting
a linear mixed-effects model, the BrainAGE values were found to increase more slowly with
chronological age in the EEDR group than in the controls (slope = 0.52 vs. 0.61; p = 0.015 for
the interaction term). When survival analysis was performed with a Cox regression model, the
BrainAGE score at 5 months of age had a significant prediction power (p = 0.03).

Our results demonstrate that BrainAGE, as computed by the proposed approach, is sig-
nificantly modulated by EEDR intervention, hence it is a sensitive marker of biological ageing.
These findings also support the potential of lifestyle-related prevention approaches to slow down
the brain ageing process. Moreover, the results of the survival analysis further demonstrate that
BrainAGE is indeed a predictor of ageing outcome.
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1 Introduction

Due to the continuous improvement in the quality of life and healthcare, the world population is
living longer, and the number of older individuals is growing remarkably (He et al., 2016). This
longer life expectancy comes at a cost, i.e. increasing prevalence of diseases and functional decline
that are associated with ageing (Denver and McClean, 2018). Ageing constitutes, for example,
one of the major risk factors of developing dementia, a clinical syndrome affecting the brain whose
symptoms include memory loss, language disturbances and a general impairment in daily activities
(Burns and Iliffe, 2009)). Moreover, age-related changes in peripheral body parts can also affect the
brain itself, suggesting that good overall health is fundamental for maintaining a healthy brain (Cole
and Franke} [2017). However, understanding and modelling how the brain ages is still a challenge,
especially because this process is extremely heterogeneous across individuals. Age-related brain
pathologies are indeed characterised by a very broad range of onset ages (Cole et al., [2017b)).

It is now widely accepted that the age of the brain can differ from the person’s chronological
age and that this is influenced by a variety of complex genetic and environmental factors (Lee
and Sachdev, 2014} [Lu et al.l |2004; [Peters| |2006; [Teter and Finch) |2004; |Rando and Chang], 2012}
Cole et al.l [2018)). Despite the complexities, a better understanding of brain ageing and a link to
neurodegeneration is essential to deal with the consequences of longer life expectancy (Franke and
Gaser}, [2019). If we can accurately assess brain age, we could use this as a biomarker of age- or
disease-related pathologies to develop better treatments and improve the overall quality of ageing.
To this end, research studies have begun to focus on the identification of reliable brain ageing
biomarkers, which could be used to monitor age-related cognitive impairments, as well as detect
neurodegenerative processes at their earliest stages ((Cole et al., 2017b)). Neuroimaging methods are
ideally suited to such analyses due to their non-invasive nature, relatively wide accessibility and
rapidly expanding number of publicly available data sets and software for brain image analysis.

To date, the best known brain age prediction studies involved the implementation of machine
learning models with different magnetic resonance imaging (MRI) modalities as input, e.g. func-
tional MRI (Dosenbach et al.,2010) or structural T1-weighted (T1w) MRI (Franke et al.,2010). The
latter approach, similar to that used in our study, first pre-processes the raw T1w data using voxel-
based morphometry (Ashburner and Friston, [2000), which includes tissue segmentation and spatial
registration to a reference template. This preprocessing step allows extraction of biologically mean-
ingful image features that relate to ageing—such as local grey matter (GM) concentration—and
that are directly comparable across subjects. This is followed by a data dimensionality reduction
step to prevent over-fitting and reduce the computational costs. Finally, a machine learning-based
regressor is employed to model brain age from the processed MRI data. Recently, a growing number
of more advanced deep learning-based approaches, including residual convolutional neural networks
(Jonsson et all [2019) and the Inception-ResNet-v2 framework (Bashyam et al., 2020), have been

developed for the same purpose and obtained accurate brain age prediction results. However, such
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methods require large amounts of training data, and preclinical datasets of appropriate size are
currently unavailable.

Prior studies have reassuringly confirmed that brain MRI can be used to predict both the
chronological brain age in healthy subjects and a mismatch between biological and chronological
age in clinical populations. In general, imaging-based brain age prediction models are trained on
scans from healthy individuals and tested on new heterogeneous data from unseen subjects. If,
during testing, the brain age is predicted to be greater than the subject’s chronological age, this
could indicate the presence of a disease or neurodegeneration (Cole and Franke, |2017). If, on
the other hand, brain age is predicted to be lower than the chronological age, this could reflect
a favourable trend in an individual’s ageing process. The difference between predicted brain age
and chronological age has been referred to as a BrainAGE score (Franke and Gaser, 2019)), as
defined in one of the first age prediction studies by [Franke et al| (2010)). Using such approach,
BrainAGE has been confirmed a useful biomarker of abnormal brain ageing in patients with var-
ious neuropsychiatric disorders. Increased BrainAGE scores were found to be strongly associated
with conditions such as epilepsy (Pardoe et al., [2017)), traumatic brain injury (Cole et al.l |2015),
schizophrenia (Nenadi¢ et all [2017), Down’s syndrome (Cole et al., 2017al) and HIV (Cole et al.,
2017c|). Importantly, the predictive utility of a brain age biomarker was shown in studies of mild
cognitive impairment, where individuals who converted to Alzheimer’s disease within 3 years had
higher BrainAGE scores compared to those who remained disease-free (Gaser et al., 2013} [Lowe
et al., [2016)). Increased BrainAGE scores could also be observed with peripheral pathological con-
ditions, including diabetes (Franke et al.,|2013) and mid-life obesity (Ronan et al., [2016). On the
other hand, positive modifiers such as individual’s physical activity, as well as the number of years
of education, were found to be associated with a decreased brain age (Steffener et al., |2016|). More-
over, a study by |Cole et al. (2018) found an association between predicted brain age and mortality
risk.

