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 36 

Abstract 37 

The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, 38 

and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to 39 

outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate 40 

immunity in this tissue. Here we applied single-cell RNA sequencing and proteomics to a primary cell 41 

model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrated 42 

widespread tropism for nasal epithelial cell types. The host response was dominated by type I and III 43 

IFNs and interferon-stimulated gene products. This response was notably delayed in onset relative to 44 

viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the 45 

paracrine IFN response began to impact on SARS-CoV-2 replication. When provided prior to infection, 46 

recombinant IFNb or IFNl1 induced an efficient antiviral state that potently restricted SARS-CoV-2 47 

viral replication, preserving epithelial barrier integrity. These data suggest that the IFN-I/III response 48 

to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a 49 

potential chemoprophylactic strategy.   50 
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INTRODUCTION 51 

SARS-CoV-2 is an emergent betacoronavirus responsible for coronavirus disease-19 (COVID-19)1. Since 52 

its identification in late 2019, global pandemic transmission of SARS-CoV-2 has resulted in over 192 53 

million confirmed infections and approximately 4.1 million deaths. SARS-CoV-2 infects target cells via 54 

the entry receptor ACE22 leading to a spectrum of clinical outcomes, ranging from asymptomatic 55 

infection to death3. Although multiple host factors (e.g. age, male sex, obesity) contribute to adverse 56 

clinical outcome4, the immune response also plays a decisive role, evidenced by the therapeutic 57 

benefit of immunomodulatory agents including corticosteroids5 or IL6 inhibition6. Yet much remains 58 

to be understood about the immunopathogenesis of COVID-19. Identification of the cells hosting viral 59 

entry and characterisation of their response to infection is essential to understanding pathogenesis 60 

and improving therapy.  61 

The nasal epithelium is believed to be a key entry point of SARS-CoV-2. Nasal epithelial tropism and 62 

efficient viral shedding from the nasopharynx apparently contributes to the high transmissibility of 63 

SARS-CoV-27, as well as to pathologic features such as anosmia8. As an early viral target cell, nasal 64 

epithelial cells may also set the tone for the systemic immune response, potentially influencing disease 65 

outcome9. These factors emphasise the need to study host-virus interaction in human nasal cells. Ex 66 

vivo single-cell transcriptomic studies indicate that ciliated and/or goblet cells in the nasal mucosa 67 

express ACE2 and TMPRSS2, implicating them as probable SARS-CoV-2 target cells10,11. This has been 68 

confirmed by in vitro and in vivo studies demonstrating SARS-CoV-2 infection of human nasal epithelial 69 

cells12-15. Single-cell studies also revealed that nasal cells exhibit basal expression of an antiviral 70 

expression programme, characterised by induction of several interferon-stimulated genes (ISGs), 71 

suggesting that they may be primed to respond to viral infection10,11. Interestingly, ACE2 is also 72 

regulated by interferons (IFNs)11,16, implying a complex relationship between IFN signalling and 73 

tropism. Type I and type III IFN (IFN-I/III) systems play a critical role in human antiviral innate 74 

immunity17 and have been recently implicated in defence against SARS-CoV-2 susceptibility to severe 75 

or life-threatening COVID-19 is associated with deleterious variants in IFNAR genes18,19 and IFN-I 76 
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blocking autoantibodies20. In vitro, SARS-CoV-2 appears sensitive to the antiviral properties of IFN-I, 77 

at least in cell lines21,22, and this activity extends to in vivo model systems9. These findings motivate 78 

studies to improve understanding of the interaction between SARS-CoV-2 and the IFN-I system in 79 

primary human target cells, providing impetus to clinical trials of recombinant IFNs in treatment or 80 

prophylaxis of COVID-1923.  81 

Organotypic cultures of primary human nasal epithelium differentiated at air-liquid interface (ALI) are 82 

a translationally relevant primary cell model for studies of SARS-CoV-2 host-virus interaction12, with 83 

considerable potential to accelerate our understanding of pathogenesis. A small number of studies 84 

using this model demonstrate that SARS-CoV-2 replicates efficiently in human nasal cells12-14, yet 85 

important questions concerning cellular tropism and their innate immune response remain 86 

unresolved. Hou and colleagues report that only ciliated cells were permissive to SARS-CoV-2, despite 87 

expression of ACE2 and TMPRSS2 by all cell types13. They hypothesised that post-entry factors, such 88 

as innate immunity, might govern tropism. By contrast, Pizzorno and colleagues reported infection in 89 

all major cell types (ciliated, secretory and basal cells)14, consistent with prior indications from single-90 

cell RNA sequencing (scRNA-seq) data and studies in lower airway models24,25. While an IFN response 91 

to SARS-CoV-2 can be detected in nasal cells12,14, in apparent contrast to bronchial or alveolar 92 

epithelial cells26-28, the kinetics of induction and the antiviral function of IFNs in nasal epithelium has 93 

not been systematically characterised.  94 

Here we employed a comprehensive range of techniques, including scRNA-seq and proteomics, in 95 

primary human nasal ALI cultures to define: (i) cellular tropism; (ii) the innate immune response to 96 

SARS-CoV-2; and (iii) the antiviral activity of IFN-I/III. We observed broad cellular tropism of SARS-CoV-97 

2 for nasal epithelial cells, although secretory and ciliated cells were the most permissive. Nasal cells 98 

mounted a delayed IFN response that began to exert control over viral replication at later times post-99 

infection. However, SARS-CoV-2 remained highly sensitive to IFN-restriction if exogenous IFN-I/III was 100 

applied prior to infection. These data enrich our understanding of the interaction of SARS-CoV-2 and 101 

the human IFN system at the earliest point of infection, with immediate therapeutic implications. 102 
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 103 

RESULTS 104 

SARS-CoV-2 robustly infects primary differentiated nasal epithelial cultures  105 

Primary nasal epithelial cultures were established from cryopreserved stocks from six adult donors, 106 

obtained prior to the SARS-CoV-2 pandemic. Cells were expanded, differentiated and then matured 107 

at ALI for 28 days, according to an established protocol29. We first sought to address their suitability 108 

as a model of SARS-CoV-2 infection. Single-cell RNA-seq libraries were generated from two 109 

representative donors, yielding 28,346 individual transcriptomes for analysis following quality control 110 

(Fig. S1, Table S1). Following dimensionality reduction and Leiden clustering, eight populations were 111 

discerned by their expression of established marker genes11,30 (Fig. 1A, supplementary dataset 1). This 112 

annotation was further validated using Seurat label transfer from a published scRNA-seq dataset from 113 

nasopharyngeal swabs15 (Fig. 1B). The major populations identified were ciliated, secretory, goblet 114 

and basal cells, alongside two rarer populations of FOXN4+ deuterosomal cells31 and ionocytes. Cells 115 

expressed characteristic markers (Fig. 1C and supplementary dataset 1), corresponding closely to ex 116 

vivo single-cell data from nasal brusings15 (Fig. 1B). Immunostaining verified the presence of major cell 117 

types in these cultures using well-established protein markers13 - including acetylated alpha-tubulin-118 

positive (AAT) ciliated cells, mucin 5B-positive (MUC5B) secretory cells, mucin 5AC (MUC5AC)-positive 119 

goblet cells, and tumour protein 63-positive (TP63) basal cells (Fig. S2) - with ciliated cells the most 120 

abundant cell population. Consistent with published scRNA-seq data10,11,15, mRNA for key SARS-CoV-2 121 

entry receptors, ACE2 and TMPRSS2, was expressed, albeit at relatively low levels, alongside other 122 

genes implicated in SARS-CoV-2 entry such as FURIN and CTSL (Fig. S3)32. Robust expression of ACE2 123 

and TMPRSS2 at the protein level was confirmed by immunoblotting of whole-cell lysates prepared 124 

from mature ALI cultures (Fig. 1D). To establish their permissiveness to infection, nasal ALI cultures 125 

were inoculated at the apical surface with a clinical SARS-CoV-2 isolate (BetaCoV/England/2/20) at an 126 

approximate multiplicity of infection (MOI) 0.1 - consistent with other studies (0.1-0.5)12-14 - and 127 

monitored for infection over the next 72 h. Expression of SARS-CoV-2 nucleocapsid (N) gene and spike 128 
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(S) protein increased significantly over time, indicative of viral replication (Fig. 1E-F). This was 129 

accompanied by the release of infectious viral particles, as determined by plaque assay of apical 130 

washes on vero E6 cells, confirming productive infection (Fig. 1G). SARS-CoV-2 replication was 131 

accompanied by a progressive decline in epithelial barrier integrity starting from 48 hours post-132 

infection (hpi), reflecting virus-induced epithelial dysfunction and/or potential cytopathic effect (Fig. 133 