The above-mentioned research strongly suggests that MRI-based brain age prediction is a
promising new biomarker of ageing. The American Federation for Aging Research had outlined a
series of criteria for ageing biomarkers (AFAR, from the Infoaging Guides, 2016 edition), one of
which is that they should be applicable to both humans and laboratory animals, so that they can be
extensively tested and validated preclinically before being fully accepted into a clinical framework
(Johnson, 2006)). In a previous work by [Franke et al.| (2016), two new species-specific adaptations of
the BrainAGE model were tested on baboons and on rats. In both, the prediction model achieved
accurate results, demonstrating the effectiveness in animal studies. In particular, the rat-specific
BrainAGE model achieved a correlation of 0.95 between chronological and predicted age, with a
mean absolute error (MAE) of 49 days. However, this model was only validated on a single cohort
(using cross-validation), and its performance has not been tested on any experimental model in

which genetic and environmental factors could be manipulated.
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In this work, we developed a novel MRI-based algorithmic predictor of brain age in a preclinical
laboratory setting on rats. We aimed not only to test its predictive ability and compare it to
previous work, but also to investigate its sensitivity to ageing modulation intervention. On the
methodological side, we introduce a novel algorithm for using T1w MRI data to predict brain age.
Our strategy is based on the use of both Gaussian Process Regression (GPR) and a logistic regres-
sion (LR) classifier in order to minimise the prediction error in a training cohort of rat images used
to fit the model. Subsequently, we tested the trained model on a separate cohort that included two
groups of rats: a control group and an “active lifestyle” group that underwent environmental en-
richment and dietary restriction (EEDR) between their early and late life (between approximately
3 to 17 months of age). Previous studies have robustly proved that environmental enrichment con-
tributes towards long-term improvements in cognition and memory in both rodents and humans
(Speisman et al. 2013; Hotting and Roder, |2013). These are believed to be a consequence of aug-
mented brain plasticity, synaptic remodelling and neurogenesis, which are normally reduced in older
age. Moreover, dietary restriction is also associated with increased neural plasticity and cognition,
as well as neuroprotection in response to trauma and neurodegenerative disorders (Mattson) 2010;
Martin et all |2006). Thus, the present work also attempted to compare the BrainAGE scores of
the control rats against the EEDR ones, in order to additionally investigate the effect of lifestyle

modification on the ageing process within a controlled preclinical framework.

2 Materials and Methods

2.1 Animals

Male Sprague-Dawley rats were received from Charles River UK at 4.5 + 0.5 weeks. All animal
experiments were performed according to the UK Home Office Animals (Scientific Procedures) Act
(1986) and approved by the Animal Welfare Ethical Review Body (AWERB) of King’s College
London. The rats were divided into two cohorts: a training cohort of 31 normal ageing rats, and
a test cohort—which will also be referred to as the ageing cohort—including 24 control subjects
(i.e., which had a comparable lifestyle to the training cohort) and 24 EEDR rats. Environmental
enrichment was obtained by using four different sets of toys (e.g., hammocks, hanging bells, and
chewstick puzzles), which were changed weekly into the rats’ cages. Dietary restriction was achieved
by removing food on three non-consecutive days every week for 24 hours, while on the remaining
four days food could be accessed ad libitum. The control rats had ad libitum access to food every
day and their cages were supplied with the standard enrichment only, that was wooden chewsticks
and a cardboard tube. EEDR intervention commenced when the rats were 3 months old and
immediately after the first scan session.

The rats were scanned in a maximum of four sessions, approximately at 3, 5, 11 and 17 months

old, which correspond to adolescence, young adulthood, middle age and the start of senescence in
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Table 1: Number of image samples for each scanning session and each of the analysed rat groups.

Number of animals
Group Session 1 | Session 2 | Session 3 | Session 4
Training cohort 31 27 20 11
Ageing cohort - controls 24 24 17 10
Ageing cohort - EEDR 24 24 23 20

humans (Quinn, 2005). All rats were scanned at the first session, but due to various factors, several
rats were not scanned in some or all of the later sessions (see Table [I)). Rats were excluded from
scanning sessions if they became too large for the radiofrequency coil (above 850g) or for health and
welfare reasons, such as age-related diabetes, arthritis and presence of tumours (N = 13). Finally, if
a rat could not be socially-housed, it was excluded (N = 12) as the stress of social isolation (single
housing) was expected to be a confound. One rat was excluded after data acquisition, due to the

presence of a latent brain mass that impacted brain volume.

2.2 MRI image acquisition

For scanning, the rats were anaesthetised with 5% isoflurane in a 30:70 mixture of oxygen in air, with
a flow of approximately 1 litre per minute. Isoflurane was then reduced to 2.5% during scanning.
The scan bed included a built-in heating system using hot water, which was supplemented with a
tube supplying thermostatically-controlled hot air to maintain body temperature at 37 + 1°C. A
rectal thermometer, a pulse-oximeter and a respiration sensor (made by Small Animal Instruments,
Inc., NY, USA) were used to monitor the physiology. Each rat was scanned, head prone, in a
9.4 T Bruker Biospec MR scanner with an 86 mm volume transmission coil and a four-channel
array receiver coil placed on the superior head surface, and a transmit/receiver ASL coil inferior
to the rat’s neck to transmit labelling pulses for cerebral blood flow measurements (results not
reported here) using scanning protocols implemented on Paravision 6.0.1 (Bruker Corp., Ettlingen,
Germany).

High resolution 3D anatomical brain images were obtained by using an MP2RAGE sequence
with the following parameters: repetition time (TR) = 9000 ms; inversion times (TIs) = 900, 3500
ms; flip angle = 7°, 9%; echo time (TE) = 2.695 ms; echo TR = 7.025 ms; matrix = 160 x 160 x 128;
and 0.19 mm isotropic voxel size. A 3D ultra-short echo (UTE) reference scan was also acquired
by setting: TE = 8 s, TR = 3.75 ms, flip angle = 4°, matrix = 128 x 128 x 128, and 0.45 mm
isotropic voxel size.

The complex images from each coil were combined using the UTE reference scan and applying
the COMPOSER method (Robinson et al., 2017)), as implemented by Quantitative Imaging Tools
v2.0.2 (Wood et al. 2016]). The combined images were then used as input to qimp2rage in order

to produce both a T1 map and a T1w image. The latter was then reoriented to RAS orientation.
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2.3 Frailty index (FI)

Frailty is characterised by an increasing likelihood of poor health outcomes and the likelihood of
frailty increases with age. Healthy ageing is associated with minimal frailty, so quantifying the
degree of frailty is essential for describing heterogeneity in health outcomes in ageing studies. The
rats’ FI was scored by a single researcher (author EM) at most two days before their session 3 and 4
scans, with a truncated protocol based on the criteria described by Yorke et al.| (2017). Briefly, the
rats were placed in a clean cage and a 25 point FI assessment was undertaken measuring clinical signs
and deficits across a range of systems including integument, musculoskeletal system, ocular/nasal
systems, digestive/urogenital systems, respiratory system, as well as assessment of discomfort and
body weight. The protocol notably deviated from [Yorke et al.|(2017)’s FI protocol in the hearing
loss test: we measured the presence of a startle reflex in response to clicking an unloaded stapler,
out of sight and approximately 15 ¢m from the subject three times with 30 seconds between each
click. Rats that startled at all three clicks were given one point, while a score of 0.5 was given to
rats that startled to a minimum of one click. Rats that did not startle were assigned zero.

Group FI scores are reported as the mean + standard deviation. The effect of session and
group on FI was tested by fitting a mixed-effects linear model using GraphPad Prism v9.1.0. Post-
hoc tests between groups used Sidak’s multiple comparison test, and p < 0.05 was considered

statistically significant.

2.4 Image preprocessing

The T1w image of each animal was skull-stripped using a modified implementation of artsBrainEx-
traction (MacNicol et al., [2020), an atlas-based algorithm for rodent brain extraction that involves
registering individual subjects to a reference template with a predefined brain mask. We employed
the 11-month-old rat brain template generated by MacNicol et al.| (2021) as the reference template,
as it constitutes a “middle age” reference that minimises the differences between all potential sub-
jects and the template. The template image has dimensions of 160 x 160 x 128, with 0.19 mm
isotropic voxel size. The reference atlas from the same study was also used to extract three tissue
probability maps (TPMs)—for GM, white matter (WM) and cerebrospinal fluid (CSF)—for each
subject by employing the ANTs Atropos tool (Avants et al., 2011 with consistent parameters for
all subjects.

Finally, the extracted TPMs were modulated by multiplying them by the Jacobian determinants
of the transforms obtained from the previous template-registration step. In this way, for each
subject, modulated GM, WM and CSF TPMs—all defined in template space—were available to be

used as input to the age prediction model.
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2.5 Brain age prediction model

The proposed pipeline for rat brain age prediction was implemented in Python and optimised using
a leave-one-out cross-validation approach with the available training cohort. The methodology that

we followed can be divided into three main steps, presented in the subsections below.

2.5.1 Input data preparation

For every subject, each modulated TPM was loaded and flattened into a one-dimensional vector.
We then investigated different alternatives as possible inputs for the age prediction model. First,
we tested the following inputs: (1) either the modulated GM or WM probability map as a unique
input for the model; (2) the concatenation of both modulated GM and WM probability maps, but
discarding the CSF; (3) the concatenation of all the three modulated TPMs (GM, WM, CSF).
Later, we decided to generate additional TPMs not only using the 11 months reference template
(as described in Section , but also using all other available age-specific templates (i.e. for 3, 5
and 17 months). We then investigated the same input configurations described previously (i.e. GM
only, WM only, GM+WM, GM+WM+CSF), but now additionally concatenating all the respective
TPMs obtained from the four available templates. This last approach requires a longer and more
intensive preprocessing of the input images, but we believed that it was worth investigating whether
a combination of the different templates could provide higher prediction accuracy. However, as
further explained later in the Results section and in the Supplementary Material, we ultimately
chose to only use the three modulated TPMs (GM, WM, CSF) from the 11 months template as
input to the model. In this way, for each subject, a final input vector of size 1 x 9830400 was
obtained.

Once all the input vectors (one for each rat and each scanning session in the training set) were
generated, they underwent principal component analysis in order to reduce data dimensionality.
Only the first 77 principal components (PCs) were kept, which preserved up to 95% of the total
variance. In this way, the size of each input sample was transformed to 77 features, which correspond
to the coefficients of the selected PCs.

These input samples were used to train both the GPR and the LR models (described in the next
sections) in a leave-one-out cross-validation fashion. At each iteration, a different rat was selected
as part of the validation set, while all remaining 30 rats were employed to train the models. Both
models were implemented and fitted using the Scikit-learn v.0.23.2 Python library (Pedregosa et al.,
2011)).