1H). These data established the suitability of the human nasal ALI system for modelling SARS-CoV-2 134 

infection.  135 

 136 

 137 
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Figure 1. Robust SARS-CoV-2 infection in a primary differentiated nasal epithelial ALI culture model. 138 

(A) UMAP visualisation of scRNA-seq data from nasal ALI cultures (28,346 single-cell transcriptomes 139 

from two representative donors) revealed six major cell types. (B) Correlation between the annotation 140 

from an external dataset of nasopharyngeal swabs and the assigned annotation of our scRNA-seq from 141 

nasal ALI culture following label transfer. (C) Dot plot demonstrating expression of key markers 142 

distinguishing cell types in annotated clusters, with intensity demonstrated by colour and size of the 143 

dot representing the proportion of cells expressing the marker. (D) Immunoblot demonstrating ACE2 144 

and TMPRSS2 expression by donor, representative of n=3 experiments. Nasal ALI cultures were 145 

infected with SARS-CoV-2 (MOI 0.1) and subjected to various modalities to analyse infection. Whole-146 

cell lysates were prepared at the indicated times for RT-PCR analysis of expression of (E) SARS-CoV-2 147 

nucleocapsid (N) gene expression normalised to the housekeeper RNASEP2 (average of n=2 repeat 148 

experiments in n=4 donors, mean ± SEM; * P < 0.05, **** P < 0.0001, ANOVA with Dunnett’s post-test 149 

correction compared to 0h). (F) Whole-cell lysates were prepared at the indicated times for 150 

immunoblot analysis of expression of SARS-CoV-2 spike (S) and cleaved S2 protein expression 151 

(representative of repeat experiments in n=4 donors). (G) Release of infectious viral particles was 152 

determined by plaque assay of apical washings on permissive vero E6 cells (average of repeat 153 

experiments in n=6 donors, mean ± SEM; **** P < 0.0001, ANOVA with Dunnett’s post-test correction 154 

compared to 24h). Dotted line represents lower limit of detection. (H) Transepithelial resistance 155 

(TEER) measurements upon infection (expressed as % of mock-infected wells, n=6 donors, mean ± 156 

SEM; *** P < 0.001, **** P < 0.0001, ANOVA with Dunnett’s post-test correction compared to 24h).  157 

 158 

 159 

Evidence of broad cellular tropism of SARS-CoV-2 160 

To revisit the question of whether individual cell types are more or less permissive to SARS-CoV-213,14, 161 

we first examined viral gene expression by scRNA-seq analysis at 24 hpi, selected to represent an early 162 

stage in the progress of infection. While all cell types expressed viral transcripts, there were notable 163 
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differences both in the proportion of cells infected, and the relative abundance of different viral 164 

transcripts within these cells (Fig. 2A). Based on differential gene expression analysis between cell 165 

types (Wilcoxon rank sum test, one vs rest, P < 0.05), secretory and ciliated cells expressed higher 166 

levels of viral transcripts than other cell types, with viral transcripts most abundant in secretory cells 167 

(Fig. 2A, supplementary dataset 2). Deuterosomal cells also expressed abundant viral transcripts but 168 

were a rare population within these cultures, possibly limiting the power of this analysis. Basal cells 169 

are also located away from the apical surface; physical inaccessibility to apically-applied virus at this 170 

time point might at least partially account for this observation. To investigate tropism further, we 171 

undertook immunofluorescence analysis of viral spike (S) protein expression at 48 hpi (Fig. 2C-D, see 172 

Fig. S4 for background spike immunoreactivity in uninfected cells). This analysis revealed broadly 173 

similar proportions of ciliated, secretory and basal cells expressing S protein, with significantly lower 174 

spike immunoreactivity in MUC5AC positive (goblet) cells (Fig. 2D). However, the mean pixel intensity 175 

of S protein was significantly greater in ciliated cells than in other cell types, and significantly increased 176 

in secretory cells compared to basal cells (Fig. 2D). To corroborate these findings, we undertook 177 

analysis of intracellular virion-like structures (VLSs) at 48 hpi by transmission electron microscopy 178 

(TEM, Fig 2E), focusing on ciliated and secretory/goblet cells (the latter cell types were grouped for 179 

analysis as they could not be reliably distinguished based on morphology). Intracellular VLSs were 180 

observed in both ciliated and secretory/goblet cells, predominantly towards the apical surface (Fig. 181 

2E). Consistent with immunofluorescence analysis of S protein intensity, there was a significant 182 

increase in the number of VLSs per cell in ciliated compared with secretory/goblet cells (Fig. 2E). 183 

Collectively, these data suggested that the virus is capable of entering, and replicating in, all major 184 

nasal cell types, but with quantitative differences in efficiency.  185 

 186 
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Figure 2. Broad tropism of SARS-CoV-2 for nasal cells. Nasal ALI cultures were infected with SARS-188 

CoV-2 (MOI 0.1) and analysed using different modalities to explore tropism. At 24 hours post-infection 189 

(hpi), cell suspensions were prepared from two representative donors for single-cell RNA sequencing 190 

(scRNA-seq) and 28,346 individual transcriptomes passing QC were analysed. (A) Dot plot of scRNA-191 

seq data showing magnitude (colour) and proportion (size) of cell types expressing viral transcripts. E 192 

= envelope; M = matrix; N = nucleocapsid; S = spike. (B) Relative proportion of infected cell types based 193 

on expression of any viral transcript. Separately, nasal ALI cultures were fixed at 48 hpi and subjected 194 

to immunofluorescence analysis. (C) Expression of viral S protein expression in ciliated (AAT), basal 195 

cells (TP63), secretory (MUC5B) and goblet (MUC5AC) cells (arrowed) shown in (C). Scale bars = 10 µm 196 

(representative of experiments in n=5 donors). (D) Quantification of cell-type specific expression of 197 

viral S protein and S protein intensity at 48 hpi (n=5 donors, mean ± SEM; * P < 0.05, ** P < 0.01, *** 198 

P < 0.001, **** P < 0.0001, ns = non-significant, ANOVA with Sidak’s post-test correction for multiple 199 

comparisons, indicated by lines). (E) Nasal ALI cultures were infected as above, fixed at 48 hpi for 200 

transmission electron micrograph (TEM) analysis of SARS-CoV-2 infected ciliated and secretory/goblet 201 

cells. Inserts (a) and (b) display virion-like structures in ciliated and secretory/goblet cells respectively. 202 

Scale bars = 1 µm. Image analysis was undertaken to quantify virion-like structures as displayed in the 203 

bar plot (n=3 donors, mean ± SEM ** P = 0.003, Mann-Whitney test).  204 

 205 

 206 

Characterisation of individual nasal cell responses to SARS-CoV-2 207 

Published ex vivo single-cell transcriptomic analyses report that nasal cell types exhibit the basal 208 

expression of an innate antiviral gene signature, in the absence of viral infection, characterised by 209 

several IFN-stimulated genes (ISGs)10,11. This signature correlated with ACE2 expression, suggesting 210 

conditioned expression to reduce susceptibility. Based on these reports, we examined scRNA-seq data 211 

to characterise the innate antiviral response of nasal cells to SARS-CoV-2 infection at 24 hpi. In 212 

unexposed cells, ISG signature scores were generated using context-specific ISGs from a published 213 
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IFN-treated nasal cell dataset11 and compared using the Wilcoxon rank sum test. Gene set scores 214 

greater than zero suggested expression levels higher than background gene expression, and was the 215 

case for basal 1, secretory, goblet cells and ionocytes (Fig. 3A). The basal ISG signature was highest in 216 

secretory cells despite abundant expression of viral RNA in these cells upon exposure to SARS-CoV-2 217 

(Fig. 2A-B), suggesting basal ISG expression may not be sufficient to protect against infection. Next we 218 

distinguished cells in three experimental conditions: unexposed (mock-infected); SARS-CoV-2-219 

exposed but uninfected (these ‘bystander’ cells would theoretically be exposed to IFNs and other 220 

paracrine signals, but not infected); and SARS-CoV-2-infected (as defined by detectable expression of 221 

SARS-CoV-2 transcripts). We undertook differential expression (DE) analysis between mock and 222 

bystander or infected cells, labelling ISGs derived from the same list of context-specific ISGs (Fig. 3B, 223 

supplementary datasets S3-4). There was minimal transcriptional response to infection in bystander 224 

cells, including the absence of ISG induction, suggesting a lack of substantial paracrine IFN signalling 225 

at this timepoint in keeping with reports in other airway models25,27,28. Interestingly, IFITM genes (ISGs 226 

which have been paradoxically implicated in SARS-CoV-2 entry33) were downregulated in some 227 

bystander cell populations. There was also minimal evidence of ISG induction in SARS-CoV-2 infected 228 

cells, especially secretory, deuterosomal and goblet cells (Fig. 3B). In secretory and ciliated several 229 

ISGs relating to antigen processing or presentation were downregulated upon infection (Fig. 3B). Basal 230 

cells expressed a modest number of ISGs upon infection, specifically genes of the IFITM family, IFI27 231 

and IFI6 and the negative regulator of IFN-I signalling, ISG15. Consistent with this finding, gene-set 232 

enrichment analysis (GSEA) revealed upregulation of IFN alpha/gamma responses in infected basal 233 

cell populations but not in other cell types (Fig. 3C). The transcriptional response of infected secretory 234 

and ciliated cells was characterised by widespread downregulation of expression, which may reflect 235 

viral co-optation of transcriptional machinery of host cells, but this effect was not uniform. In 236 

agreement with previous reports34,35, genes related to oxidative phosphorylation were prominent 237 

amongst downregulated genes, as were antigen presentation pathways. Pathway analysis also 238 

predicted upregulation of NF-KB signalling in basal, secretory, goblet and ciliated cells, consistent with 239 
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previous findings27,36. Using DoRoTHea to explore regulon activity in these populations revealed higher 240 

predicted NFKB2 activity but limited evidence of widespread activation of IFN-mediated signalling (Fig. 241 

S5). Transcripts for IFN-I (IFNB, IFNK, IFNA5) and IFN-III (IFNL1) were not significantly differentially 242 

expressed and were detectable in only a small minority (~ 0.4%) of infected secretory cells (Fig. S6). 243 

Whilst potentially consistent with the lack of paracrine signalling at this timepoint, this might also 244 

reflect transient expression and/or insensitivity of detection by scRNA-seq; a similar pattern was 245 

observed for other cytokines and chemokines (Fig. S6). Overall, this analysis showed that despite 246 

evidence of NF-KB activation at 24 hpi, there was a minimal IFN response to SARS-CoV-2 in the cell 247 

types with the highest levels of infection, consistent with previous reports in non-nasal epithelial 248 

cells25,27,28.  249 

 250 
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Figure 3. Characterisation of individual nasal cell transcriptional responses to SARS-CoV-2. Nasal ALI 252 

cultures were infected with SARS-CoV-2 (MOI 0.1). At 24 hours post-infection (hpi), cell suspensions 253 

were prepared from two representative donors for single-cell RNA sequencing (scRNA-seq) and 254 

28,346 individual transcriptomes passing QC were analysed. (A) A composite interferon-stimulated 255 

gene (ISG) signature score was defined based on a published nasal cell dataset from cells treated with 256 

IFN alpha and IFN gamma. Gene set scores greater than zero suggest expression levels higher than 257 

background gene expression. Wilcoxon rank sum testing was performed for each cell type vs all with 258 

Benjamini-Hochberg correction (* P < 0.05, ** P < 0.01, *** P < 0.001 **** P < 0.0001). (B) Differential 259 

expression (DE) analysis by Wilcoxon rank sum test was undertaken to compare mock-infected cell 260 

transcriptomes with those from bystander cells (without detectable viral transcripts) and infected cells 261 

(with detectable viral transcripts) from the virus-exposed cultures. Volcano plots were generated with 262 

vertical lines marking -/+ 1.5 fold change cut-offs (note log2 scale) and the horizontal line marking an 263 

adjusted P value cut-off of 0.05 (< 0.05 was considered statistically significant). Individual genes 264 

coloured as non-significant (light blue) and significant (red). Labels indicate viral transcripts (dark blue) 265 

and epithelial-cell specific ISGs (black). (C) Gene-set enrichment analysis was undertaken by ordering 266 

genes by fold change difference between mock-infected and infected cells by cluster. Vertical lines 267 

indicated adjusted P value cut-off of 0.05. NES = normalised enrichment score.     268 

 269 

 270 

Kinetics of innate IFN-I/IFN-IIIs response to SARS-CoV-2  271 

To investigate the kinetics of the IFN-I/III response, expression of IFN-I (IFNA1 and IFNB) and IFN-III 272 

(IFNL1) was examined by RT-PCR at 6, 24, 48 and 72 hpi at the same MOI (0.1) as previous experiments. 273 

Induction of IFNL1 and IFNB was low at 24 hpi, consistent with scRNA-seq findings, but increased 274 

significantly by 48 and 72 hpi (Fig. 4A). IFNA1 was not induced, as observed in our scRNA-seq data. 275 

Compared to the timing of initiation of viral gene expression - which was detectable at 6 hpi and 276 

approached its maximum level by 24 hpi (Fig. 1E) - the induction of IFNs appeared delayed, as 277 
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suggested by previous studies12,14,36. Infection was accompanied by progressive upregulation of 278 

proinflammatory cytokines such as IL6, IL1B and TNF, consistent with initiation of an NF-KB-dependent 279 

inflammatory response (Fig. 4B). To look for evidence of a paracrine response to IFN-I/III, we analysed 280 

expression of the ISGs RSAD2 and USP18 by RT-PCR, as well as the expression of RSAD2, USP18, ISG15 281 

and MX1 proteins by immunoblotting. There was an increase in ISG mRNA and protein expression at 282 

later times following the onset of IFN gene expression (Fig. 4C-D), potentially suggestive of paracrine 283 

JAK-STAT signalling. To explore early induction of IFNs in more detail, we compared the response to 284 

SARS-CoV-2 with other RNA respiratory viruses, influenza A virus (IAV) and parainfluenza virus 3 285 

(PIV3). In this experiment, significant induction of IFNB and IFNL1 occurred in response to both PIV3 286 

and IAV, but not SARS-CoV-2, at 24 hpi (Fig. S7), and was accompanied by upregulation of ISGs USP18 287 

and RSAD2. Infection of cell lines at high MOI are reported to enhance the relatively inefficient IFN-I 288 

induction to SARS-CoV-225. To confirm that the attenuated production of IFNL1 and IFNB at early times 289 

was not dependent on MOI, we repeated SARS-CoV-2 infections at 20-fold higher MOI (2), alongside 290 

IAV (Fig. 4E), or a preparation of Sendai virus (SeV) containing a high proportion of immunostimulatory 291 

defective viral genomes32 as a positive control (Fig. S8). At 6 hpi, a time point at which IFNB and IFNL1 292 

were significantly induced by IAV, there was no detectable response to SARS-CoV-2 (Fig. 4E). 293 

Compatible observations were made with SeV (Fig. S8). At 24 hpi, SARS-CoV-2 exposure led to no 294 

detectable induction of IFNB and significantly less IFNL1 than IAV (Fig. 4E). This differential response 295 

was reflected in the robust expression of ISGs RSAD2, USP18 and ISG15 at 24 h post-inoculation with 296 