2.5.2 Gaussian process regression (GPR) model

As a baseline model for the present work, we employed a GPR model with a linear kernel. This

model has already been used for predicting human brain age and showed accurate results (Cole
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et al) 2015). As input for the model, we used the concatenated TPMs projected onto the PC
space. Moreover, the chronological ages (i.e., the outputs to be predicted) were provided as a
column-vector containing all ages expressed in weeks. This unit of time was the most suitable
choice for our data set, since the rats’ birth dates were provided by the animal supplier with an

uncertainty of + 4 days.

2.5.3 Integration of linear regression (LR) predictions

In addition to the above-described model, we also tested another approach that formulates the
age prediction task as a classification problem, rather than a regression one. The idea was to
investigate whether the integration of a classifier into the age prediction algorithm could help
diminish the intrinsic issue of “regression towards the mean” that characterises regression models
(Liang et al., [2019)), i.e., the tendency of overestimating the predicted age of younger subjects
and underestimating it in older subjects. Moreover, the availability of classification probability
estimates—produced as output by the classifier—could help to weigh the importance of the LR
prediction when generating the final predicted age.

The whole available age range (i.e., between 14 and 70 weeks) was split into 40 bins and each
subject was assigned to its relative “age bin”, which describes the age to be predicted by the model.
Of all the 40 evenly spaced bins, 32 were empty (i.e. they did not correspond to any of the ages of
the training subjects), while the remaining 8 age bins were represented by three or more subjects.
Thus, these 8 bins could be used as classes to train a multinomial LR classifier. Moreover, since the
data set is affected by class imbalance, different weights were associated to each class by assigning
values that are inversely proportional to the class frequencies.

Once the LR-based age predictions were obtained, their probability estimates were used to
calculate a weighted average between the LR and the GPR predictions. If Yepg is the age predicted
by the GPR model on an input subject, Yir is the most likely age class predicted by the LR model
on the same subject and prp is the corresponding probability estimate, then the final predicted
age Y was simply calculated as:

Yepr + PLR - YLR. (1)
1+pLr

The performance of the implemented age prediction model was evaluated by computing both the

Y:

MAE and the linear correlation between chronological and predicted ages on the validation sets.
Furthermore, the trained LR classifier also provides the weights for each input feature in the
decision function. Therefore, we used the average weights for all features to investigate feature
importance for age classification. We did so by, first, multiplying the weights by the standard
deviation of the corresponding feature in the input data. Finally, we divided each of these values
by their total sum (calculated across all features), in order to obtain a more interpretable “relative”

importance score with respect to all available input features.
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2.6 Testing on the ageing cohort

Both the GPR and LR models were re-trained one last time including all 31 training subjects
together. The proposed pipeline was then employed for inference on both the control and EEDR
rats of the ageing cohort. MAE and correlation between chronological and predicted ages were
computed for this data set, and differences between correlations computed on the same observations
were tested with the method proposed by Steiger for comparing dependent correlations (Steiger,
1980). Moreover, for each subject and at each time point, the BrainAGE score was computed as
the difference between predicted and chronological age.

A linear mixed effect model was fitted by setting the BrainAGE score as the dependent variable,
with chronological age, lifestyle (controls vs. EEDR) and their interaction as fixed effects. Moreover,
the ID of each subject was set as a random effect to account for repeated measures. This analysis
was carried out in order to test for group differences across time between controls and EEDR rats.

Finally, Cox regression was employed to investigate the effects of lifestyle and BrainAGE scores
at session 1 (corresponding to ages between 12 and 14 weeks) and session 2 (49 to 51 weeks) on
total survival. This was done by fitting five different regression models, using, respectively, the
following five sets of independent variables: (1) both lifestyle group and BrainAGE score at session
1; (2) both lifestyle group and BrainAGE score at session 2; (3) only lifestyle group; (4) only
BrainAGE score at session 1; (5) only BrainAGE score at session 2. The other two available time
points (session 3 and 4) were not included in the survival analysis, since several of the subjects

were discarded from the study after the second session.

3 Results

3.1 Performance of the age prediction model on the training cohort

In the first part of the study, the age prediction model was designed and evaluated within the
training cohort using leave-one-out cross-validation. This allowed us to investigate which inputs
and model configuration led to the best performance, as well as which image features were important

for age prediction.

3.1.1 Input and performance of the GPR model

The age prediction accuracy was first evaluated by testing different combinations of model inputs.
As already mentioned in Section [2.5.1] our final choice was to feed the model with all three TPMs,
modulated using the 11 months reference template only. This configuration led to the lowest
MAE in the age predictions, which was equal to 5.69 weeks (see Figure [lp). All other tested
inputs—including the concatenation of the TPMs modulated after registration to all four available

templates—showed comparable or slightly higher MAEs (see Supplementary Material).
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Figure 1: Comparison of the performance of the three analysed models (a: GPR only, b: LR
classifier only, c¢: ensemble of GPR and LR) for age prediction. In each plot, the age predicted
from each input sample is represented on the y axis, against the actual chronological age on the
z axis. The correlation coefficient between predicted and chronological age, together with its 95%
confidence interval, is also presented for each model. All predictions (estimated with leave-one-out
cross-validation) are represented with black dots, while their fitted line is shown in blue. The red
dashed line corresponds to what would be the “perfect” prediction (i.e. predicted age equal to
chronological age).

We then calculated the linear correlation coefficient between predicted and chronological ages
for the chosen model, which was equal to 0.92 (95% confidence interval = [0.88,0.95]).

3.1.2 Comparison of different models

Once the model inputs had been set, we compared the performance of the GPR model with that
of both the LR classifier and the proposed ensemble of GPR and LR. As shown in Figure [I], the
three models performed differently.