IAV but not SARS-CoV-2 (Fig. 4F). These observations recapitulated our previous RT-PCR and scRNA-297 

seq data with a lower MOI, and are consistent with other reports12,27,37. Collectively, the results 298 

indicate that nasal epithelial cells express IFN-I/IIIs during SARS-CoV-2 infection, but that the response 299 

is delayed relative to viral replication. 300 

 301 
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 302 

Figure 4. Delayed induction of IFN-I/III signalling in SARS-CoV-2-infected nasal ALI cultures. Nasal ALI 303 

cultures were infected with SARS-CoV-2 (MOI 0.1). Whole-cell lysates were prepared at the indicated 304 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.02.17.431591doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431591


  

times for RT-PCR analysis of expression of (A) IFNB, IFNL1 and IFNA1 (B) IL6, TNF and IL1B and (C) 305 

USP18 and RSAD2 (average of n=2 repeat experiments in n=4 donors, mean ± SEM; * P < 0.05, ** P < 306 

0.01, *** P < 0.001 **** P < 0.0001, ANOVA with Dunnett’s post-test correction compared to 6h [B, 307 

IL6], 24h [A, IFNL1] or 0h [all others]). ND, Not detected. (D) Whole-cell lysates were prepared at the 308 

indicated times for immunoblot analysis of S/S2, MX1, USP18, RSAD2 and ISG15 expression 309 

(representative of experiments in n=4 donors). Nasal ALI cultures were infected with SARS-CoV-2 or 310 

influenza A virus (IAV H1N1, purple bars) at MOI 2.  Whole-cell lysates were prepared at the indicated 311 

times for RT-PCR analysis of expression of (E) IFNB, IFNL1 and (F) the ISGs USP18, RSAD2 and ISG15 312 

(n=3 donors, mean ± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001 **** P < 0.0001, ANOVA with Dunnett’s 313 

post-test correction compared to 0h).  314 

 315 

 316 

IFN-signalling dominates the nasal host response to SARS-CoV-2 at the protein level 317 

To validate and extend these findings, we undertook an unbiased assessment of the host response to 318 

SARS-CoV-2 infection by proteomics analysis. Whole-cell lysates were prepared from SARS-CoV-2 and 319 

mock-infected nasal ALI cultures from six donors at 72 hpi. Lysates were analysed by quantitative mass 320 

spectrometry (quality control data in Fig. S9). Overall, this analysis detected the differential expression 321 

(DE) of 180 proteins including viral proteins such as S, M, N, ORF1AB, ORF3A and ORF8 (Fig. 5A 322 

supplementary dataset S4). The most highly increased host protein was Sorting Nexin 33 (SNX33), an 323 

endosomal protein that has not yet been implicated in the life cycle of SARS-CoV-2. Notably, other 324 

SNX proteins (e.g. SNX17 and SNX2) are involved in viral trafficking38,39. Infected and uninfected cells 325 

clustered together by principal component analysis (Fig. 5B). Inspection of the DE proteins confirmed 326 

a robust host innate immune response, dominated by ISG products (Fig. 5A). Functional annotation 327 

revealed an enrichment of antiviral response and especially IFN-I signalling pathways (Fig. 5C, Table 328 

S2). These data are consistent with our earlier findings and contrary to prior reports in cell lines or 329 

human bronchial/tracheal epithelial cultures, where a robust endogenous IFN-I/III response to SARS-330 
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CoV-2 was not detected26-28. Key antiviral ISG proteins identified included IFIT1-3, MX1-2, and the OAS 331 

cluster (OAS1-3), the latter associated with genetic susceptibility to severe COVID-1919 (Fig. 5C). 332 

Significantly downregulated pathways were also identified, including TRIF-dependent toll-like 333 

receptor signalling, as well as RNA polymerase II transcription and endosomal transport (Table S3). 334 

This implied viral subversion of critical host functions, including host gene transcription, protein 335 

trafficking and viral sensing. Proteins involved in the maintenance of epithelial tight junctions were 336 

also downregulated, consistent with the loss of barrier integrity observed in earlier experiments (Fig. 337 

1H).  338 

 339 
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 340 

Figure 5. An ISG response dominates the proteome of SARS-CoV-2 infected nasal ALI cultures. 341 

Differential proteomic profiling of SARS-CoV-2-infected nasal ALI cultures. Mass spectrometry-based 342 

proteomics was carried out on whole-cell lysates prepared at 72 hpi (n=6 donors per condition). (A) 343 

Volcano plot illustrating 180 differentially expressed proteins with increased (orange points) and 344 

decreased (purple points) expression in infected as compared to mock-infected samples. Dotted red 345 
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lines indicate those proteins with a fold change of > 1.5 and adjusted p values <0.05. (B) Principal 346 

component analysis of the whole proteome data set. (C) Functional annotation network of 347 

differentially expressed proteins.  348 

 349 

 350 

Antiviral activity of IFN-I/III towards SARS-CoV-2 infection 351 

Given the prominence of the IFN-I/III response in the proteome of SARS-CoV-2-infected cells at later 352 

times post-infection, a key question was whether this IFN-I/III response had any impact on SARS-CoV-353 

2 replication. To address this question, nasal ALI cultures were treated with the JAK inhibitor 354 

ruxolitinib (RUX). RUX antagonises signalling downstream of IFNAR and IFNLR, owing to the 355 

involvement of JAK1 in both signalling pathways. We reasoned that blocking paracrine IFN-I/III 356 

signalling would reveal its impact, if any, on SARS-CoV-2 replication. Cells were treated with 10 µM 357 

RUX (a dose optimised in prior experiments40) or vehicle control (DMSO) in the basal medium for 24 358 

hours prior to infection. Nasal cultures were infected at the apical surface (MOI 0.1), inhibitors were 359 

refreshed every 24h and infection was monitored up to 96 hpi. Lysates were prepared and analysed 360 

by RT-PCR and immunoblot. RUX treatment abolished expression of ISGs USP18, RSAD2 and ISG15 at 361 

the mRNA and protein level (Fig. 6A-B), indicating that ISG induction was dependent on paracrine IFN-362 

I/III signalling, as previously suggested (Fig. 4D). By 96 hpi, approximately 24 hours after ISGs were 363 

reliably detected at the protein level (Fig. 4D, Fig. 5A-C), blockade of this endogenous IFN response by 364 

RUX led to a significant increase in both viral gene expression, assessed by RT-PCR (N gene) and 365 

immunoblot (S/S2 protein, Figs 6B-D), and apical release of infectious virus measured by plaque assay 366 

(Fig. 6E). These data provided further evidence that SARS-CoV-2 triggered an endogenous paracrine 367 

IFN-I/III response in nasal cells, which once established began to impact SARS-CoV-2 replication.  368 

An important follow-up question was whether nasal cells could mount an antiviral state to SARS-CoV-369 

2, providing IFN-I/III was delivered in a timely fashion. To address this, nasal ALI cultures were pre-370 

treated with exogenous IFNb (1000 IU/mL) or IFNl1 (100 ng/mL) for 16h to induce an antiviral state, 371 
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subsequently infected with SARS-CoV-2 at MOI 0.01 and examined at 48 hpi. Analysis of infection by 372 

immunoblotting of whole-cell lysates for spike (S/S2) protein expression or plaque assay of apical 373 

washes demonstrated a significant reduction in infection with either IFNb or IFNl1 pre-treatment (Fig. 374 

7A-B). This was accompanied by robust induction of antiviral ISG products (Fig. 7A), and preservation 375 

of barrier integrity (Fig. S10). It is worth noting that the ISG expression induced in response to 376 

recombinant IFN-I/III at 48 hpi was substantially greater than that induced by endogenous IFN-I/III 377 

production (Fig. 7A). Thus exogenous IFN-I/III was capable of inducing in the nasal epithelium an 378 

antiviral state that potently inhibited SARS-CoV-2 infection, providing it was delivered (a) prior to 379 

infection, and (b) at sufficient concentration. This IFN-sensitivity of SARS-CoV-2 contrasts with the 380 

relative resistance of SARS-CoV21. These data suggest that mucosal delivery of IFNb or IFNl1 is a 381 

potential therapeutic strategy for SARS-CoV-2. In clinical practice, IFNs are unlikely to be used prior to 382 

infection, unless this is part of a prophylactic regimen. To determine the effectiveness of exogenously 383 

applied IFNs once SARS-CoV-2 infection is underway, infected cells were treated with IFNb or IFNl1 384 

at 6 or 24 hpi and examined for S/S2 protein expression by immunoblot (Fig. 7C-D) and release of 385 

infectious virus by plaque assay (Fig. 7E). In this experiment, IFNb and IFNl1 treatment at 6 hpi 386 

continued to impact on SARS-CoV-2 infection, whereas addition after 24 hpi had minimal effect. 387 

Interestingly, ISG induction was still observed in response to IFN treatment at 24 hpi, albeit at reduced 388 

magnitude in the case of IFNb (Fig. 7C-D). These data suggest that SARS-CoV-2 may impair, but does 389 

not abolish, JAK-STAT signalling in infected cells, implying that recombinant IFNs may have a 390 

therapeutic role in established SARS-CoV-2 infection, as recently shown in animal models9 and in early 391 

phase clinical trials41.  392 

 393 
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 394 

Figure 6. Impact of endogenous IFN-I/III signalling on SARS-CoV-2 infection.  Nasal ALI cultures 395 

treated with ruxolitinib (RUX, 10 µM) or DMSO vehicle for 24 h prior to infection (MOI 0.1). Whole-396 
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cell lysates were prepared at the indicated times for RT-PCR analysis of expression of (A) the ISGs 397 

USP18, RSAD2 and ISG15 (n=3 donors, mean ± SEM; *** P < 0.001, **** P < 0.0001, ANOVA with 398 

Dunnett’s post-test correction compared to mock-infected cells) or (B) viral N mRNA (n=3 donors, 399 

mean ± SEM; * P = 0.035 ANOVA with Sidak’s post-test correction compared to DMSO control). (C) 400 

Whole-cell lysates were prepared at 96 hpi for immunoblot analysis of viral S/S2 protein and host 401 

RSAD2, USP18 and ISG15 protein expression (representative blot shown of experiments in n=4 402 

donors). (D) Densitometry analysis of S+S2 protein intensity relative to GAPDH, normalised to the 403 

DMSO control (data from C, n=4 donors, mean ± SEM; ** P = 0.003, one-sample t test). (E) Plaque 404 

assay of apical washes collected at the times indicated showing a significant increase in infectious 405 

particle release at 96 hpi (same experimental conditions as C-D; n=4 donors, mean ± SEM; * P = 0.015, 406 

ANOVA with Sidak’s post-test correction compared to DMSO control). Dotted line indicates lower limit 407 

of assay detection.    408 

 409 
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 410 

Figure 7. Exogenous IFN-I/III treatment controls SARS-CoV-2 replication. Nasal ALI cultures were pre-411 

treated for 16 h with IFNb (1000 IU/mL) or IFNl1 (100 ng/mL) prior to infection (MOI 0.01). (A) 412 

Immunoblot of whole-cell lysates prepared from nasal ALI cultures at 48 hpi (representative of 413 

experiments in n=4 donors). (B) Plaque assay of apical washes showing significant reduction in 414 

infectious particle release at 48 hpi if pre-treated with IFNb (1000 IU/mL) or IFNl1 (100 ng/mL) (same 415 

experimental conditions as A; n=5 donors, mean ± SEM; **** P < 0.0001, ANOVA with Dunnett’s post-416 

test correction compared to untreated control). (C-D) Immunoblot of whole-cell lysates prepared at 417 

48 hpi. Nasal ALI cultures were either pre-treated with IFNb (1000 IU/mL, C) or IFNl1 (100 ng/mL, D) 418 
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for 16h prior to infection with SARS-CoV-2 or IFN treatment was applied at 6 or 24 hpi. Results 419 

representative of experiments in n=3 donors. (E) Plaque assay on apical washes collected at 48 hpi 420 

from experiments in C-D (n=3 donors, mean ± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001, ANOVA with 421 

Dunnett’s post-test correction compared to untreated control).  Dotted line indicates lower limit of 422 

assay detection.    423 

   424 
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DISCUSSION 425 

We report the most comprehensive characterisation of the human nasal epithelial response to 426 

experimental SARS-CoV-2 infection to date, revealing a response dominated at later stages by IFN-427 

I/IIIs and their downstream ISG products. This response partially contained SARS-CoV-2 at later times 428 

post-infection, while recombinant IFN-I/III treatment potently blocked SARS-CoV-2 replication, 429 

suggesting that mucosal delivery of IFNs could be a promising strategy for post-exposure prophylaxis.  430 

The nasal mucosa is likely to be a main point of entry of SARS-CoV-2. Prior single-cell transcriptomic 431 

studies implied an abundance of target cells in the nasal mucosa and further suggested that they may 432 

be poised to mount an antiviral response10. Yet few studies to date have characterised SARS-CoV-2 433 

replication in primary human differentiated nasal cells12-14, while we analyse the host-virus interaction 434 

comprehensively, at single-cell resolution and utilising proteomics. Our findings indicate that the host 435 

response to SARS-CoV-2 in nasal epithelium is dominated by paracrine IFN-I/III signalling, albeit this 436 

response is kinetically delayed. These data contrast with initial reports that SARS-CoV-2 did not induce 437 

a robust IFN response in airway epithelial cells26-28, but are consistent with emerging evidence of IFN-438 

I/III induction in nasal swabs from patients with COVID-1915,42-44 and with more recent findings in lung 439 

airway models36,43,45-47. Blockade of the endogenous IFN response had an impact on SARS-CoV-2 440 

infection at later stages post-infection, once the IFN response was established, underscoring the 441 

delayed kinetic but also emphasising its functional relevance. While the impact of endogenous IFN-442 

I/III signalling upon SARS-CoV-2 replication has not to our knowledge been investigated in nasal cell 443 

models, our data are consistent with recent findings in some43,47, but not all epithelial model 444 

systems27,45. Our experiments with IAV, PIV3 and SeV - viruses which induced the robust early 445 

expression of IFN-I/III, in line with previous studies12,27,37 - confirm that this delay was not due to an 446 

intrinsic property of nasal epithelial cells. The expression of IFN evasion proteins37,48, the sequestration 447 

of viral replication machinery within cytosolic vesicles49, as well as global reductions in host mRNA 448 

content50 and translational shutdown51-53 induced by SARS-CoV-2 presumably underlie its capacity to 449 

subvert early IFN induction in infected cells. Consistent with this, there was evidence of 450 
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downregulation of immune pathways including TLR signalling in the proteome of infected cells. 451 

However, an important question is what molecular patterns are responsible for IFN-I/III induction at 452 

later times. Recent evidence implicates MDA5 as a major sensor of SARS-CoV-2 RNA in epithelial 453 

cells45-47, while other findings suggest a contribution from virus-mediated damage occurring after 454 

several days of infection54. It will be important to address the relative contribution of host damage-455 

associated molecular patterns versus viral pathogen-associated molecular patterns (e.g. defective 456 

viral genomes) accumulating during replication.  457 

IFN-I/III signalling is plausibly implicated in protection against life-threatening COVID-1918-20. 458 

Consistent with this, circulating immune cells of patients with severe COVID-19 exhibit impaired ISG 459 

responses55-57. However, whether the local airway IFN response in the early stages of infection has a 460 

decisive role in shaping the subsequent clinical outcome of COVID-19 remains to be conclusively 461 

determined. A compelling recent scRNA-seq study reported that patients going on to develop severe 462 

disease exhibited a muted ISG response in the nasal airway, in contrast to those with milder disease15, 463 

and is supported by independent findings of attenuated nasal ISG induction in patients with 464 

autoantibodies to IFN-I58, who are prone to more severe disease20. Additional strands of evidence 465 

suggest a potential link between airway IFN-I/III competence and clinical outcome in COVID-19. Age 466 

remains the strongest risk factor for poor outcome in COVID-19, and the efficiency of IFN-I/III 467 

induction is known to decline with advancing age59, and appears to be greater in the nasal airways of 468 

children than adults infected with SARS-CoV-260. Other relevant environmental influences, such as 469 

exposure to cigarette smoke or other viral infections, are also reported to perturb IFN-I/III responses 470 

of airway cells in ways that may be relevant to COVID-19 pathogenesis43,61.  471 

The main limitation of our data in this nasal epithelial culture system is that it did not account for 472 