The LR classifier alone led to a slightly lower MAE compared to GPR (5.47 vs. 5.69 weeks),
but also to a worse correlation coefficient between predicted and chronological ages, i.e. 0.80 (95%
confidence interval = [0.71,0.86]) vs. 0.92 (95% confidence interval = [0.88,0.95]). However, this
difference in correlation coefficients did not turn out to be statistically significant (p = 0.08).
From the plot in Figure [Ip, it can be noticed that the main improvements in prediction accuracy
were obtained at younger ages (especially at session 2, where predictions were perfectly accurate).
Moreover, the fitted line in the plot shows a slight reduction in the tendency of making predictions
“towards the mean”. However, the LR prediction errors were far greater for the later scan sessions
compared to GPR.

The best performance was observed by weighing together the predictions from GPR and LR,
as shown in Figure . The lowest MAE was indeed observed (equal to 4.87 weeks), while still
maintaining a correlation of 0.92 (95% confidence interval = [0.88,0.95]) between predicted and

chronological ages. For this reason, we decided to use this ensemble model for future testing on
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Figure 2: Age trajectories (in black) estimated for all 31 subjects in the training cohort using the
proposed ensemble model of GPR and LR. The red dashed line corresponds to what the trajectory
would be in case of predictions that are perfectly matching with the corresponding chronological
ages.

the ageing cohort. The individual ageing trajectories obtained using such a model in the training

cohort are shown in Figure

3.1.3 Feature importance analysis

We investigated the most important input features for age classification by ranking the relative
importance scores from the highest to the lowest. Each of these analysed features represents one
of the 77 PCs extracted through principal component analysis. The highest scores were found for
feature 2 (normalised importance score of 10%) and feature 1 (score of 7.8%). They were followed
by feature 5 (4.2%) and feature 4 (3.7%). All other features had scores equal to or lower than
2.8%. After a first exponential drop in feature importance across the first 10 features, all other
importance scores decreased with an approximately linear decay until reaching the lowest score of
all (equal to 0.2%).

We transformed the model’s inputs back into the original image space and visualised the distri-
bution of the features in the modulated tissue maps. Figure [3| shows a representation of the main
variations in the modulated TPMs for the two most important components for age classification
(PC 2 and 1). From the figure, it can be noticed that a few areas are affected by more changes

than others (e.g. parts of the cerebellum, the amygdala and the hippocampus for feature 2, or the
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Input feature 2

Figure 3: The main GM, WM and CSF variations represented by feature 2 (top) and feature 1
(bottom) are shown. For each PC (1 or 2) and each type of modulated TPM (GM, WM or CSF),
the PC’s standard deviation multiplied by 2 (corresponding to one of the two extremes of the PC’s
distribution) is overlaid on the relative mean TPM. The opacity of the double standard deviations
is modulated by intensity, making more visible the regions that differ the most from the mean.
Higher and lower values with respect to the mean are colour-coded using, respectively, shades of

red and blue.
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brain stem for feature 1). However, in general, PC 2 and 1 seem to represent spread variations
of various magnitude throughout the brain, rather than in very specific regions of interest (ROIs).
Similar unspecific patterns could also be observed for other features, which followed feature 2 and

1 in the importance score ranking.

3.2 Effect of intervention on the frailty of the ageing cohort

In order to confirm that EEDR intervention was successful in improving the general health status
of the rats in the ageing cohort, we measured their frailty index (FI). The distributions of the
scores between the groups and across time are presented in Figure 4l The EEDR group at session
3 had a mean FI 1.5 + 0.9, while the mean for the control group at the same session was 2.7 +
1.3. At session 4, the mean FI of EEDR rats was 1.2 + 0.8, while the control rats’ FI was 2.4
+ 1.4. A linear mixed-effects model was used to evaluate the difference in frailty between the
two groups at both time points. The main effect of scan session was not significant (F(1,30) =
0.7149, p = 0.4045), and there was no significant interaction between the main terms (F(1,30) =
0.06706, p = 0.7974). There was, however, a significant main effect of the group (F(1,37) = 18.15,
p = 0.0001). Post-hoc comparisons show that the controls had a higher frailty score at both session
3 (95% confidence interval of difference = [0.4829, 2.057], p = 0.0009) and session 4 (95% confidence
interval of difference = [0.4873,2.253], p = 0.0014) relative to the EEDR rats. These results show
that, in later life, the control rats were in worse overall physical health than the EEDR rats but

that there were some overlaps between the groups.

3.3 Age prediction on the ageing cohort

Once the age prediction model was trained, it was employed to predict the ages of the rats from the
ageing cohort. Figure [5| shows the age predictions obtained on that cohort, distinguishing control
subjects from the EEDR ones.

A decrease in the prediction accuracy was observed by testing the model on the new cohort.
The MAE was 9.89 weeks when considering all subjects together, while it was 7.47 weeks for the
control group alone, and 11.88 for the EEDR group only.

The correlation coefficient between chronological and predicted age also decreased to 0.86 (95%
confidence interval = [0.81,0.89]) for all subjects together. This result is mainly influenced by
the EEDR samples, which alone showed a correlation coefficient of 0.85 (95% confidence interval
= [0.78,0.90]), against 0.91 (95% confidence interval = [0.85,0.94]) for the control group.

3.3.1 Group differences in BrainAGE score

For all subjects and all samples in the ageing cohort, we computed the respective BrainAGE score.

A linear mixed-effects model was then fitted in order to investigate group differences across time.