professional immune cells present in the nasal mucosa, for example plasmacytoid dendritic cells62, 473 

which are capable of more rapidly mounting an IFN-I/III response to SARS-CoV-263, potentially tipping 474 

the scales in favour of the host64. We studied cells derived from adult donors, however it is possible 475 

that nasal cells from paediatric donors, who are naturally less susceptible to severe COVID-19, may 476 
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behave differently in terms of their reduced permissiveness to SARS-CoV-2 and/or the greater 477 

efficiency of their innate IFN response60,65. Furthermore, SARS-CoV-2 variants with mutations in the 478 

spike gene have emerged worldwide whilst we were undertaking the experiments described here; 479 

these variants may impact viral replication and/or host immunity, and should be included in future 480 

studies.  481 

Nevertheless, our data, employing a variety of complementary methods, indicate that SARS-CoV-2 has 482 

a relatively broad tropism for nasal epithelial cells, confirming suggestions from prior scRNA-seq 483 

studies8,10, other in vitro studies of primary nasal14 and tracheobronchial cells24,36, and importantly 484 

recent scRNA-seq studies of nasal samples from COVID-19 patients15. We also identify tropism for the 485 

rare deuterosomal cell, marked by expression of FOXN4, as recently reported36,61,66. Our findings 486 

contrast with the results of Hou and colleagues, who reported exclusive tropism of SARS-CoV-2 for 487 

ciliated cells in the nasal airway13. It is not immediately clear how to reconcile these findings, given 488 

that secretory cells express relevant entry receptors10,13 and have been identified as a major infected 489 

cell type in infected patients66. Hou and colleagues used a fluorescent reporter virus, the tropism of 490 

which might have been slightly narrower than clinical isolates. It is also worth noting that while we 491 

show that all cell types contained SARS-CoV-2 protein, there was a significant reduction in the 492 

proportion of goblet cells expressing spike protein, and the intensity of spike immunodetection was 493 

significantly greater in ciliated and secretory cells than basal or goblet cells. Ciliated cells also 494 

contained more virion-like structures per cell. Collectively, this implies that although all cell types are 495 

permissive to SARS-CoV-2 entry, there may also be quantitative differences in the overall efficiency of 496 

viral replication in different cell types. Hou and colleagues previously hypothesised that post-entry 497 

factors such as intrinsic antiviral immunity might dictate permissiveness. As discussed, we found 498 

limited evidence to support such a correlation, since while virtually all nasal epithelial cells 499 

demonstrated a basal ISG signature - consistent with ex vivo nasal biopsy data10 - this was apparently 500 

insufficient to mediate resistance to SARS-CoV-2, at least at the time point analysed. However, it 501 
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remains possible that cell-type specific differences in the efficiency of induction of the IFN response 502 

(for example in basal cells) might contribute to more subtle variation in permissiveness.  503 

The differential response of basal cell types to SARS-CoV-2 at 24 hpi identified by our scRNA-seq 504 

analysis appears a novel observation. Basal cells are the stem/progenitor cell population of the 505 

airway67. Recent data indicate an emerging role for these cells as sentinels of the airway inflammatory 506 

response68. For example, basal cells detect apoptotic cells in the context of viral inflammation69, 507 

retaining memory of prior immune exposure70. More generally, stem/progenitor cell types exhibit 508 

enhanced intrinsic antiviral immunity71. Future studies should consider mechanism(s) governing the 509 

seemingly distinct early antiviral response of nasal airway basal cells to SARS-CoV-2, and its functional 510 

relevance.    511 

Importantly, from a clinical perspective, the observation that IFN-I/III treatment prevented SARS-CoV-512 

2 infection in vitro indicates that chemoprophylaxis with IFN-I/III may have therapeutic value. This 513 

approach has already been tested in a small clinical trial in China (although the absence of a control 514 

group makes it impossible to judge the efficacy of this approach72). Immunisation is the most tractable 515 

approach for large-scale primary prevention of COVID-19. However, owing to incomplete vaccine 516 

coverage, and reduced vaccine effectiveness in immunocompromised populations or against mildly 517 

symptomatic or asymptomatic infection, allied to the emergence of variants that may compromise 518 

vaccine efficacy, there will likely continue to be a need for targeted chemoprophylactic therapies to 519 

prevent transmission in specific circumstances. These include post-exposure prophylaxis of contacts - 520 

to avoid the need for self-isolation - as well as pre-exposure prophylaxis for certain high-risk 521 

encounters (e.g. in healthcare settings or prior to long-distance travel). Our data suggest that nasal 522 

application of IFNb or IFNl1 might have an important role to play in this setting and argue for urgent 523 

clinical assessment of this approach. In terms of the therapeutic efficacy of mucosally-administered 524 

IFNb in patients with established COVID-1941, our findings suggest that early administration may be a 525 

key factor determining clinical efficacy. Furthermore, studies in animal models indicate that 526 

administration of IFNb or IFNl1 later in the disease course may have deleterious effects on viral 527 
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inflammation and/or airway cell regeneration73-75, suggesting the existence of a relatively narrow 528 

therapeutic window of opportunity.  529 

In summary, we have shown that SARS-CoV-2 exhibits broad tropism for nasal epithelial cells, but with 530 

preferential infection of ciliated and secretory cell types. Nasal cells mount a robust innate antiviral 531 

response to SARS-CoV-2 dominated by paracrine IFN-I/III signalling, which is delayed in onset relative 532 

to viral replication, but which is nevertheless capable of exerting partial control at later times post-533 

infection. Upon exposure to exogenous IFN-I/III treatment, these cells adopt a profound antiviral 534 

state, highlighting a potential clinical role for recombinant IFNb or IFNl1 in chemoprophylaxis and/or 535 

therapy of COVID-19.  536 

 537 

METHODS 538 

Adult nasal airway epithelial cell culture at air-liquid interface (ALI) 539 

Adult primary human nasal airway epithelial cells were derived from excess clinical material obtained 540 

during routine nasal surgical procedures29. Ethical approval for sample collection was provided 541 

(Research Ethics Committee Reference 17/NE/0361) and written approved consent was provided 542 

prior to sample collection. Tissue shaved from the superficial surface of the sample was chopped into 543 

~2 mm2 pieces and added to RPMI-1640 basal medium containing 0.1% protease (Sigma-Aldrich, UK) 544 

and incubated overnight with gentle agitation at 4°C. All large pieces of tissue were discarded, and 545 

residual protease was neutralized with 5% FCS. The preparation was centrifuged (200 g; 7 min) and 546 

the pellet resuspended in PneumaCult-Ex Plus expansion medium (Stemcell Technologies), then 547 

seeded onto 25 cm2 tissue culture flasks pre-coated with 30 µg/mL Type I collagen (PureCol, Advanced 548 

BioMatrix). Flasks were incubated in a humidified atmosphere containing 5% CO2 at 37°C, with 549 

medium replaced every 48 hours. Cells were trypsinised at 60-80% confluence and cryopreserved for 550 

future use. Upon thawing, cells were grown through an additional expansion phase, then transferred 551 

in Ex Plus medium onto collagen-coated 6.5 mm polyester transwell membranes with 0.4 µm pore 552 

size (Corning) at a density of 150,000 cells/cm2. When cells were fully confluent, apical medium was 553 
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removed and basolateral medium was switched to PneumaCult-ALI-S (Stemcell Technologies). Cells 554 

were maintained at air-liquid interface until fully differentiated.  Barrier integrity of ALI cultures was 555 

monitored by measuring trans-epithelial electrical resistance (TEER, EVOM 2, World Precision 556 

Instruments). ALI cultures were validated for use in experiments based on microscopic appearance of 557 

appropriate ciliated morphology and TEER > 500 W*cm2. The sex and age of donors are included in 558 

Table S4.  559 

 560 

Viruses, cytokines and inhibitors 561 

A clinical isolate of SARS-CoV-2 (BetaCoV/England/2/2020) was obtained from Public Health England 562 

(PHE). This was isolated from a patient in January 2020 and thus represents an early strain of SARS-563 

CoV-2, not known to be affected by variants of concern. The initial stock was propagated once in vero 564 