13


https://doi.org/10.1101/2021.04.19.440433
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.19.440433; this version posted April 20, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6-
{ [+ CTRL ®
54 [« EEDR . .
E - . °
x 4 T —_
(%) - olo ° ]
T
£ 34 oo ole b
2 - oo oo oo
E 2 :T ccejoce e b
L {4 _eeges —olo— olo eegoe
1- I ° ecoolocce —
0 T T
3 4

Session

Figure 4: The frailty index (FI) for subjects in the ageing cohort immediately before scanning
session 3 (50 £ 1 weeks) and 4 (73 + 1 weeks). The error bars denote the mean + the standard
deviation. The individual scores are plotted as a black or a red dot depending on whether the
input subject belongs to the control or the EEDR group, respectively. There was a significant main
effect of group (F(1,37) = 18.15, p = 0.0001), but not of session (F(1,30) = 0.7149, p = 0.4045) or
interaction (F(1,30) = 0.06706, p = 0.7974), according to the mixed effects model.
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Figure 5: Age prediction results obtained on the test subjects from the ageing cohort. On the left,
each prediction is plotted as a black or a red dot depending on whether the input subject belongs
to the control or the EEDR group, respectively. The black and red lines show the linear fitting
for each of the two groups, having slopes of 0.61 (controls) and 0.52 (EEDR). On the right, the
estimated ageing trajectories for all subjects are plotted using the same colour-code in order to
distinguish the two groups.
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Figure 6: Estimated survival for the subjects included in the ageing cohort. Subjects with a
BrainAGE score at session 2 (i.e. between 22 and 25 weeks old) that is lower than the median
are shown to have higher chance of survival until the end of the observation period of the present
study.

Statistically significant effects were observed for chronological age alone (b = —0.48, 95% confidence
interval = [—0.54, —0.43], SE = 0.03, t = —17.39, p < 0.001) and the interaction between lifestyle
(i.e. EEDR or control) and chronological age (b = 0.11, 95% confidence interval = [0.02,0.20], SE
= 0.04, t = 2.47, p = 0.015). On the other hand, lifestyle alone did not show any significant effect
on the BrainAGE score (p = 0.777).

3.3.2 Survival analysis

Cox regression models were fitted to perform survival prediction using lifestyle information and
BrainAGE scores at sessions 1 and 2. The proportional hazard assumption was met by the model,
supporting the use of Cox regression.

First, we fitted three models with just one independent variable each. No significance was found
for BrainAGE (p = 0.102) or for lifestyle (p = 0.0503) at session 1, i.e. before EEDR intervention
began. On the other hand, BrainAGE score at session 2 showed a significant effect on survival
prediction (p = 0.03). In particular, lower BrainAGE scores at session 2 correlated with longer
survival (see Figure [f]).

Two additional regression models were fitted using two independent variables (lifestyle and

BrainAGE score at session 1 together, as well as lifestyle and BrainAGE score at session 2). How-
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ever, they did not add any relevant information to the survival analysis, since no variable showed

a statistically significant result.

4 Discussion

In this work, we propose and validate a novel MRI-based pipeline for brain age prediction on rats.
The core of the experiment was the controlled modulation of the ageing process by an active and
healthy lifestyle. We verified the premise that EEDR intervention significantly improves the rats’
overall health by demonstrating a significantly lower FI at two latter time points (approximately
50 and 73 weeks of age). The results of other parameters collected during this longitudinal imaging

and behavioural study will be presented elsewhere (manuscripts in preparation).

4.1 Model performance on the training cohort

The performance of our proposed model was first investigated by training and validating it on a
training cohort of rats, which produced accurate prediction results.

We believe that the choice of GPR as a baseline model was suitable for our preclinical valida-
tion, since it already showed accurate results in multiple human studies (Cole et al.l [2015] [2018|
2017b). Furthermore, previous brain age studies have not found significant differences in perfor-
mance between GPR and relevance vector regression—which is the model used on rats by [Franke
et al.| (2016)—when trained on the same data type (Aycheh et al., 2018} Baecker et al., [2021). Thus,
we considered it reasonable to only test GPR as a baseline for the present study. Finally, given
the limited size of our training set, we did not test deep learning-based approaches, despite their
successful outcome in previous human studies (Cole et al., 2017b; [Jonsson et al.l |2019; |Bashyam
et al., [2020).

Compared to the previous study by [Franke et al.| (2016) on rat brain age prediction, our model
showed a very similar accuracy using leave-one-out cross-validation. By integrating an LR classifier
into the pipeline, we obtained a MAE of 4.87 weeks (corresponding to approximately 34 days and
8.7% of the total available age range), while Franke et al. (2016) reported a MAE of 49 days
(equating to a mean error of 6% with respect to their used age range). On the other hand, they
presented a linear correlation coefficient of 0.95 between chronological and predicted age, while
we obtained a coefficient of 0.92. This small loss in performance may partially stem from the
difference in size and heterogeneity of the data sets: |[Franke et al.| (2016) implemented the model
using a total of 273 scans from 24 subjects, as opposed to our available 89 scans from 31 subjects.
However, despite these differences in study design, the results of our work are rather consistent
with Franke et al. (2016), further supporting the potential of applying brain age prediction models

across laboratories.
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4.1.1 Integration of a classifier into the age prediction workflow

Compared to previously-proposed brain age prediction models (in both humans and animals), the
main methodological novelty presented in this work consists in the integration of a classifier into
the age prediction task. By dividing the age range into separate classes, a classifier can then assign
each input to its most appropriate age class, thus avoiding the known bias of regression approaches
to make predictions that tend to be closer to the mean. As presented in Section and Figure
the classifier alone does not perform better than the traditional regression approach. However, it is
possible to observe that certain predictions are particularly accurate, especially at younger ages, and
such predictions are also more likely to present higher probability estimates. Accordingly, our results
showed that performing a weighted average between GPR and LR predictions—by weighing the LR
estimations with their relative probability estimates—can decrease the age prediction error in the
training set, while also maintaining a satisfactory correlation between predicted and chronological

age.