E6 cells. The same viral stock was used for all experiments. As SARS-CoV-2 is a Hazard Group 3 565 

pathogen (Advisory Committee on Dangerous Pathogens, UK), all infection experiments were 566 

performed in a dedicated Containment Level 3 (CL3) facility by trained personnel. Sendai virus (Cantell 567 

strain) and parainfluenza virus 3 (PIV3) was obtained from Richard Randall (St Andrew’s University). 568 

Influenza A virus (A/PR8/1934/H1N1) was propagated and titred on MDCK cells. For nasal ALI 569 

infections, apical poles were gently washed once with warm Dulbecco’s modified Eagle’s medium 570 

(DMEM; Gibco, USA) and then infected with 60 μL dilution of virus in DMEM, at a MOI between 2 and 571 

0.01 plaque-forming units per cell for 2 hours, when the virus-containing medium was removed. 572 

DMEM was used as inoculum for mock infection. Apical washes (in warm phosphate-buffered saline) 573 

were collected at different time points and stored at -80oC for plaque assays. Plaque assays were 574 

undertaken in vero E6 cells using a 1.2% (w/v) microcrystalline cellulose overlay (Sigma-Aldrich).  575 

Cytokines/inhibitors were used at the following concentrations: human recombinant IFNβ1 (1000 576 

ng/mL; Avonex, NDC 59627-002-06, Biogen Inc, USA); IFNλ1 (100 ng/mL; 1598-IL-025, R&D Systems, 577 

USA); and Ruxolitinib (10 µM; S1378, Calbiochem, USA) alongside the appropriate dilution of DMSO 578 

vehicle. Treatment was applied through basolateral poles.  579 
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 580 

Single cell RNA sequencing (scRNA-seq) sample processing 581 

For the droplet-encapsulation scRNA-seq experiments, ALI cultures were washed with PBS and then 582 

incubated with 1x Trypsin-EDTA (ThermoFisher Scientific, USA) for 10 min before the cells were diluted 583 

with DMEM and counted using a haemocytometer. 20,000 single cells were loaded onto each channel 584 

of a Chromium chip before encapsulation on the Chromium Controller (10x Genomics, USA). The 585 

single-cell sequencing libraries were generated using the Single Cell 5ʹ V.1, as per the manufacturer’s 586 

protocol. Libraries were sequenced using NovoSeq 6000 to achieve a minimum depth of 50,000 raw 587 

reads per cell. The libraries were sequenced using the following parameters: Read1: 26 cycles, i7: 8 588 

cycles, i5: 0 cycles; Read2: 98 cycles to generate 75 bp paired-end reads.  589 

 590 

Single-cell RNA sequencing (scRNA-seq) data generation and annotation 591 

Sequencing data were demultiplexed and quantified using the Cellranger tool (version 4.0.0, 10x 592 

Genomics) and aligned to the combined human (official Cell Ranger reference, GRCh38-2020-A) and 593 

SARS-CoV-2 reference transcriptomes (Ensembl reference Sars_cov_2.ASM985889v3). CellBender 594 

(version 0.2.0)76 was applied to the output from Cell Ranger software after alignment to remove 595 

background effect from ambient mRNA released during processing. Doublet detection and exclusion 596 

was performed using Scrublet (version 0.2.1) with thresholding of cells with a doublet score above 597 

two median absolute deviations from the median. Low-quality cells were removed using thresholds 598 

of < 200 genes and > 20% mitochondrial content. The analysis was performed using Seurat (version 599 

4.0.1). Data were normalised and log-transformed using NormalizeData and the top 2000 variable 600 

genes identified using the FindVariableFeatures tool. The first 20 principal components were batch-601 

adjusted using Harmony (by sample ID) and used to generate the nearest-neighbour graph. 602 

Dimensionality reduction and embedding was performed using Uniform Manifold Approximation and 603 

Projection (UMAP), with the neighbourhood graph clustered using the Leiden algorithm. The Wilcoxon 604 

rank sum test (log2 fold change threshold of 0.25, adjusted P value of 0.05) was used to identify 605 
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differentially expressed genes between clusters, and these were annotated based on expression of 606 

markers from literature. This annotation was validated by comparing to a recently published scRNA-607 

seq dataset from ex vivo primary nasal cells15. The Seurat label transfer tool was used to assign 608 

predicted identities to our data using the external published data as reference. The robustness of our 609 

annotation was then assessed by the strength of its correlation with this prediction. 610 

 611 

Gene set scoring and gene set enrichment analysis 612 

A published gene set derived from IFN alpha or IFN gamma-treated human nasal basal cells11 was used 613 

to generate a list of epithelial-specific IFN-stimulated genes (ISGs). To calculate basal expression of 614 

ISGs within the unexposed cells, over-expression of this gene list was assessed using the Seurat 615 

AddModuleScore tool. Differences between clusters was compared by a Wilcoxon rank sum test 616 

(adjusted alpha 0.05) with Benjamini-Hochburg multiple test correction applied. 617 

Gene set enrichment analysis was performed using the fgsea tool77. Genes were ordered between 618 

mock-infected and infected cells by fold-change in expression with Wilcoxon rank sum testing using 619 

the FindAllMarkers function in Seurat, but without thresholds. Gene sets from Hallmark, Reactome 620 

and Biocarta were used as reference after filtering to exclude those with fewer than 50 and greater 621 

than 200 genes. Output from fgsea was further filtered to remove pathways that were not significantly 622 

enriched in any cell type (adjusted P value <0.05) followed by further manual curation of the resultant 623 

pathways. 624 

 625 

Regulon scoring and analysis 626 

The DoRoTHea/Viper package in R was used to score regulon activity by cell78. Human regulons from 627 

DoRoTHea were filtered for those with a confidence score A-C. Normalised enrichment scores (NES) 628 

for each transcription factor (TF) were calculated using run_viper with a minimum regulon size of 4 on 629 

the complete gene expression matrix. To estimate TF activity over baseline within each cell type in the 630 

infected cells, the median NES from the mock-infected clusters was subtracted from the equivalent in 631 
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the infected cluster. These scores were then scaled within each TF to give comparative estimate of TF 632 

activity between clusters.  633 

 634 

Quantitative RT-PCR 635 

Total RNA was isolated using TRIzolTM reagent (Invitrogen, Carlsbad, CA, USA) according to the 636 

manufacturer's instructions. For qPCR analyses of transcripts, 250 ng of RNA isolated from the nasal 637 

epithelial cells was reverse transcribed with Superscript III (ThermoFisher Scientific), and the resulting 638 

cDNA templates were subjected to qPCR with a TaqManTM Gene Expression Master Mix (Applied 639 

Biosystems, MA, USA) and AriaMx real-time PCR system (Agilent Technologies, CA, USA) according to 640 

the manufacturer’s instructions. The following TaqMan gene expression assays (Thermo Fischer) were 641 

used: IFNA1 (Hs03044218_g1), TNF (Hs00174128_m1). The primers were designed using the Roche 642 

Universal Probe Library (UPL) Assay Design tool (Roche, Basel, Switzerland) with the indicated UPL 643 

probes. All other primer and probe information is described in Table S5. Cycling conditions were as 644 

follows: reverse transcription at 50°C for 15 min, followed by initial polymerase activation at 95°C for 645 

10 min, then 40 cycles of denaturation at 95°C for 15 sec and annealing/extension at 60°C for 1 min. 646 

The 2-△△Ct method was used to calculate the relative expression of genes. Each sample was run in 647 

duplicate. Samples were normalised to the endogenous housekeeping gene expression, either 648 

RNASEP for N gene expression, or 18S for all other genes.  649 

 650 

Immunofluorescence  651 

Immunofluorescence analysis was performed in accordance with published methods79. Infected and 652 

mock-infected membranes were fixed in situ with 4% (w/v) paraformaldehyde overnight at 4oC, before 653 

removal from transwells and sectioning. Membranes were washed twice for 5 min in PBS plus 0.1% 654 

(v/v) Triton X-100 (Sigma-Aldrich) before being blocked with a 1% (w/v) BSA solution in PBS with 0.5% 655 