4.1.2 Difference in prediction accuracy between younger and older ages

As mentioned above and represented in Figures[I]and[2] the age predictions are particularly accurate
at younger ages, while at the later two sessions the prediction error tends to increase. However,
this result was expected for two main reasons.

First of all, as presented in Section the earlier sessions had a higher number of image
samples compared to the later ones. Therefore, it is reasonable to expect an influence of such an
imbalanced distribution in the final accuracy across different ages.

Furthermore, we believe that the discrepancy in performance may also reflect actual anatomical
differences between subjects that become more and more accentuated with time. While the brain
morphology of all subjects may be relatively similar in the earliest months of life, their ageing
process in later life can be significantly affected by various environmental or genetic factors (Cole
et al. 2018). This may lead to a greater variability in brain ageing trajectories at older ages, making
it difficult to establish whether a larger MAE in age prediction is actually a sign of poor model
performance, rather than simply reflecting individual differences in the ageing process. Other data
from this study (MacNicol et al., 2019)) suggest the latter to be the case. Similar patterns were
also observed in the previous study by [Franke et al. (2016, where a higher variance was observed
at older ages in the individual ageing trajectories of 23 untreated rats.

As can be observed from Figure [2 the steepness of the ageing trajectories tends to decrease
between the third and the fourth scan sessions in the majority of subjects. We believe that to
be the evidence of non-linearity in the brain ageing process, which is in accordance with previous
longitudinal studies that reported non-linear trajectories of both structural and functional brain
data (Raz et al.l |2005} [Pfefferbaum et al., [2013; [Fjell et al., |2013; |Vinke et al., [2018)). On the other

hand, it should also be taken into consideration that the animals with a more rapid ageing process
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were more likely to be lost or excluded at follow-up, due to either dying, obesity or health problems.

4.1.3 Feature importance for age classification

The analysis of the LR model’s coefficients allowed us to investigate which of the input PCs are more
important for age classification. We show that it was not possible to identify specific focal areas
that strongly correlate with age prediction, but rather widespread variations were found across the
whole brain.

Diffuse brain changes related to ageing have previously been observed in human studies. For
example, |Good et al. (2001), using voxel-based morphometry, reported widespread GM changes
during ageing, involving cortical regions, deep GM structures and the cerebellum. On the other
hand, they did not find relevant changes in WM volume, which we show to be affected by widespread
changes in the present study. Another study by Walhovd et al. (2005) investigated the effects of
ageing by comparing the volumes of different regions of interest (of GM, WM and CSF) and also
identified significant differences in almost all the analysed volumes. Moreover, these differences were
found to be heterogeneous across various ROIs that also match the findings of our study (see Figure
3)): some volumes showed a linear relationship with age (e.g. amygdala, thalamus and cortex), but
others a curvilinear relationship (e.g. hippocampus, brainstem and cerebellum). As we point out
(Turkheimer et al 2021), these complex patterns observed in longitudinal structural data may
stem from nonlinear interactions that are highly influenced by various environmental, metabolic
and immune factors, which can vary across time. This concept further supports the idea that the
whole brain—rather than only specific regions—is affected by nonlinear changes that contribute to
the ageing process, and that such changes are rather heterogeneous between and within subjects

through time.

4.2 Effect of the EEDR lifestyle on BrainAGE

Once the age prediction model had been trained, it was tested on an independent cohort consisting
of rats with one of two lifestyles: controls (which had no intervention and were comparable to the
rats in the training cohort) and EEDR. To our knowledge, this is the first study to perform an
active lifestyle intervention on rats with the aim of analysing its effect on brain age prediction.
From the age estimations obtained on this cohort (Figure , two major conclusions can be drawn.

First of all, a general bias is present in the age estimations, which tend to be lower than what
was observed in the training cohort (see Figure [1)), especially at older ages. This loss in accuracy
was also reflected in the MAE and the correlations between predicted and chronological ages (see
Section . However, we believe that a loss in performance is to be expected when testing
machine learning-based models on new unseen cohorts that inevitably differ from the training set,
especially when the size of the training data set is rather limited. The decreased accuracy at older

ages still reflects the patterns that were observed on the training cohort, as previously discussed
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(Section . In addition, a higher MAE and a lower correlation coefficient between predicted
and chronological ages were found on EEDR rats compared to controls. This difference between
groups supports the hypothesis that the controls were more comparable to the subjects in the
training data set despite belonging to a separate cohort.

The second main outcome observed from our results is that there is a difference between the
two lifestyle groups in terms of their average ageing trajectories, and that this difference increases
over time. This was confirmed by the linear mixed-effects model, in which not only chronological
age, but also the interaction between chronological age and lifestyle, had a significant effect on the
BrainAGE score. As there was no significance for the simple lifestyle group factor, this means that
the two groups did not have significantly different BrainAGE scores at young chronological age
but aged at different average speeds depending on their lifestyle. This result is of high relevance,
since it shows that a healthier lifestyle—in this case characterised by a better diet and an enriched
environment—may potentially slow down or delay the ageing process. Previous studies on both
rodents and humans have already reported a strong association between ageing outcome and dietary
habits (Mattson, 2010; Martin et al., 2006; [Maioli et al., [2012; [Soininen et al.l [2021), physical
exercise (Hotting and Roder], 2013)), environmental enrichment (Speisman et al., 2013), as well as
multidomain lifestyle interventions (Ngandu et al., 2015). Moreover, our results are in accordance
with a recent study (Bittner et al., 2021) that, to the best of our knowledge, constitutes the
most thorough attempt at investigating the relationship between BrainAGE score and multivariate
lifestyle behaviours in humans (i.e., alcohol consumption, smoking, social integration and physical
activity). They indeed showed that lifestyle habits do affect brain age estimations, with smoking
and lower physical activity contributing the most to this association. The consistency between the
findings from preclinical and human studies is of fundamental importance for strengthening the
case for using BrainAGE as a valid ageing biomarker. Moreover, it is possible to better perform
active interventions, such as dietary restrictions, and control for specific lifestyle factors within a
preclinical framework compared to human studies (at least for a life-long observation period).