(v/v) Tween 20 (Sigma-Aldrich; PBST) for one hour at room temperature (RT). Membranes were 656 

incubated with primary antibodies for 2 hours at RT. Antibodies used are listed in Table S6. 657 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.02.17.431591doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431591


  

Membranes were washed three times for 5 min in PBST before incubation with appropriate 658 

fluorescence-conjugated secondary antibodies for 2 hours at RT. This process was repeated as part of 659 

a sequential staining process where required. Membranes were washed three times for 5 min in PBST 660 

before being incubated with DAPI (50 nM; Sigma-Aldrich) as a nuclear counterstain, and phalloidin, 661 

DyLight 650 (1 unit/mL; ThermoFisher) where required, for 10 min. Membranes were then mounted 662 

in MOWIOL mounting media (Sigma-Aldrich) and coverslips applied. Appropriate secondary only 663 

controls were performed as required. Images were captured using a Nikon A1 confocal microscope 664 

(Nikon, Japan), with all capture settings standardised. For analysis three random fields per sample 665 

were captured at x20 magnification and analysed via Fiji (Version 2.0) using the Cell Counter plugin. 666 

Total cell count, and number of spike protein-positive cells, were determined by segmenting images 667 

using ZO-1 and DAPI to identify individual cells. Mean pixel intensity of the spike protein in positive 668 

cells was also determined using the Plot Profile plugin.  669 

 670 

Immunoblot 671 

Immunoblotting was carried out as previously described40. Briefly, proteins from cell lysates were 672 

separated by 10% sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) using 673 

MOPS running buffer (Thermo Fisher, USA), and transferred to a nitrocellulose membrane (Millipore, 674 

USA) using NuPage Tris-Bis Transfer Buffer (Thermo Fisher) for immunoblotting (for details of 675 

antibodies see Table S6). Blots were developed with Pierce ECL Western blotting substrate (Thermo 676 

Fisher) and imaged on a LI-COR Odyssey Fc (LI-COR, USA). Densitometry was undertaken using 677 

ImageStudio software (LI-COR).  678 

 679 

Transmission electron microscopy (TEM) 680 

Cultures were fixed with 2% glutaraldehyde (Sigma-Aldrich, MO, USA) in 0.1 M sodium cacodylate (pH 681 

7.4) buffer in the apical and basal compartment and then kept at 4oC overnight. For TEM resin 682 

processing, the monolayer membranes were removed from the insert frame and placed in microwave 683 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.02.17.431591doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431591


  

sample holders. The Pelco Biowave Pro+ microwave (Pelco, CA, USA), incorporating the Pelco ColdSpot 684 

Pro system, was used for the following steps of the processing. The ColdSpot system 685 

improves inconsistent wattage supply to the microwave compartment, therefore protecting samples 686 

from excess microwave energy. The range temperature was set at 23−27°C. Following buffer rinses 687 

(three pulses at 150 watts (W) for 40 secs) the samples were post-fixed in 1% osmium tetroxide for 8 688 

min [pulse microwaved (MW), 100 W] and rinsed in distilled H2O (three times at 150 W for 40 secs, 689 

per step). Samples were dehydrated in a graded series of acetone (25%; 50%; 75%; three times with 690 

100% (v/v); 150 W, 40 secs per step) before being impregnated with increasing concentrations of 691 

epoxy resin (medium resin; TAAB, UK) in acetone (25%; 50%; 75%; three times at 100% (v/v); 300 W, 692 

3 min per step). The samples were then embedded in 100% fresh resin and left to polymerise at 60°C 693 

in a conventional oven for a minimum of 24 hours. All resin blocks were trimmed using a razor blade 694 

to form a trapezoid block face. Sections were cut on an ultramicrotome using a diamond knife. Semi 695 

thin sections (0.5 μm) were stained with toluidine blue and viewed on a light microscope to verify 696 

presence of cell monolayers. Ultrathin sections (70 nm) were then cut and picked up onto pioloform-697 

coated copper grids. Grids were stained with 1% (w/v) uranyl acetate (30 min) and 3% (w/v) lead 698 

citrate (7 min) to improve contrast. All sections were examined using a HT7800 120 kV TEM (Hitachi, 699 

Japan). Digital micrographs were captured using an EMSIS Xarosa CMOS Camera with Radius software 700 

(EMSIS, Germany). ImageJ software (Version 2.0) was used to enhance the contrast by increasing the 701 

percentage of saturated pixels to 1% to aid virus-like particle identification. Virus-like particles 702 

(∼70 nm in diameter) were counted using the cell counter plugin in at least 6 goblet cells and 16 703 

ciliated cells per donor. Data were presented as number of virus-like particles per cell. 704 

 705 

Proteome sample preparation 706 

The protein concentration was determined by EZQ® protein quantification assay. Protein digestion was 707 

performed using the S-Trap™ sample preparation method and TMT-16 plex labelling was carried out 708 

as per the manufacturer’s instructions. Samples were cleaned using MacroSpin columns, and dried 709 
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down prior to offline high-performance liquid chromatography fractionation.  Peptides were 710 

fractionated on a Basic Reverse Phase column on a Dionex Ultimate 3000 off-line LC system. A total of 711 

18 fractions were collected, and each fraction was acidified and dried. Peptides were dissolved in 5% 712 

formic acid, and each sample was independently analysed on an Orbitrap Fusion Lumos Tribrid mass 713 

spectrometer, connected to an UltiMate 3000 RSLCnano System.  All spectra were analysed using 714 

MaxQuant 1.6.10.43 and searched against SwissProt Homo sapiens and Trembl SARS-CoV-2 FASTA 715 

files. Reporter ion MS3 was used for quantification and the additional parameter of quantitation labels 716 

with 16 plex TMT on N-terminus or lysine was included. A protein and peptide false discovery rate 717 

(FDR) of less than 1% was employed in MaxQuant. Moderated t-tests, with patient accounted for in 718 

the linear model, was performed using Limma, where proteins with an adjusted P < 0.05 were 719 

considered as statistically significant. All analysis was performed using R. Raw data are present in 720 

supplementary dataset 5. A comprehensive description of the methods can be found in the 721 

supplementary methods. 722 

 723 

Statistical analysis  724 

Statistical analysis was performed and figures assembled using GraphPad Prism V9 (GraphPad 725 

Software, USA). Data are presented as mean ± SEM of individual donor values (derived typically from 726 

2-3 independent repeat experiments per donor). The donor was used as the unit of experiment for 727 

statistical analysis purposes. Continuous data were normalised or log-transformed prior to analysis 728 

using parametric significance tests, or if this was not possible, were analysed using nonparametric 729 

significance tests. Differences between two groups were compared using an unpaired, two-tailed 730 

Student’s t-test (or Mann-Whitney test for TEM image analysis), whereas differences between more 731 

than two groups used ANOVA, with Dunnett’s post-test correction for multiple comparisons when 732 

comparing to a single reference point (e.g. mock-infected or time zero) or with Sidak’s post-test 733 

correction for other multiple comparisons (e.g. between differently treated donors at the same time 734 

point). In some cases, data were normalised to a reference point, where a one-sample t-test was used. 735 
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Unless stated otherwise, a two-tailed alpha of < 0.05 was the threshold for statistical significance. 736 

Statistical analysis of proteomics and transcriptomics data sets is described in the relevant sections 737 

above.  738 

 739 

Data availability 740 

Source data are provided with this paper.  This includes uncropped blots, all quantitative data and the 741 

results of differential expression analysis of RNA-seq and proteomics data, which are included as 742 

supplementary datasets. Additional raw data are available on request from the corresponding author 743 

providing ethical approvals permit sharing of data. The mass spectrometry proteomics data have been 744 

deposited to the ProteomeXchange Consortium80 via the PRIDE partner repository81 with the dataset 745 

identifier PXD022523. This can be accessed through the Username: reviewer_pxd022523@ebi.ac.uk 746 

and the Password: UaEXYFKF. Raw RNA sequencing data have been deposited to the European 747 

Genome-Phenome Archive (accession pending). Processed scRNAseq data is available at Zenodo 748 

(https://zenodo.org/record/4564332).   749 

 750 

Code availability 751 

Analysis scripts and codes are available at github.com/haniffalab/covid_nasal_epithelium. 752 
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