According to our results, though, it is also important to point out that the BrainAGE score
alone does not provide relevant information on how healthy the ageing of an individual is, since we
demonstrated that its value is strongly affected by the chronological age. Similar results have also
been observed in previous human studies and are largely related to the problem of age regression
towards the mean (Liang et al., 2019; Cole et al., 2017b; Pardoe and Kuzniecky, 2018)). However, if
chronological age is also taken into account, it may be possible to draw more informed conclusions
from the BrainAGE score. The pairing of chronological age and BrainAGE information could indeed
represent an indicator of the brain ageing process of individuals, by comparing their BrainAGE

scores with what is expected from a control group at the same chronological age.
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4.3 Survival analysis

The potential of using the BrainAGE score as a biomarker for healthy ageing was further strength-
ened by the results of the survival analysis (Section . BrainAGE at session 2 (i.e. before any
subjects were excluded from the study because of death or other reasons) was shown to have a
significant effect on survival. In particular, subjects presenting a lower BrainAGE score between 22
and 25 weeks of age were found to be more likely to survive longer than those with higher scores.
This finding is in agreement with a previous human study by (Cole et al.| (2018) that reported a
significant correlation between BrainAGE and mortality before the age of 80, an association that
was also shown to be independent from other possible influences (e.g. education, social class, or
the presence of age-associated illness).

On the other hand, we found no corresponding significant effect on survival of BrainAGE
score at session 1 (before EEDR intervention began, when the variation between individuals is less
pronounced) or of lifestyle group. As discussed in the previous section, the EEDR lifestyle was
shown to have a significant effect on the BrainAGE score. However, lifestyle information alone
does not appear to be sufficient for predicting survival. This result highlights the importance of

using the proposed MRI-based predictions for investigating mortality.

4.4 Limitations and future work

The present study is affected by some limitations that we aim to overcome in the future. The first
drawback consists in the limited data set, especially when it comes to the training cohort. This is a
common problem of animal studies, and we believe that the accuracy of our proposed age prediction
model might improve by increasing the size of the training data set. Moreover, our current training
cohort includes only male rats, while most human brain age prediction studies include both male
and female subjects and account for sex as a covariate in the data analyses (Cole et al., 2015; |Pardoe
et al.,[2017; |Cole et al| [2017c). Thus, in the future, we would like to use more image samples during
training, which should include both male and female rats. We would also aim to scan such rats
more often (rather than just from four sessions) and over a longer observation period than the
one used here. This could allow us to gain a better insight on brain age prediction throughout
the lifespan. Furthermore, an increase in training samples would also strengthen the potential of
successfully using our method on data acquired from different sites and at different ages, without
having to re-train the model. Finally, an increase in data samples in the test cohort too could allow
us to more thoroughly investigate the value of BrainAGE as a biomarker. For example, a longer
study observation period and the occurrence of more death events may strengthen the power of the
survival analysis.

In the present work, we used the LR model coeflicients to get a better understanding of the
brain regions that influence age prediction the most. However, when it comes to GPR, the use

of a linear covariance function could not allow us to extract measures that could directly relate
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with feature importance for the regression model. In the future, we aim to investigate the effect
of using alternative kernels with automatic relevance determination. This approach consists in
including a length-scale parameter for each input feature within the covariance function, and these
parameters could later be analysed to determine feature importance for prediction (Caywood et al.,
2017). Moreover, we would also like to explore the use of ROI-based measurements (e.g. regional
volumes obtained through atlas-based segmentation) for age prediction. This could allow us not
only to investigate whether ROI information can improve prediction accuracy, but also to study
the influence of each ROI separately on age prediction.

Finally, we would ideally test the proposed age prediction model on rodent models of abnormal,
pathological ageing. This would enable us to identify if and how early the BrainAGE score—
computed using the present strategy—can reveal anomalies in the rodents’ ageing process, similarly
to what has already been performed in previous studies on humans undergoing neurodegeneration.
This would allow us to gain a better insight in the potential of BrainAGE as an ageing biomarker
within a controlled preclinical framework, and to utilise this in testing novel and experimental

treatments for neuropsychiatric disorders.

5 Conclusion

We present a new algorithm for rodent brain age prediction, based on neuroimaging and machine
learning. Using the proposed method, which integrates regression and classification, we achieved
high prediction accuracy on a training cohort of control rats, supporting the potential of using
structural MRI data for extracting accurate information on brain age. Furthermore, to the best of
our knowledge, this is the first preclinical work to test such a prediction model on a new separate
cohort of animals. We investigated predicted age and BrainAGE scores on two additional groups
of rats: controls and subjects that underwent EEDR. Our results indicate that EEDR significantly
affects the ageing trajectories of the analysed rats by slowing down their ageing process. Moreover,
the BrainAGE score at approximately 5 months of age was found to have a significant effect on
survival. These findings are in agreement with previous studies on humans and support the potential

of using MRI-based brain age prediction models as a biomarker of healthy ageing.
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